Proc. of the 7th International Symposium on Fault-Tolerant Compucing', June 1977,

STGNAL RELIABILITY OF COMBINATIONAL AND SEQUENTTAL CIRCUITS
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bepartment of Electrical Engineering and Computer Science
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A new measure of logic circuit reliability, called

signal reliabilicy, was introduced by oozm.w The sig-

nal reliability of a circuit is defined as the proba-
bility that the circuit output is correct, assuning
that multiple faults of the stuck-at type may occur.
Two dlfferent approaches to the evaluation of the sig-
nal reliability wers presented by Ogus. However, both
procedures are restricted to combinational circuits.

In this paper we extend this new reliability mea-
sure to sequential circuits, We present a new method
for evaluation of signal reliability which can be ap-
plied to sequential as well as combinational circuits.

I. Introducticn

Logical circuits may produce correct output sig-
nals even when some faults are present in them. Given
the nature and probabilities of the possible faults in
tha circuit we can determine the probability of the
output baing correct for any input combination. ‘This
probability was introduced hy Ogus as a new meéasure of

logic circuit reliability, called signal ﬂmwwmvwwwﬁx.v

Two different approaches to the evaluation of the
signal reliability of general combinational circuits

wars presented by oasm.H The first one is straight-
forward but is impractical becauwse of the amount of
computation involved. The second method is based upon
the probabilistic model of cambinaticnal circuits

which was introduced by Parker and zonwcmxmw.u_u The

latter method is more efficient than the first one;
however, it is also restricted to combinational cir-
cuits,

In thie paper we extend this new reliability
measure to sequential circuits. We present a new
method for evaluation of signal reliability which can
be applied to seguential as well as combinational
circuits. The proposed algorithm evaluates the signal
reliability in a recursive way and can easily he auto-
mated.

II. Basic Definitions and Assumpticns

The reliabiliey of a circuit depends upon the
possible faults and their probabilities of occurrence.
we asswie that the possible faults are multiple faults
of the stuck-at type, i.e., any line X in the circuit
may be stuck at one {abbreviated s.,a.l) or stuck at
zera (s.a.0).

Let Sy denote the ﬂhoﬁwvhwwnw cf occurrence of a

single fault on line X. This fault can be either a
s.a.0 faulc with probability q, + Or a s.a.l faulc

X
with probapility Q satisfying:

X

5y = Qn t 4
X X Hx
The signal reliabilicy of line X, designated R{X), is
defined as follows:

R(X) = Pri{Tha logic signal on line X is correcc}

mwswwmnwx. we define the signal unreliability, denoted
gix):
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Q(X) = pr{The logic signal on line X is incorreccrl)
Clearly, R(X} + Q(x) =1 {1)

Since the correct logic signal on line ¥ can bé either
0 or 1, we define the 0{1) signal reliabilivy and the

0(}) signal unreliability as mOHHozm"p

Ry (X) Pr{Line X is correctly a 0}

Ry (X) = Pri{Line X is correctly a 1)}

Qyixt = PriLine X is incorrectly a 0}
Opﬁxv = Pr{Line ¥ is incorrectly a 1)
Clearly, R(X} = wohxv + wwﬁxu (2)
and Q(X) = DDHH_ + DHAXU ’ (3)

According to the method proposed in this paper,
the signal reliabilities and unreliabilities of the
lines in the circuit are evaluated recursively, i.e.,
the values of mo, mH. oo and DH for the output line of

every subcircuit (a gate or a flip-flop) are calculated
using the values of these reliability functions for
its input-lines. In order to simplify the equations
relating the output and input signal reliabilities and
unrellabilities of a subcircuit, we establish a simple
model for the circuit. In this model we insert in
each line of the circuit a special subnetwork called
Fault Occurrence Metwork (abbreviated FON). Orly in
these special subnetworks may s.a.@ or s.a.l faults
cccur, while the other parts of the circuit, i.e., the
subcireuits and the primary input lines, are fault
frea. FPor example, the appropriate models for a NAHD
gate and a T flip-flop are shown in Fig. 1,

%
e m._uzx X%
. 12 TN, i
v -
2] Fon,
E Ex Y ¥a
— m.Ozm # FF m.OZ<
4 .
C
————{ FON, e *
(cledr)
Fig. 1: The models for a WAND gate and a T-FF

The proposed model enables us to derive separately
two sets of equations. The first set relates the
output and input signal reliabilities and unrelia-
bilivies of a FON in a single line. The second set of
equations relates the output and input signal relia-
bilities of a subcircuit which is fault free according
to our model. The eguations for gates are described
in the next section, while the appropriate eguations
for flip-flops are described in Secticn IV,

We derive now the first set of equations for a
single line. Let X* denote the output line of a FPOH



whose input line is X, and suppose that the values of
Ry X)), monxv. owﬂxu and Dcnxv are given, thus:

R, {x*) = pr{x* is correctly a 1}
= pr{X is correctly a Hﬁ; no fault occurred}
+ Pri{(X is correctly a 1 or incorrectly a 0)
ﬁdnm s.a.1l fault occurred) }

Since the occurrence of a fault in this lipe is inde~
pendent of the correctnhess of the signal X, we obtain:

Ry (X¥) = Ry (X)* [1-5,) + [R)(X] + noﬂxv_apx
Simple algebraic manipulations yield:
R (X%} = wpﬂxv.ﬂw-nox, * oonx,.apx t4)

In & similar manner, we can prove the following egua-
tionsg:

Ry (X*) = moﬁxv.ﬁpfnva LY (3
A R mo:s.p; - (6)
Qpixr) = moﬁxv.AH-onv * wHﬂxu.mox (7}

If line X is a primary input line to the circuit,
it is according to our assumptions fault free, hence:

0y (%) = @ (x) =0

wpﬂxu prix=1)} Ry (¥} = prix=0} (8}

The last two probabilities, dencted o and Hlmx~
respeccively, were called signal probabilities and

were studied by Parker and Znnpsmxmw.u.u These signal

prohabilities can be caluclated for each line in the

circuit, using the signal reliabilities and unrella-
bilities, as follows:

Py = Pr{x=1} = R (X) + 0, (%) (9)
- = X= =

1-py Pri{x=0)} Ry (%) + 0o (X} (10}

III. Signal Reliability ¢of Combinatignal Circuitsg

Most combinational circuits are constructed out
of basic gates like AND, OR, NAND, NOR and NOT. We
will derive now, for all these kinds of basic gates, a
single set of equations for calculating the ocutput
signal reliability. BEach of these basic gates is a
monotone gate whose logical operation can be described

by a binary 4mnnon.a Let xw.wm.....

input lines of a monotcne mmwMy.w:& let Y dencte the
output line. This gate is described by the vector
Agw.pu.....nn‘mu. where GO ... 0 is the only input

xs denote the

combination for which the output equals B. For exam-
ple, a three-input NOR gate is described by the vector
{0001} since the gate output equals 1 only for the
input combination (000) and equals 0 for any other
input combinacion. The Boolean equation of a monotone
gate can easily be derived from the corresponding
vector in the following way:

1 Q =
where X = X and X = X. For example, the Boolean

equation derived from the vector (00CLl) 1is:

1 0 0 0 - = =
¥ = = X = X
xw xw kw MH 2 xu HNH+

+X
2 uu

The equations for calculating the output signal
reliabilities and unreliabilities of a monotone gate
are given in the following theorem:
Theorem 3.1: The output signal reliabilities and
unreliabilities of an n-input monotone gate, whase
input signals xw.xu.....x: are independent, are given

by the following equations:

n
R, (¥} = T R (X} {11}
m i=1 Q..—. 1
n
g7y = Mg (X)) + R (%3] - Ryl¥) (12)
B il 3 &y 8
n
Q-(¥) = NI [p- (X)) + R_{X,)] - R, (Y} (13}
B ja1 & 1 a, i B
wmﬁm, =1- Hmmnmv + omﬁmu + @mﬁmv_ (14)
where o d,...@ B is the binary vector describing this
gate. n
Proof: According to our madel the gate is fault free,
therefore:

RglY) = pr{Yy is correctly a B}

pr{Each X, is correctly an wa

The n input signals are independent, hence:
n n
= |l mnmxw is correctly an Qwu = 1 R (X))
i=1 i=1 i

To prove equation Hpmv.sOﬂm that:
wmﬁxu + @m,mv = priY is correctly or incerrectly a Bl

= pr{Each X, is correctly or incorrectly an QMW

The independence between the input signals results in:

5
u=ﬁmﬁx.v+oﬁx.u#
=1 % 1 o, i
and equation (12) follows.

In a similar manner we prove equation {13):
mmnwv + omnmg = pri{Y is correctly a B

or incorrectly a Bl

1]

pr{tY is correctly a B or should be a B}

1

pr{Each X, is correctly an G, or should be an Q»u

n
mIr .ANHV + Dm.anUH
1 1

j=1
Since mmnmv + mwnmv + Dmhmu + Dwﬂmu = 1, equation (14)
follows.
Q.E.D.
Example: We employ now equations {11)-(14) for cal-

culating the cutput signal reliability of the NAND
gate shown in Fig. 1, assuming that the primary input
lines X and Y are independent. In order to compare
the final results to those obtained in [1], we assume
that all possible faults are equally likely, i.e.:
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q = nw = W for all three lines in the cgircuit.
Substituting the signal reliabilities of the
primary input lines (B} into equations (4)-(7) results

in the following:

5 * _p )2
R X4 = p, (1-3) QX } (1-py) =3

S
Ry(X%) = (1-p) (1-3) QX%

1]
‘o

.
r |

Similar results are obtained for ¥*. Substictuting
these values inta equations (11)-(14) yields:

[}

moﬁmu wp.x,v xwﬁmnv = Py Py ﬁwuwv

Q{2 Q (X*) R {¥¥} 4, (X¥) @, (Y*) + Ry (X*) @, {¥*)

2

¥+ (o, + py) 2 (1ms) + b, p, (37

- 5)

1
4
owﬂuv u noﬁx.u wwnxuv + moﬁxav oon<,U + mwnx.u Q, (Y

- (s - = 5%
= GX ©< 5 2 .

mH_Nv = woﬂx‘u + moﬂdau - woﬁx:u woﬁmav
+ ooﬁx*u DHAK*H+ owaxiv ocﬁm»u

P2 B iao
L=-750+ Amx + mxv 3 {s-1)

3 2
+ -1 =2

wx m< (s 1 3 5)
Bquations (4}-(7) may be employed now to calculate
mwﬁm.v. moﬁn‘v. owﬁm‘, and noﬁm»y. However, a simpler
equation can be used in this example where only the
value of R(Z%) = woﬁN*u + wpﬂm*u has to be caleculated.
This simpler equation is derived by adding equations
(4) and (5), and substituting ao =q = s/2:

R(z*) = 2 + (1-5) R(Z)

2
Using this eguation we obtain
2 3 3
* = _E_E .8 + 2_5_ 8,
R{Z¥%) (1 2 "1 ¥ 1 )+ Amx mwvaw 5 3 }
mw mm
+p, P, (5 - - {15}

If all input combinations are equally likely, then
m« = m« = 1/2, and

=1 - 241
R(Z*/p, = Py = 1/2) =1 -s+=s = s

1
This is identical to the result cbtained by Ogus.

Using equation (15) for R{Z*), the output signal
reliability can be calculated for any input combination
by substituting B, = 1(0) for any input lire satisfying

X = 1(0}.

=0) =1~ s5/2 - wm\» + mm\s. It can easily be veri-

fied that mﬁmx\mx = Py = 1/2) is the average of the

four different values for R{2Z*}, corresponding to the
four different input combinations.

For example, if XY = 00, then mHNs\mx = py

Bguations (11)-(14) can be employed for signal
reliability calculaticns in any fan-out~free circuit
where the input signals to each gate are independent.
The main problem in extending these eguations to
general combinational circuits is the existence of

reconverging fan-out lines causing dependencies between
gate input signals. A similar problem concerning

signal probabilities was studied by Parker and McClus-

3
key. They presented the following eguations for the

case where the signals are independent:

priA=1} = 1 - pr{a=1} (16}
pr{aB=1} = pr(a=1}-pr{s=1} an
pria+p=1} = pr{a=1} + pr{B=1} - pr{a=1}-Prin=1} (18}
It was suggested in {3) that these equations can be

used in the case where the signals are dependent by
suppressing the resulting exponents of the signal

propabilities. This is illustrated in the following
example:
Example: The circuit shown in Fig. 2 has three primary

input lines, of which X, is a reconverging fan-out

2
line causing dependency between the signals V and W.
We will compute the output signal probability of this
circuit in two different ways: First, by taking into
account the dependency between the input signalis V and
W to the last AND gate, and second, by using eguations
(16)-{18} and suppresing exponents.

!

X

Fig. 2: An Example circuit.

The primary input lines are independent, therefore:

priv=1)

=1} = = .
mnﬁxp 1 vnﬁxm 1} mxp wxm

Priw=1} = mnﬁxm + % =1}=0p

3 X - P, "'P

+p
X X2 ¥

2 3

Using the definition of signal probability, we obtain:
y=1} = =1} = X (X +X )=
priv=1} = pr{vw=1} = Prix X, (x +x,) 1}

= mﬁﬁxwxuuww =p.*p

X X

1 2

If we use eguation (17) we cbtain:

pr{y=1} = pr{vw=1} = Pr{v=1}-Pr{w=1}

Substitution yields:

Py Py B, t P, - P, P )
1% % TR Ry
b, B2 + D, B, B, - By Po P

= Py Py - X
XKy TH Ry Ry TR K

Suppressing the exponents of Py (the signal proba-
2

bility of the reconverging fan-out line} results in:

pri{y=1}=p, * p
X%

We shall now state formally the above.
Theorem 3.2: The output signal probability of a mono-

tone gate whose input signals are dependent can be
computed by using equations (16)-{18) and suppressing
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the resulting exponents of the fan-out signal's proba-
bilities.

Proof:; Omitted for the sake of brevity.

In the following theorem we show that the prin-
ciple of exponent suppression can be used in signal
reliability calculations as well.

Theorem 3.3: The output signal reliabilities and
unreliabilities of a monotone gate whose input signals
are dependent can be calculated using equations (11}~
{14) and suppressing the exponents of the fan-out
signal's reliabilities and unreliabilities.

procf: Using the method suggested by Ogus we can form
for every circuit with output signal Z a new circuit

with cutput aignal H wunpmnwunmup

pri{n=1) = Pr{Z is correctly a 1} = R, (2)
In a similar way we can form circuits satisfying

prif=1} = R, (2Z) or Pr{n=1} = Q (2} or Pri{n=1} = g, (2).

o]
According to Theorem 3.2, the probabiliey Pr{H=1} can
be calculated using the principle of exponent suppres-
sion. Consequently, this principle can be employed in
signal retiability and unreliability calcualtions as

well,
Q.E.D.

The following two examples illustrate the cal-
culation of signal reliabilities of general combi-
national ¢ircuits.

Example: 20%y) = £(0,1,7)
can be realized in two different ways, as shown in
Fig.3. _The first is a sum-of-products realization
N, = X. X, + xwxwxu. The second is a product-of-sums
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realization N, = nxw + xmvﬁxw + xwuﬁxw + xuv. The
output signal reliabilities of these two cirecuits were
computed using an APL program. In these computations

we assumed that all possible faults are equally likely,
i.e., pounwum\m for all lines, and that mﬁxwuwu =

The Boolean function mﬁxw.x

mﬁxmnwu = MAXunHQ = 0.5, i.e., all input combinations

are equally likely. The results are plotted in Fig. 4
as a function of the fault probability s.

xH
>0 UJIA\)
Fig. 3: Two realizations of the function
mﬁxu‘xw.xuv = E£{0,},7) .

xH ﬁ”VﬁVlilL 2
xw N
L
X
Xy . s 2 PRy

Tha signal reliabilities of the circuits in
Fig. 3.

Fig., 4

several conclusions can be drawn from this example.
The main conclusion is that the output signal relia-
bility of a circuit depends upon its structure.
Hence, for a given Boolean functicn, we can compare
several possible realizations and choose the one
yielding the maximal output signal reliability.
Another conciusion is that a circuit having a larger
number of gates and lines and, consequemntly, a larger
number of possible faults, is not necessarily less
reliable, e.g., in the example the circuit zN has a

larger number of gates and lines, however mﬂZNU > mHZWu

for 0.145 < s < 1.0.

Apother application of signal reliability cal-
culations is to evaluate the increase or decrease in
reliability caused by using TMR configurations, as
shown in the following example.

Example: A Dbinary Full-Adder is realized in a THR
configuration as shown in Fig. 5, We assume that
multiple stuck-at-type faults may Ooccur in the internal
lines of the voter as well as in the internal lines of
the FA modules.

X
1

A
me IIIIII!I!
c

FA

X
2

{carry out)

A TMR configuration of a Full-Adder.

The signal reliabilitias of the lines &, c e A

and C were computed assuming that the probabilities of
all possible faults are equal and that all input com-

binations are equally likely. The results are plocted
in Fig. 6 as a function of the fault probability s.

The most interesting conclusion from this example
is that if & > 0.165, the usage of a TMR configuration
will decrease the signal reliability of both output
lines instead of increasing them. However, for s <
0.11, the signal reliabilities of the sum and carry-
out signals are increased by using a TMR configuration.
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b

Fig. 6: ‘The signal reliabilities of the TMR con-
figuration in Fig. 5.
IV. Signal Reliability of Sequential Circuits

In this section we generalize the previous method
for evaluating signal reliabilities to segquential cir-
cuits. To simplify notation, we assume that we are
given a synchronous segquential circuit, shown in Fig. 7
with a single-input line X and a single-output line Z.

Cambinational

Logic Circuit

FF

FF

B sequential circuit.

The circuit contains m flip-flops with excication

input lines m“_.h E E_and output lines LT <~‘..:

FLAREE m

xE. respectively.
(i) (i)
Let X and 2 denote the input and output
signals of the circuit at time t., respectively,

N A : 1
mwp,..... mhpv and HMHH

Let

m%pu denote the input and

daen

output signals of the flip-flops at time ﬁH. respec-
tively.

We wish toc evaluate the signal reliabilities of
i
(4} for i = 1,2,...,k, where k is the length of the
applied input sequence. Since NAVH is an output
signal of a combinational circuit, we can employ

equations {(11)-(l4) for calculating the signal relia-
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bility of NHHu {and mhwv..... M%Hv as well) if we are
given the signal reliabilities of the current input
xﬂwv and of &va~ mhwu..... <%Hu. The required signal
reliabilities of MHH_...., <%wu will be calculated in

a recursive way, i.e., we will derive egquations for
calculating these signal reliabilities using the

signal reliabilities of mmylwu xmw|wv and E

. m
gi-l),
m

{i-1}
1

ey ’

vy

The exact form of the reguired equations depends
upon the type of flip-flop used. In the following, we
derive the appropriate equations for T flip-flops.

The equations forx other types of flip-flops may be
derived in a similar way.

We derive now the eguations for a single T £lip-

flop, and to mwsvwwmw notation let mﬁplpv and xﬁpupv
denote the input and output signals at time LRy

respectively. The next state wﬂpv
given hy the following equation:

of the T-FF is

mﬁwv - mﬁuuwu ¢ pti-l

where ® represents the Exclusive OR operaticn; con-
sequently, the following equations may also be employed
for Exclusive OR gates. The O-signal reliabilivy of

vy s,

(), _ (i)

R

o priy

(y is correctly a 0}

{(i-1) .ha mﬁwlpw

= pr{Both ¥ are correctly a 0

or correctly 1 or incorrectly O or
incorrectly 1}

Since these four events are disjoint, we obtain:
moﬁmnwu {i~ (1-1) Hpnpvumpﬁmﬁpuwvv

{i-1)

1)
;oa
{i=1}

) = wonm

N Dcnxﬂwtww

) o+ mHﬁ<

) o+ owﬂmﬁw-wuvopnm ) (20

_Donm

In a similar way we obtain:

(i) (i-1}) (i-1) Rwupuv

(Y

Ry ]

Ryty
{i-1)

(i-1)
'R (B ) ¥ R (Y

HUV + mwamawlpv

{i-1)

vwoﬂm

(1-1)
10, (M
(i-1)

(i- (213

Hpuwy,

+ Q0
(i)

10, (E
(i-1)

) vmoﬁm } o+ uca<
1)

Aleuu + Dwﬁdﬁwl

{i-1)

oonm moﬁw

(i-1)

ymcﬂm

-1 (2

i-1
(i ,U

+ mpH< umwﬁm

(i-1)
xonx

(i-1)
+ xwhm

IR, (E
{i-1}

)+ oty

{i-1} :
vahm

(i)
e, ) JR,(E

ﬁwqu_

Hownm

{1-1) (23)

umcnm } o+ ooﬁ<

Equations (20)-(23) can be used for calculating the

signal reliability and unreliability of gt for
i=2,3,...,% if the signal reliability and unreliabi-

lity of the initlal state mAHH of the FF are given.

If these values are not given, different assumpticns
can be made regarding them. In the following we
present three different situations in which the signal

(1)

reliabilities of Y are not given, and we suggest
appropriate values for each case.

In the first case, the initial state of the FF is
unknown. An appropriate assumption for this case is
the following:



gty = r 'y = 12
M (24)
1
gor™) =9, 0M) -0

In the second case, the initial state is known,
but no information regarding the signal reliabilities
is available. If the initial state of the FF is a
{0=0,1), mnwv can be correctly an G or incorrectly an
a, hence we assume:

Awuv =12 -

N

r v My = ooty

o
Ly, _ (1), _
mnnm } nﬁﬁx =0
In the third case, a clear signal is applied to
the FF, thus the initial state is known and its signal
reliability can be calculated. The results obtained

for a T-FF with clear input € are:

(1} L (1) 1
R (¥ ') =1->gq QY ) =354q
0 2 oO 1 2 Dn
L, . (1), _
wpﬁm ) = Q.Y ) =0
Example: A serial binary adder is shown in Fig. 8.

This sequential circuit has two primary input lines
and contains a single T-FF with a clear input. The
signal reliability of Nﬁwu = Nﬁﬂwu and Nﬁwu = Nﬁnmv
were computed for all pessible input sequences assum-—
ing that a clear signal preceded every input sequence
and that all possible faults are equally likely, i.e.,

no = mH = 0,05 for mFH the lines in the circuit, Some

of the results are summarized in Table I. From these
results we can see that the output signal reliability
function is not necessarily a decreasing function and

that there are input seguences for which mHNHMUU >
mﬁuﬁpuy.
X
1
—_—
2
X, - Serial [—™
—_—
. Adder
Y
. o
Clear *
Fig, 8: A Serial Adder.
TABLE 1: Output signal reliability of a serial adder
ﬂw ﬂm nH ﬁm
Input sequence [81¢] 0d 00 0l
Output signal
reliability 0.6571 0.5359 0.6571 0.6979
Input seguence al 11 11 11
Output signal
reliability 0.7749 0.4784 0.6250 0.8399

V. Conclusions

A recursive procedure for calculating the output
signal reliability of combinational and sequential
circuits has been developed in this paper. This pro-
cedure requires the performing of very simple opera-
tions which are easily automated. ‘

As mentioned in (1] and (3], there are many
applications of the signal reliability measure. The
procedure presented in this paper simplifies the s
computations involved and extends the usage ef this
measure to sequential circuits, Moreover, the basic
equations presented in this paper can be used to
establish appropriate equations relating the output
and input signal reliabilities of standard modules
{combinational or seguential), rather than simple
subcircuits (gates or flip-flops). Thus, the amount
of computation involved in evaluating signal relia-
bilities of large circuita, which are constructed out
of these standard modules, will he considerably re-
duced.

These extensions and other possible applications
of the signal reliability measure will be presented in
a subsequent paper.
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