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Restructuring Hexagonal Arrays of
Processors in the Presence of Faults
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Abstract—The issue of Fault-tolerance in YLSI processing arrays has been the subject of several
recent studies where different schemes for achieving fault-tolerance have been proposed. We
concentrate here on fault-tolerance in hexagonal arrays, while most previous publications dealt
with fault-tolerance in linear and rectangular arrays. Hexagonal arrays have been used for
various computational algorithms and were shown to be more flexible when reconfiguring the
array to match a given algorithm. It is, therefore, appropriate to develop a fault-tolerance
strategy suitable for these processing arrays.
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1. INTRODUCTION

In recent years, large arrays of identical processing elements have been recog-
nized as a viable architecture alternative in VLSI. These processing arrays have a
very regular structure resulting in simple designs and implementations. A varicty
of array topologies like linear arrays, rectangular arrays, and hexagonal arrays
have been suggested and different computational algorithms for these topologies
have been developed [5], [8].

To increase the number of applications for a given topology of a processor
array it has been suggested that several logical topologies be mapped on a given
physical topology [1, 4, 10, 11]. Mapping a binary tree on rectangular and
hexagonal arrays [2, 4, 10, 11] is one example. Clearly, the large number of links
per processor in the hexagonal topology can simplify the task of mapping and
may result in a better area utilization. For example, it has been shown in [2] that
when mapping a binary tree on an hexagonal array, up to 71 percent of the total
chip area may be utilized, as compared to 50 percent for the rectangular array.

Because of imperfect integrated circuit implementations, failures occur in the
arrays, which gave rise to several studies on the issue of fault-tclerance in regular
arrays |1, 3, 4, 6, 10]. There are two distinct types of failures that may occur in
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VLSI systems, namely, production defects and operational faults [7]. These two
differ in their probability of occurrence and in the costs associated with them.

To deal with these two types of failures, schemes for introducing redundant
hardware have been suggested. The hardware added can be in the form of
switching elements [1, 11], or redundancy in processors or communication links
(3.4, 11]. Most of these schemes attempt to achieve 100 percent utilization of the
processing elements (PEs), which are considered to be the most important system
resource. For example, in [1, 10, 11] switching elements are added between
processors to assist in achieving this goal. However, the silicon area devoted to
switching elements capable of interconnecting four to eight separate parallel
busses [11] cannot be ignored. Moreover, these switches necessitate the introduc-
tion of additional communication links, which will consume an even larger
percentage of the chip area. Therefore, schemes that use switching elements
might be beneficial only for processors that are substantially larger than the
switches [9, 10].

In addition, one of the underlying assumptions in these schemes is that the
switching elements and the communication links are almost failure-free and only
processors can fail. However, larger silicon areas devoted to those switches and
their associated communication links increase their susceptibility to defects or
faults and the above-mentioned assumption might not be valid any more.

Consequently, for processor arrays in which the silicon area occupied by each
PE is relatively small, schemes that do not incorporate switching clements might
be appropriate [9]. These schemes do not attempt to achieve 100 percent utiliza-
tion of the fault-free PEs (when the array is restructured to avoid the use of faulty
ones). Such schemes have been proposed in [4] for rectangular arrays; they can
be atiractive especially when dealing with operational faults (which are few in
number). Here, the lack of additional hardware (switches or links} allows a larger
number of PEs to fit into the same chip area, thereby offsetting the penalty of
giving up the use of fault-free PEs when restructuring.

Another objective of a strategy such as [4] is in making the restructured array
transparent to the various algorithms that use it. These algorithms fall into two
broad categories: Algorithms which make direct use of the regular array for
various purposes [5, 8]; and algorithms that map logical topologies, such as
binary trees, on the physical topology of the processor array [2, 4]. The only
change in the array is a reduction of its size.

It might seem that this simple strategy is inappropriate to handle the large
number of production flaws. However, in a recent paper by Koren and Breuer [6],
it is shown that such simple strategies might be effective even against manufactur-
ing defects. Employing practical defect distributions and not asymptotic results,
it has been shown in [6] that the effective yield might even increase when a fault-
tolerant array of PEs with the above restructuring strategy is designed. This is due
to the fact that the probability of getting a chip with only a single or two defects is
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high, and if the chip can successfully handle such a small number of defects, the
overall yield is increased.

The generalization of the fault-tolerance scheme in [4] to other physical array
topologies is not trivial. We introduce, therefore, in the next section a similar
scheme for hexagonal arrays. These arrays were shown to be more flexible and
more suitable for various applications compared to simpler topologies like linear
and square arrays [2, 5, 8].

2. FAULT-TOLERANCE IN HEXAGONAL ARRAYS

The fault-tolerance scheme for hexagonal arrays to be presented next is based on
the following approach: When some PEs or connections become faulty, the other
PEs will be restructured into an hexagonal array (of smaller size). The importance
of such an objective is that the failure of some of the PEs does not preclude the
usage of the same alogrithm for mapping logical structures onto the hexagonal
array.

Fault tolerance is achieved in two basic stages, the testing stage and the
reconfiguration stage. In the testing stage, the PEs test their neighbors and
themselves, in order to identify faulty PEs or connections. In the reconfiguration
stage, the PEs with neighboring faults turn into connecting elements (CEs) and
initiate messages which turn some other PEs into CEs. These CEs cease to
perform processing per se and behave like connectors between pairs of neighbor-
ing PEs.

Each remaining PE is not aware of the presence of the CEs and continues to
communicate with six neighbors as it did before the reconfiguration occurred,
using the same links as it did before (i.e., the neighbor in a given direction is still
accessed in that direction). It is possible, however, that some of its neighbors are
not physically the same as before, and the PE reaches them through some CEs.
This concept first appeared in [4], where it was applied to rectangular arrays.

2.1 A Distributed Testing Procedure

We propose a distributed testing procedure in which every PE tests all its
neighbors [4]. In this way, faulty PEs and faulty connections between PEs are
detected by the adjacent PEs.

The procedure first partitions all of the PEs into seven disjoint testing groups,
T4 Ty. - . . T4 After this partitioning, there are seven phases of testing, where
at phase { (i=0, 1, . . . , 6), the members of T, test all of their neighbors.

The partition is such that (1) every PE is surrounded by PEs of other groups,
and (2) no PE has two neighbors belonging to the same group. These two
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properties guarantee that for every {, no two members of T; will test each other, or
try simultaneously to test a third PE. It can easily be seen that seven groups are
both necessary and sufficient for a partition wth the above properties.

An example of one such partitioning is given in Figure 1. This particular
method was chosen because it leads to a very concise algorithm for assigning
group numbers.

The testing procedure for this example is initiated externally by assigning the
group number 0 to the left-upper corner PE in the whole array. Every other PE,
after being assigned a group number /, assigns group numbers to its neighbors in
directions 1, 2, and 3 as follows:

Assign (i+2) mod 7 to PE in direction 1.
Assign (i+3) mod 7 to PE in direction 2.
Assign (i+1) mod 7 to PE in direction 3.

Figure 1 An example of partitioning the PEs into seven testing groups.
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Figure 2 Absolute and relative-to-d numbering of directions.

The numbering of directions follows that suggested in [2], and is shown in Figure
2.

Note that if each element in the hexagonal array has been assigned matrix
indices (i,/), then their group number is equivalent to (i +2j) mod 7.

After watting a suitable period of time, phase O of the testing is externally
triggered, and broadcast to all PEs. All PEs in T, then start testing all of their
neighbors. The transition from phase to phase is always externally controlled,
after a suitable period of time has elapsed.

The grouping stage is necessary every time before the testing stage because of
possible reconfigurations resulting from earlier testings.

2.2 Reconfiguration

In the reconfiguration stage, every PE is assumed to know the status (faulty/not-
faulty) of its six connecting links or neighboring PEs. There is no difference if the
actual fault is in the neighboring PE proper, or in the link leading to it.

The basic unit for reconfiguration purposes is the CE. Out of all possible
configurations of a CE, only the three shown in Figure 3 are actually used in the
following algorithm. Any one of these is completely defined by the link that
connects opposite directions.

For reasons that will become clear later, we find it convenient to label the three
types of CEs by adding (modulo 6) the numbers of the opposite directions that
characterize them. Thus, CEs of type 1, 3, and 5 link the opposite pairs 2-35,
0-3, and 1-4, respectively. Note that if we disregard absolute directions, there is
only one type of CE,
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(a) (b) (c)

Figure 3 The three types of connecting elements: {a) type 3(0+3), (b) type 5 (1 +4),
(¢) type 1 (2+5).

2.3 Single Faults

A single fault is either a faulty connection or a faulty PE. We begin with the
description of the action taken by a PE which discovers that it has a single faulty
connection (or faulty neighbor). In Figures 4—6, a CE is represented by a stroke
through the processor, the slope of this stroke indicating the link which charac-
terizes the type of CE.

Assume that the PE senses a fault in direction ¢ (d=0, 1, . . . , 5} from itself,
The PE transmits a C (for Convert) message in the opposite direction to d (i.e.,
{d+3) mod 6); furthermore, if 4 is odd, then the PE also transmits € in direction
(d+1) mod 6 (see Figure 2 for relative-to-d numbering of directions). After
transmitting its message(s), the PE becomes a CE of type (2d—(—1)%) mod 6.

When a PE receives C from direction d, it retransmits C in the opposite
direction and becomes a CE of type (24— (— 1)9) mod 6. The C message thus
travels in a (virteal) straight line from the fault, turning all PEs in its path to CEs
of identical type.

An example is given in Figure 4. The link between processors A and B is
assumed faulty. A and B discover this and initiate C messages in opposite
directions. In addition, B sends a C message to processor C which in turn
retransmits C in direction 0. This results in three “rays” of CEs emanating from
the area of the fault. Consider now the path of a connection between two PEs
around the newly formed CEs; it either goes straight through (as between D and
E), or makes two *‘tums” through two CEs of the same type, and comes out in
the same direction it started (as between F and G). This fact is important because
a message sent out by a PE in direction d has to be received by its (logical)
neighbor as if coming from the opposite direction.

In Figure 5 we see an example of a single faulty PE. All of its six neighbors
initiate C messages away from the fault and six rays of CEs are thus formed.

D& 6

.
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Figure 4 CEs formed by a faulty connection between A and B.

Recall that all testing is initiated externally, and we also assume that the recon-
figuration phase is externally triggered. In this way, every PE with a neighboring
fault takes the required action (transmits C message(s) and becomes a CE) before
handling any incoming messages.

The above sequence of events causes the extra C messages produced by three
of the PEs surrounding a faulty PE to be *‘bounced” towards the fault, thus
preventing them from propagating further.
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Figure § CEs formed by a faulty PE.

2.4 Multiple Faults

When a PE detects more than one fault, it transmits C messages to all of its
nonfanlty neighbors. If the faults are only in the connections, this has the same
effect as if all the neighboring PEs had detected that particular PE as being faulty.
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Figure 6 The effect of multiple faults; A and the connection between C and D are
faulty,

When one (or more) of the neighboring PEs is faulty, we get a situation similar to
the one depicted in Figure 6 (A and the connection between C and D are faulty).
Six rays of CEs emanate from A and the C messages from C and D travel in
virtual straight lines through these CEs. All of the PEs in these lines are also
turned into CEs. The resulting configuration of CEs is shown in Figure 6.
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2.5 Correctness of the Scheme

We prove the correctness of the scheme for single faults and for multiple faults
that occur sequentially. In order to formalize the concept of an hexagonal array,
we define an nsn hexagonally-connected array (HCA) as a two-dimensional
array of processors, with n PEs to a side, and connected as follows: If P(i, /)
denotes the PE in row [ and column j, then P(i, ) is linked to P{i,j+ 1), P(i+ 1, )
and P(i+1,j+1), for i,j=1,2, ... ,n—1.

Proposition: Assume the array is restructured after a single fault. Then:

(a) If the fault is in a link, the resulting configuration contains an (n— 1)*(n—)
HCA.

{b) If the fault is in a PE, the resulting configuration contains an (rn— 2)¥(n—2)
HCA.

Proof: See Appendix.

Coroflary: Assuming an initial nyn HCA, if p connections and g PEs become
faulty in sequence, then the resulting configuration will contain an (n—p—2g)*
(n—p—2q) HCA. |

A program simulating the effect of single and multiple faults has been written.
Figures 4-6 are sample outputs from the simulating program. Notice that in
Figure 4, the resulting configuration contains a 9 x 9 HCA, while in Figure 5
with a faulty PE, the resulting configuration contains an 8 X 8 HCA only.

The results of the simulations for both sequential and simultaneous multiple
faults are in agreement with the corollary. This leads us to conjecture that the
statement of the corollary also holds for simultancous faults. Note that when a CE
becomes faulty, the logical effect is the same as several simultaneous link faults.

3. CONCLUSION

A scheme for fault-tolerance in hexagonal arrays has been suggested. Its main
advantage is that it makes the restructured array (following the identification of
the faulty PE or communication link) tramsparent to the various algorithms
utilizing the hexagonal array.
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APPENDIX: PROOF OF THE PROPOSITION

The proof is a straightforward examination of a number of typical cases. Part (a)
is proved first, and (b} will be shown to follow from (a). The different cases one
has to examine for (a) are:

(1) The faulty link is parallel to one of the sides of the HCA.
(2) The faulty link is on the main diagonal.
(3) The faulty link is not on the main diagonal but parallel to it.

One can see that the rays of CEs partition the PEs into at most three groups of
PEs. We shall only examine case (3) in detail, the other cases follow along
similar lines. Figure 7 is an example of case (3) and will serve as an illustration of
the proof. The indices above the PEs are the original ones on an 88 HCA. The
indices below are the new ones after restructuring. We assume the fault to be
below the main diagonal {similar proof for a fault above the diagonal).

We call the three groups of remaining active PEs A, B, and C, where A is the
group containing P(1,1), B contains P(n,1), and C contains P(1,n). Let P(i,j) be
an active PE in the reconfigured array, where i,j are its indices in the original
HCA (shown above the PE in Figure 7). We assign to P(i,j) new indices (i’,j") as
follows:

.7 if P(i,j) e A

(.Y ={0G-1,) if P(i,j) e B
(i—1,j-1) ifPi.HeC
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Figure 7 An hexagonally-connected array with its PE indices before and after restruc-
turing.

It is clear that within each of the three groups A, B, and C, alt links remain as
before and satisfy the requirement for an HCA. In order to prove that the
reconfigured array is an HCA,, we have to show that the connections between the
groups (across the CEs) are as required.

Consider a PE P({, j) on A’s rightmost column. P(i,7)"s new indices are (i',j') =
(£,f). Going from P(i, ) in direction 1, one crosses two CEs (P(i,j+ 1) and then
P(i+1,j+ 1)) and comes out at P(i + 1,7+ 2) of C’s leftmost column. The new
indices of this PE are {(i +1)’, ( +2)'}=(i,j+ 1) =(i',j' + 1), which is exactly as
required when going from (¢’,;') in direction 1. Similar argements show that all
other connections between A, B, and C are also as required for an HCA.

The new indices (i',j') satisfy the following conditions: They start at (1,1);
they differ by at most 1 from (7,j) and so they run up to n—1; all required

.
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connections for an HCA hold. Consequently, the remaining active PEs contain an
(n—1D=(n—1) HCA. The proof for cases (1) and (2) is similar.

Part (b} follows immediately from (a) by observing that the pattern of “‘rays™ of
CEs from a faulty PE is a successive superposition of two sets of rays similar to
the ones resulting from a faulty link. According to (a), each such set of rays
reduces the size of the HCA by at most 1, so we remain with an HCA of size
(n—2)*(n—2) at least.
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