
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-28, NO. 3, MARCH 1979

d2k = Ldk/2J

d2k+1 = (2n - 1) - d2k

(9)

(10)

for k = 0, 1, * , 2"- 1 - 1; where LxJ is the "floor" function denot-
ing the greatest integer smaller than x.

Proof: The recursive formulas will be proved separately.
1) d2k = Ldk/2J-

Let the binary representation of k be (4). Then

(2k)2-=(knkn- -
.. k2k 0) (1

The inverse Gray codes of the bit-reverses of (k)2 and (2k)2 are,
respectively,

(dk)2 = (xIx2 * Xn-lX") (12)
and

(d2k)2 = (OY2Y3 - Yn-lYn). (13)
where

xi= kj (14)
j=1

and
i-i

Yi =0G3 E kj=xi-,, i=2, nn-1. (15)
j=1

That is (d2k)2 is obtained from (dk)2 by shifting the bits ofthe latter
one bit to the right. Hence d2k = [dk/21.

2) d2k+l= (2n-1)-d2k:
From (11) we can write immediately

(2k + 1)2 = (k kn1- k2k11). (16)
Let

(d2k+1)2 = (1Z2Z3 Zn- zn). (17)
From (5), (6), and (16),

i-1

Zi- I1 3 f kj = x~i_ 1 = Yi, i = 2, * * , n -1. (18)
j=1

Since (d2k+1)2 is the one's complement of (d2k)2 it follows that
(d2k+ 1 + d2k)2 = (11 11), and hence the result.

In order to generate the 2" elements of S. the algorithm based
on (8), (9), and (10) requires 2" computation steps. This is approxi-
mately half the

n-I

E 2n"i = 2(2" - 1)
i=O

computation steps required by the algorithm in [1]. The total
number of operations necessary for binary implementation of the
proposed algorithm are one assignment, 2"1 - 1 one-bit right
shifts, and 2n- ' subtractions, whereas the previous algorithm re-
quires 2" - 1 assignments (indexing operations) and 2" _ 1 sub-
tractions. Even if the cost of an assignment operation is neglected,
the present algorithm is superior since a one-bit right shift is
simpler than subtraction. Though the time complexities of both
algorithms are of the order of 2", the proposed algorithm is easier
to implement since it is not recursive with respect to n.
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Analysis of the Signal Reliability Measure
and an Evaluation Procedure

ISRAEL KOREN

Abstract-The classical reliability measure of digital circuits,
known as functional reliability, assumes that the circuit fails when-
ever a fault is present in it. It has long been known that this reliability
measure is overly pessimistic since digital circuits may produce
correct output signals even when some faults are present in them. A
different reliability measure, known as signal reliability, is the
probability that the circuit output is correct. This reliability measure
is analyzed first and compared to the functional reliability measure.
Next, a new procedure for the evaluation of the signal reliability
measure is presented.

Index Terms-Combinational circuits, functional reliability,
probability of fault occurrence, signal probability, signal reliability.

I. INTRODUCTION
The reliability of digital circuits can be evaluated using two

different measures. The first measure is calledfunctional reliability
and is the probability that the circuit realizes the desired design
function. The second measure is called signal reliability and is the
probability that the circuit output is correct.
The functional reliability measure assumes thatthe circuit fails

whenever a fault is present in it. It has long been known that this
reliability measure is exceedingly pessimistic since digital circuits
may produce correct output signals even when some faults are
present in them [1]-[5]. Moreover, this measure is too simplified;
when evaluating the reliability of a circuit we consider only the
number of basic elements which may fail (number of leads if lead
failures are considered or number of gates if gate failures are
considered), while the exact structure of the circuit is not taken
into account. The more accurate signal reliability measure is
analyzed in Section II and is compared to the functional relia-bility
measure.
Two different approaches to the evaluations of the signal reliab-

ility of general combinational circuits were presented by Ogus [2].
The first method requires the evaluation of the behavior of each
possible fault in the circuit. In the second method a special fault
circuit is formed and faults are injected into it through special
control input lines. Although the second methodis more efficient
than the first one it is still impractical because of the amount of
computation involved. An improved method for evaluation of the
signal reliability measure in combinational circuits is presented in
Section IV. This method evaluates the signal reliability in a recur-
sive way and can easily be automated.

II. RELIABILITY MEASURES

The reliability of a logical circuit depends up-on the possible
faults and their probabilities of occurrence. The probability of a
fault, denoted by s, is usually assumed to be time dependent and
the time function s(t) =1 - e- where a is the failure rate, is used
frequently. Thus at t= 0 the probability of the fault is s(0) = 0
and it increases with t. Consequently, the reliability of the circuit
is time dependent. This reliability can be evaluated using two
different reliability measures, the functional reliability, denoted by
FR(t), and the signal reliability, denoted by SR(t). These reliabili-
ties are defined as follows:
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FR(t) = Pr {the circuit is fault-free at time t}

SR(t) = Pr {the output signal is correct at time t}.

Since logical circuits may produce correct output signals even
when some faults are present in them, we have

SR(t) . FR(t) for all t.

One of the most important applications of reliability analysis is
the prediction of mission time, i.e., the time the circuit will operate
at or above a given reliability. In order to predict the mission time
we need the accumulative reliability in the time interval [0, t]
rather than at the instant t. Hence, we define the accumulative
functional reliability and the accumulative signal reliability,
denoted by RF(t) and Rs(t), respectively, as follows.

RF(t)

= Pr {the circuit is fault-free in the time interval [0, t]}

Rs(t)
= Pr {the output signals are correct in the time interval [0, t]}.

It is clear that

Rs(t) . RF(t).

If only permanent faults are considered and no. repair is taking
place, then clearly RF(t)= FR(t) for all t. The nonaccumulative
signal reliability SR(t) and the accumulative signal reliability Rs(t)
are not necessarily equal since the output signal may be incorrect
at time instant t1 and correct at a later time instant t2 (t2 > tl)
depending upon the input signals applied to the circuit.
Consequently

SR(t) > Rs(t) . RF(t) = FR(t), for all t. (1)

Thus, SR(t) and RF(t) are the upper and lower bounds, respec-
tively, of the accumulative signal reliability. The fact that Rs(t) >
RF(t) implies that the functional lifetime (the time to failure) and
the signal lifetime (the time to the first incorrect output signal) of
the circuit, denoted by TF and Ts, respectively, satisfy TS . TF. The
problem of evaluating the difference TS- TF was studied by Shed-
letsky and McCluskey [7], [8]. They have shown that the number
of time units in this difference is equal to the error latency of the
circuit where the error latency of a circuit is defined as the number
of input vectors applied to the circuit having a fault until the first
incorrect output signal due to that fault is observed.

In this work we restrict ourselves to evaluation of the nonaccu-
mulative signal reliability rather than the more complex accumu-
lative signal reliability for which we have no efficient evaluation
methods at this moment. For convenience, the nonaccumulative
signal reliability will be called signal reliability. In the following
we indicate possible applications of the signal reliability in addi-
tion to those mentioned in [2], [3], [6], and [9]. Besides being the
upper bound of Rs(t), the signal reliability SR(t) is useful if the
circuit is not used continuously and we are interested in predicting
the probability that it will operate correctly at some time t in
the future (or at some specific instants t1, t2, .) while the opera-
tion of the circuit until that time is of no concern.
Another application of the signal reliability is to compare be-

tween different realizations of a logical circuit. Employing the
functional reliability measure results in a less accurate reliability
comparison of different designs of a digital circuit. When the func-
tional reliability is evaluated, the reliability of the basic element of
the circuit is raised to the number of these basic elements in the
circuit, where the basic element is a lead if lead failures are con-
sidered or a gate if gate failures are considered, e.g., [5], [10].
Although reliability is a function of the complexity of the circuit,

the complexity may not be treated as a simple function of the
number of basic elements, as was already indicated by Ingle and
Siewiorek [10]. Contrary to the functional reliability measure, the
signal reliability of a circuit depends upon the exact structure of
the circuit, the nature of the possible failures and their probabili-
ties of occurrence, thus yielding a more accurate reliability com-
parison of different designs.

In the next sections we present a procedure for the evaluation of
the signal reliability of combinational circuits. For convenience,
we shall omit t as an argument of the reliability and failure prob-
ability functions and these functions will be understood to be time
dependent.

III. BASIC DEFINITIONS AND ASSUMPTIONS

The signal reliability of a circuit depends upon the possible
failures and their probabilities of occurrence. We assume that the
possible failures are multiple lead failures of the stuck-at type, i.e.,
any line X in the circuit may be stuck at one (abbreviated s-a-1) or
stuck at zero (s-a-0).

Let sx denote the probability of occurrence of a single fault on
line X. This fault can be either an s-a-0 fault with probability q0o,
or an s-a-i fault with probability qj, satisfying

SX = qoX + qlx

The signal reliability of line X, designated R(X), is defined as the
probability that the logic signal on line X is correct. Since the
correct logic signal on line X can be either 0 or 1 we define the 0(1)
signal reliability as follows [2]:

Ro(X) = Pr {line X is correctly a 0}

R1(X)= Pr {line X is correctly a 1}.

Clearly

R(X) = Ro(X) + R1(X). (2)

Similarly, we define the signal unreliability, denoted Q(X), and
the 0(1) signal unreliability [2]

Q(X) = Pr {the logic signal on line X is incorrect}

Q6(X) = Pr (line X is incorrectly a 0}

Q1(X) = Pr {line X is incorrectly a 1}.

Clearly

Q(X) = Q0(X) + Q1(X)
and

R(X) + Q(X)= 1. (3)
According to the method proposed here, the signal reliabilities

and unreliabilities of the lines in the circuit are evaluated recur-
sively, i.e., the values of Ro, R1, Qo, and Qi for the output line of
every subcircuit are calculated using the values of these reliability
functions for its input lines. In order to simplify the equations
relating the output and input signal reliabilities and unreliabilities
of a- subcircuit, we establish a simple model for the circuit. In this
model we insert in each line of the circuit a special subnetwork
called Fault Occurrence Network (FON). Only in these special
subnetworks may s-a-0 or s-a-1 faults occur, while the other parts
of the circuit, i.e., the subcircuits and the primary input lines, are
fault free. For example, the appropriate model for a NAND gate is
shown in Fig. 1.
The proposed model enables us to derive separately two sets of

equations. The first set relates the output and input signal reliabi-
lities and unreliabilities of an FON in a single line. The second set
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The equations for calculating the output signal reliabilities and
unreliabilities of a basic gate are given in the following theorem.

Theorem 4.1: The output signal reliabilities and unreliabilities
of an n-input basic gate, whose input signals X1, X2, -, X,, are
independent, are given by the following equations:

Fig. 1. The model for a NAND gate.

of equations relates the output and input signal reliabilities of a

subcircuit which is fault free according to our model.

We derive now the first set of equations for a single line. Let X*

denote the output line of an FON whose input line is X, and

suppose that the values of R1(X), R0(X), Q1(X), and Q0(X) are

given, thus

R1(X*)- Pr {X* is correctly a 1)

= Pr {X is correctly a 1 n no fault occurred)

+ Pr {(X is correctly a 1 or incorrectly a 0)

n (an s-a-i fault occurred)).

Since the occurrence of a fault in this line is independent of the

correctness of the signal X, we obtain

Rs(X*) Rv(X) *(1o- sx) + [R1(X) + Qo(X)]q1 ar

Simple algebraic manipulations yield

K1(X*) = R (X) *( - qox) + Qo(X) qlx (4)
In a similar manner we can prove the following equations:

Ro(X*) = Ro(X) - (1 - qlx) + Q1(X) - qox

Q1(X*) = Q1(X) * (1 - qox) + Ro(X) * qlx

Qo(X*) = Qo(X) * (1 - qlx) + R1(X) * qox.

(5)
(6)

(7)

If line X is a primary input line to the circuit, it is according to
our assumptions fault free, hence

QO(X) = Q1(X) = 0

R1(X)= Pr {X = 1}; Ro(X)= Pr {X =0. (8)

The last two probabilities, denoted Px and 1 -Px, respectively,
were called signal probabilities and were studied by Parker and
McCluskey [4], [6]. These signal probabilities can be calculated
for each line in the circuit, using the signal reliabilities and un-
reliabilities, as follows:

Px = Pr {X = 11 = R1(X) + Q,(X) (9)
1 - Px = Pr {X = 0) = Ro(X) + Qo(X). (10)

IV. SIGNAL RELIABILITY OF COMBINATIONAL
CIRCUITS

Most combinational circuits are constructed out of basic gates
like AND, OR, NAND, NOR, and NOT. We will derive now, for these
basic gates, a single set of equations for calculating the output
signal reliability. Each of these basic gates can be uniquely
described by a binary vector [11]. Let X1, X2, , X, denote the
input lines of a gate, and let Y denote the output line. This gate is
described by the vector (21, n2, ", a"C, f ), where al, n2, , an is
the only input combination for which the output equals ft. For
example, a three-input NOR gate is described by the vector (0001)
since the gate output equals 1 only for the input combination
(000) and equals 0 for any other input combination.

n

R,(Y) = Hl Ra(Xi)
i= 1

n

Qp(Y) = [Qc,(Xi) + R.;(Xi)]-R(Y)

Q:(Y) = [QJ(Xi) + R.;(Xi)] - R(Y)
i=l

R#(Y) = 1 - [R0(Y) + Qp(Y) + Q1(Y)]

(11)

(12)

(13)

(14)

where axl a2 ... oe,, f is the binary vector describing this gate.
Proof: According to our model the gate is fault free, therefore

R(Y) = Pr {Y is correctly a fi

= Pr {each Xi is correctly a cic.
The n input signals are independent, hence

n n

= H Pr {Xi is correctly a ai = Hl RX;(Xi).
i=1 i=1

To prove (12) note that

R0(Y) + Q0(Y) = Pr {Y is correctly or incorrectly a PI
= Pr {each Xi is correctly or incorrectly an ai}.

The independence between the input signals results in
n

= H [Rai(Xi) + Q;(Xi)]

and (12) follows.
In a similar manner we prove (13):

R0(Y) + Q(Y) = Pr {Y is correctly a # or incorrectly a P1
= Pr {Y is correctly a ft or should be a ,B}

= Pr {each Xi is correctly an (xi or should be cil
n

= H [Ra,(Xi) + Qzi(Xi)].

Since R#(Y) + Rj(Y) + Q0(Y) + Q#(Y) = 1, (14) follows. Q.E.D.
Equations (11)-(14) can be employed for signal reliability calcu-

lations in any fan-out-free circuit since the assumed independence
of all primary input lines implies independence of the input signals
to each gate. The main problem in extending these equations to
general combinational circuits is the existence of reconverging
fan-out lines causing dependencies between gate input signals. A
similar problem concerning signal probabilities was studied by
Parker and McCluskey [6]. They presented the following equa-
tions for the case where the signals are independent, e.g., primary
input signals

Pr {A = 1)= 1 - Pr {A = 11
Pr {AB = 11= Pr {A = 1) * Pr {B = 1}

(16)

(17)

Pr {AvB= 1) = Pr {A = 1) + Pr {B= 1)

-Prj{A=1)Pr{B=1}. (18)

It was suggested in [6] that these equations can be used in the case
where the signals are dependent by suppressing the resulting ex-
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x

X2 n

x3
x3

Fig. 2. Two realizations of the function f(X1,,X2, X3) = E(0,1, 7).

ponents of the signal probabilities. We shall now state and prove
formally the above.

Theorem 4.2: The output signal probability of a basic gate
whose input signals are dependent can be computed by using
(16)-(18) and suppressing the resulting exponents of the fan-out
signals' probabilities.

Proof: See Appendix A.
In the following theorem we show that the principle of expon-

ent suppression can be used in signal reliability calculations as
well.

Theorem 4.3: The output signal reliabilities and unreliabilities
of a basic gate whose input signals are dependent can be cal-
culated using (11)-(14) and suppressing'the exponents of the
fan-out signals' reliabilities and unreliabilities.

Proof: Using the method suggested by Ogus [2] we can form for
every circuit with output signal Z a new circuit with output signal
H satisfying

Pr {H = 1} = Pr {Z is correctly a 1} = R1(Z).

In a similar way we can form circuits satisfying Pr {H = 1}=
Ro(Z) or Pr {H = 1} = Q1(Z), or Pr {H = 1} = Qo(Z). According
to Theorem 4.2, the probability Pr {H = 1} can be calculated
using the principle of exponent suppression. Consequently, this
principle can be employed in signal reliability and unreliability
calculations as well. & Q.E.D.
The following two examples illustrate the calculation of signal

reliabilities of general combinational circuits.
Example: The Boolean functionf(Xl, X2, X3) = E (0, 1, 7) can

be realized in two different ways as shown in Fig. 2. The first is a
sum-of-products realization

N1 = XlfX2 + XIX2X3-
The second is a product-of-sums realization

N2 = (X1 + X2XX1 + X2)(X1 + X3).

The output signal reliabilities of these two circuits were computed
using an APL program. In these computations we assumed that
all possible faults are equally likely, i.e., qo =q = s/2 for all lines
and that

P{X1 = 1} = P{X2 = 11= P{X3 = 1} = 0.5,

i.e., all input combinations are equally likely. The results are
plotted in Fig. 3(a) as a function of the fault probability s and in
Fig. 3(b) as a function of time. In Fig. 3(b) the exponential func-
tion for the fault probability (i.e., s(t) = 1 - e-a) is used and the
time has been normalized; one time unit is equal to the mean
lifetime 1/a. The main conclusion that can be drawn from this
example is that a circuit having a larger number of gates and lines
and consequently a larger number of possible faults, is not neces-
sarily less reliable, e.g., in the example the circuit N2 has a larger
number of gates and lines, however R(N2)> R(N1) for s > 0.145,
or equivalently, for t > (1/a)0.156. When comparing the reliability
of these two circuits using the functional reliability measure, the
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Fig. 3. The signal reliabilities of the circuits in Fig. 2.

circuit N1 having a smaller number of possible faults is assumed
to be more reliable than N2 for any t.

Another application of signal reliability calculations is to evalu-
ate the increase or decrease in reliability, caused by using TMR
configurations, as shown in the following example.

Example: A binary full-adder (FA) is realized in a TMR
configuration as shown in Fig. 4. The signal reliabilities of the
lines A 1, C1, A, and C were computed assuming that the probabi-
lities of all possible faults are equal and that all input combina-
tions are equally likely. The results are plotted in Fig. 5 as a
function of the fault probability s. From this graph we can see that
the usage of a TMR configuration will increase the signal reliabi-
lity of both output lines only for 0 < s < 0.11, or equivalently, for
0 < t < (1/a)0.1 165. A similar comparison using the functional
reliability measure results in a more pessimistic conclusion that
the reliability of the TMR configuration is greater than the reliabi-
lity of the FA module only for 0 < s < 0.029, or equivalently, for
0 < t < (1/a)0.0294.

V. CONCLUSIONS
Two different forms of the signal reliability measure, the accu-

mulative and the nonaccumulative signal reliability, have been
defined.

These two forms were analyzed and compared to the known
functional reliability measure. A recursive procedure for calculat-
ing the nonaccumulative signal reliability has been developed.
This procedure simplifies the computations involved in evaluating
the signal reliability.

APPENDIX A

Proof of Theorem 4.2: We prove the theorem for an AND gate
with input signals A and B and output signal C. The proofs for
other kinds of gates are similar and will therefore be omitted.
Dependency between the input signals A and B is caused only

by reconverging fan-out lines [6] in the subnetwork feeding A and
B. We assume that X1, X2, X,, are the primary input lines of
the circuit and that X1, X2, , Xk, (k < n), are the only fan-out
lines reconverging at this AND gate. This assumption is justified as
follows: Every Boolean function can be realized by a circuit in
which all fan-out lines are primary input lines, and since every
Boolean function has a unique probability expression [6], our
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Fig. 4. A TMR configuration of a full-adder.
.7

assumption is justified. Consequently, we obtain

A = F(Xl, X2, -', Xk, Xk+1 , Xm), (m < n)

B = G(X1, X2, -* Xk, Xm+1, *, X.)
where the three sets (X1, X2, * *, Xk) (Xk+1l, *, Xm)j, and
(Xm+il1 * X") are disjoint.
Both functions F and G can be described in a canonical sum of

products form. Summing up all products containing the same
minterm of (X1, , Xk) yields

2k- 1

A = U F1(Xk+1 , Xm)* mi(X, ., Xk) (A.1)
i=O

2k- 1

B= U Gj(Xm+l, Xn) mi(Xl,1 Xk) (A.2)
j=o

where mi(X1, -, Xk), i = 0, 1, , 2k 1 is the ith minterm.
No two products in the expression for A can be simultaneously

1, hence the signal probability of A is [6]

PA

= Pr {A = 11
2k-1

= E Pr {Fi(Xk+1, , Xm) mi(X1, , X)= 1}.
i=O

The terms Fi and mi are independent, therefore
2k- 1

PA = E PFiPmi (A.3)
1=o

where

PF; = Pr {Fi(Xk+1, * *, X,) = 11
and

pm1= Pr {mi(XI, , Xk)= 11.
In a similar way we obtain

2k-1
- PB = E PGjPmj

j=0

where PGj is defined similarly to PF;.
In order to obtain a logical expression for the output line C we

perform an AND operation on (A.1) and (A.2). Since the AND
operation of Mi(X1, .., Xk) and mj(X1, , Xk) equals 0 if i $ j,
we obtain

2k- 1

C= AB=U Fi(Xk+1, %X,)
1=o

*Gi(Xm+l, f-X.)mi(XI, *-SXk).

Using the same reasoning as for A, the signal probability of C is
given by

2k- 1
PC = E PFiPGiPm.- (A.5)

1=o

(A.4)

.6

.5

tR(C1)

.1 .2 .3 .4
i i I

.1 .2 .3 .4 .5
t

Fig. 5. The signal reliabilities of the TMR configuration in Fig. 4.

We will now use (17) to derive an expression for the signal prob-
ability of C and show that it is equal to (A.5) if the resulting
exponents are suppressed. Substituting (A.3) and (A.4) into (17)
yields

PAPB =(1 E PFiPmi)( E PGjpmj).
i=O j=O

(A.6)

We prove now that if exponents are suppressed, the products
Pm; Pm] satisfy

PjmP, if i =jPmiPm1= tO, otherwise. (A.7)

In the logical expression for the minterm mi, each of the input
variables X1, , X,, appears in its complemented or uncomple-
mented form, hence

mi(X1,* *, Xk) = if Xt, where XI = XI or Xi.
1=1

Since the input variables are independent, we obtain
k

pmi = H Pr {X, = 11
l=1

where

Pr {Xl = 1} = |1Px if X, = XI
if kt = X,.

If i = j the product Pin Pmj equals

k
2 = H (Pr (it = 1})2

5=1

where

(Pr (it5 = 11)2 = (1 _p + 2,
if XI = X
if X, = Xtl.

Using the principle of exponent suppression we obtain

(Pr (tk = 11)2 = fPx, if iltX = Pr {X= = 1}.

Consequently
2 =1 ~~~Pmi Pmip
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If i #j there is at least one variable X. E {X1, X2, , Xk}
which appears in its uncomplemented form in mi(mj) and in its
complemented form in mj(mj), hence

PmiPmj = P Px(1 - Px,)

where P is a product of probabilities not including px,.
Using the principle of exponent suppression, we obtain

P(px. p2 ) = P(px. PX.) = 0.

The proof of (A.7) is now complete. Substituting (A.7) in (A.6)
yields

2k-1

PAPB = PFPGiPmi PC-
i=O

Q.E.D.
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Aspects of the Upper Bounds of Finite Input-Memory and
Finite Output-Memory Sequential Machines

MARTIN FREEMAN

Abstract-In this paper upper bounds on the finite input-memory
pi and finite output-memory p0 of n-state completely specified
sequential machines (CSSM's) and incompletely specified sequential
machines (ISSM's) are investigated. It is observed through computa-
tional means that N = n(n - 1)/2 is not a tight upper bound for finite
input-memory of ISSM's and finite output-memory of both CSSM's
and ISSM's. Tight upper bounds of pi, p0 14 for 6-state machines
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and tight upper bounds of pi, p, < 20 for 7-state machines are
obtained.

Index Terms-Completely specified machine, finite input-
memory, finite output-memory, incompletely specified machine,
sequential machine, upper bound.

INTRODUCTION
The study of finite memory sequential machines was-initiated

by Zadeh and Simon [9]. Gill [2] proved that for reduced n-state
CSSM's finite memory p < N where N = n(n - 1)/2, finite input-
memory pi < n - 1, and finite output-memory pH, < N. Later, Gill
[5] showed that the upper bound for finite memory of reduced
n-state CSSM's was tight for an N-ary-input and binary-output.
Massey [6] improved this result by showing for every n there exists
a ternary-input-binary-output n-state CSSM with finite memory
p = N. He conjectured that this result could not be extended to
binary-input-binary-output n-state CSSM's for n . 6. Newborn
[7] disproved this conjecture and later [8] showed that the upper
bound for finite memory was achievable for n-state binary-input-
binary-output CSSM's. Kambayashi et al [4] independently
arrived at the same result and started an investigation into the
tightness of the upper bound of finite output-memory machines
[5]. They showed that for every n there exist binary-input-ternary-
output n-state CSSM's with MHO= N. They constructed binary-
input-binary-output n-state CSSM's with p0= N for n < 6 and
left n > 6 as an open question.

Recently, Toke and Vairavan [11] have shown that the upper
bound for p0 is 0(n2) for n-state machines. Toke [10] has also
gotten tight upper bounds on the output-memory of certain
classes of n-state machines.

This paper resolves the open problem of whether N is a tight
upper bound for finite output-memory and gives tight upper
bounds for the finite input-memory of 6-state and 7-state ISSM's
and tight upper bounds for the finite output-memory of 6-state
and 7-state CSSM's and ISSM's. The approach taken is computa-
tional in nature-theorems are proved to reduce the set of ma-
chines that could possess maximum finite output-(input-) memory
and this set is enumerated and checked with a backtracking
procedure. A similar technique has been used in the solution of
the four-color problem [1].

PRELIMINARIES

A sequential machine M is defined by a finite state set S, a finite
input set I, a finite output set 0,

(: S x I -+ S next-state function,
and

A: S x I -+0 output function.

In this paper only binary-input-binary-output (BIBO) sequential
machines will be considered. An incompletely specified sequential
machine (ISSM) is one where at least one of the functions 6, A is
partial. A sequential machine is said to be nondegenerate if ( is an
onto function. The sequel will be concerned with BIBO nondegen-
erate CSSM's and ISSM's.
An input sequence i2 ... i is said to be applicable to a ma-

chine M if there exist two states s, s' such that

S = 6(((-(- - 6(((s, il), i2) ik- 1), ik)-

An output sequence 0102 .. Ok iS said to be generated by a
machine M if there exists a state s and an input sequence il i** ik
such that
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