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Embedding Tree Structares in VLSI Hexagonal Arrays

DAN GORDON, ISRAEL KOREN, AND
GABRIEL M. SILBERMAN

Abstract—Tree structures have been proposed for special-purpose and gen-
eral-purpose multiprocessors due to their desirable property of logarithmic path
from the root to any leaf element. Since only local communication among
processors is needed in tree structures, they are well suited for the VLSI tech-
nology. Such an implementation requires an area-economical mapping of a tree
on a plane. Novel mapping schemes for trees onto hexagonal arrays (or grids)
and appropriate algorithms are proposed here and shown to be superior over
Known mappings on square arrays (or grids).

Index Terms—Distributed configuration algorithm, hexagonal multipro-
cessor array. mapping scheme, tree structures, YLSL

I. INTRODUCTION

Hicrarchical tree-structured multiprocessor systems have received
recently a great amount of attention [1]-[5]. Twa of the most desir-
able features of a tree structure are the ability to access any processor
in a tree of # processors in at most logyn time and its pipelining ca-
pability (e.g., [1]). Tree structures have been shown to be well suited
for general-purpose multiprocessors [3], [6], as well as for special-
purposc devices [1]-[3].

When VLSI implementations of multiprocessor systems are con-
sidered, tree configurations look very attractive due to the simple and
regular interconnections which arc nceded among the processing el-
ements. In VLSI technology, compulation is cheap but communi-
cation is costly [1]-[4]. Consequently, by adopting a tree configu-
ration in which every processing element (PE) communicates only
with its immediate neighbors, the design costs are substantially re-
duced. To achieve a space economical implementation of a tree ma-
chine ona VLSI chip, an appropriate placement sirategy to map the
tree structure on a planc is required. One such strategy which uses
an area that is linear in the number of PE’s has been widely used
[1]-[4], and an appropriate construction algorithm has been devised
[7]. It maps a binary tree on a square grid as illusirated in Fig. 1.}

A different approach was introduced in [8], the binary tree being
mapped instead on a square array of PE’s. The underlying idea is that
by adding the possibility of restructuring the array as a tree, we in-
crease the number of applications utilizing the processor array, thus
making the VLSI chip more appealing to the semiconductor industry
and the users alike. One way to achicve it, is to make standard pieces
of silicon which can be programmed by on-chip software to perform
different functions.
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' When a tree is imbedded in a grid, some PE’s function us links between
active tree nodes. The latter are shown enlarged.

Various mesh-connected processor arrays have been proposed and
numerous appropriate computational algorithms have been devised
[3]. [9]. [10]. One of the most flexible schemes is the hexagonally
mesh-connected array, since each PE in it has direct communication
with its six tmmediate neighbors, In the next section we concentrate
on various tree configurations which can be mapped on an hexagonal
array. In Section I we derive area and propagation time expressions,
and show the superiority of hexagonal arrays over square arrays.
Finally, a distributed conliguration algorithm for a tree on the hex-
agonal array is presented in Section 1V,

Il. TREE CONFIGURATIONS

[n the usual H-1ype embedding of a binary tree in a square grid,
there is a basic unit consisting of a level 3 tree which is replicated to
form the full tree (Fig. 1). The basic unit can be chosen differently,
as in the Type 2 tree of [8]. On an hexagonal grid it is possible to
choose a basic unit (which we call the “basic tile”) in several different
ways, and to replicate it in various ways.

The mappings which we have found to be simplest to replicate on
an hexagonal grid have a basic tile consisting of a rectangle (Fig. 2)
or a parallelogram (Figs. 3-4). The basic tile, containing a full binary
tree, is replicated in one of three different patterns: 1) The replication
of the rectangular tile is called the recrangular pattern and the
method of replication is obvious from Fig. 2. The resulting overall
pattern is always rectangular. 2) The parallel replication of a par-
allelogram basic tile is shown in Fig. 3 and it is probably the simplest
scheme as all communication lines are straight. In this scheme, 1he
resulting overall pattern is a large parallelogram, which may be un-
suitable if the chip is not of the same shape. This possible problem is
remedied in 3)—the zigzag replication pattern outlined in Fig. 5.
Here, some of the communication lincs are straight and some alter-
nate in direction. This scheme is somewhat more complicated than
the parallel scheme, but the resulting overall shape is rectangular.

In Figs. 2 and 3 only one basic tile is shown in detail and athers arc
only outlined. Note however that some of the outlined tiles are mirror
images of the detailed one. Some of the advantages of using the
hexagonal grid are immediately cvident from the figures. For ex-
ample, Fig. 2 shows that a level 6 tree need have no links to connect
the nodes (compare with Fig, 1). Also, Figs. 2-4 show that in the basic
tile almost all PE’s are active nodes. In Section 111 we show that these
advantages over the square grid are maintained cven when the tree
level tends to infinity. -

The basic tiles of Figs. 2-4 iry 10 minimize the area and/or the
distance from the root of the tile to the leaves, but it is fairly easy to
construct tiles with other objectives, for example minimal inorder or
posterder distance between nodes—see Fig. 6.

1. TIME AND AREA ANALYSIS

In this section we present formulas for the area and propagation
delay of the hexagonal schemes, and compare them with the square
grid scheme. In counting the number of PE’s used by a scheme we
include all the PE’s in the smallest rectangle or parallelogram con-
taining all the basic tiles.

Area Comparison: Assume we have a parallelogram basic tile with
A and B PE’s on the sides, and containing a tree of level c. Assume
further that the path te the root of the tile is through the side con-
taining 4 PE’s. Denote by Py and Z; the number of PE's used by the
parallel and zigzag schemes, respectively, 1o construct a level & tree.
Setting k£ = ¢ + i, we have

Pegi = [(A+ D22 —1][(B + D2/~ (i = 0. n
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Fig. 1.

A six level tree on a syusre grid,
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Fig. 2. Rectangular replication of a six level sublrec embedded in a

rectangular tile.

Paraliel replication of a five level parallelogram tile.

Fig. 3.

Zei = _C_ + 121720 + __mm

___ - ___E + 2+ s

iz0 (2)

The derivation of (1) is straightforward. The derivation of (2) can
be followed by inserting the parallelogram of Figs. 3 or 4 into Fig. 5.
Zeri > Poyjbut lim Z,4/P.4; = 1,i.c. onty a vanishing percentage
of PE’s is wasted by using the zigzag instead of the parallelogram
scheme.

A full binary tree of level £ has 2% — 1 nodes, so the ratio of PE’s
used as nodes over the total number of used PE’s is (2% — 1}/ P, and
{2k — 1)/Z,, for the paralle] and zigzag schemes, respectively. It is
casy tosee that both ratios tend to 2¢/{A 4+ 1 B+ 1) ask — =. For
A=78B=>5andc = 5thisratiois 0.667,and for 41 =9, B = 8 and
¢ = 6 it becomes 0.711 (compared to 0.5 for the square grid [7]).

Il we wish to compare the actual areas used by hexagonal and
syuare grids, we must 1ake into account the fact that an hexagonal
PE of the same computational power as a square PE probably has a
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Fig. 5. Zipzag replication of a parallelogram tile.

larger area, because it has 1o monitor more connections. In this
comparison we consider the area between two adjacent PE’s as part
of the area taken up by the PE’s, so that the total area is just the
number of PE's multipiied by the area of a single one.

How much larger can an hexagonal PE be, in order that the total
area laken up by a tree of level & be no targer than that taken up by
a tree of the same level in a square layout? We denote by 5y the
number of PE’s taken by a tree of level k in a square grid. Its ex-
pression is [8]:
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Fip. 6. Five level tiles minimizing (a) inorder, (b) postorder.
S, = (212 — 1y« (U121}, i & is odd; 3)
T lwr iz — 1y« 202 = 1), if & is even.

Let 1 + x be the factor by which an hexagonal PE is larger than
a square PE. The hexagonal layout takes less total area if Pp() +
x) <8, orl +x <S5,/P; (replace Py, with Z; for the zigzag scheme).
Both §4/Py. and §/Z; tend to 2¢+1/(A+ 1)(B + 1) ask — =. For
the § X 9 parallelogram this imit is 1.422 and §;/P; > 1.422. This

means that the hexagonal PE can be larger than the square PE by as

much as 42 percent and still save arca. The same is true if the rec-
tangular paitern of Fig. 2 is used, because it takes up even less area
than the parallel layout based on the 8 X 9 parallelogram.

Propagation Delay Comparisons: We count the number of con-
nections a signal has to cross in order to reach a leaf from the root of
a trec. Assuming a parallelogram basic tile, the distance from level
ctitolevele+i—lis:

i, ifi=1:
P.tu TQ_ +:u:.|£\£,:,.NMM:_QE&R

(B + 12U/ if f 2 3 and odd. )

From this, the total propagation delay i

D+ 1,
Deyj = A+1
D+ + ;

In the second approach, the process is initiated externally, bui the
exact configuration is determined internally by the PE’s. This requires
that each PE contain (or obtain through broadcasting) the entire
conliguring information. This requirement might increase the size
of the local memory, which in turn may increase the physical size of
the basic PE. thus limiting the number of such clements for a given
chip arca. On the other hand, feeding-in a configuration string from
the outside minimizes the amount of information required at each
PE, at the expense of increasing the time needed to complete the
confliguration process.

An important advantage of a distributed placement algorithm is
that it is independent of the exact size of the available hexagonal
array. It dynamically places a tree on the array and consequently,
a change in the size of the array does nol require any changes in the
placement algorithm. .

The solution we have chosen 10 present is a compromise between
the two approaches. i.e., only a limited size configuration siring
(describing the busic tile) is generated externally and then distributed.
The rest of the configuration is internally controlled by an appropriate
algorithm residing locally at cach PE. This solution benefits from the
regularily exhibited at those levels in the resulting tree which are
outside the basic tile (see for example Fig. 3). The presented algorithm
is also independent of the exact size of the hexagonal array as long
as it is larger than a single basic tile.

As a result, cach PE has two possible modes of operation during
the configuration process, onc for the tree levels within the basic tile,
in which the externally-supplicd configuration string is used, and one
for the levels outside the basic tile, where the internal algorithm at
cach PE is applied. For convenience, we include both modes of op-
cralion in a single configuration algorithm.

The algorithm can be outlined as follows. A message is sent from
the outside towards the PE which will function as the tree root. This
PE determines the directions of its two subtrees and sends appropriate

S+ (A4 DRI = )+ (B + DLW — ),

ifi=1
ifi=2.

(5)

where D, is the internal propagation delay of a paraliclogram tile.
Ay and £ are the same for both the parallel and zigzag schemes.

The delay for the rectangular pattern of Fig. 2 turns out (o be ex-
actlyequalto Doy fore=6,4=9,B=8and . =9 [ji.c., same as
for the parallelogram tile of Fig. 4(a}].

The propagation delay from the root Lo the leaves in the square grid
is

Ck=2)/2 e .
R, = u;w:b 2, H:ﬁ _m even; (6)
2 -2, if k is odd.
This expression is easily derived from [8].

Assuming an 8 X 9 parallelogram as in Fig. 4(a) {(i.e..¢ = 6 and
D. = 9), we find that for “practical” values of k,say 6 <k < 10(i.c.,
a tree of up to 1024 nodes), Ry/Dy is between 1.43 and 2. The ad-
vantage of the hexagenal scheme is maintained for all vatues of &, and
the ratio Ri/Dy approaches 1.26 and 1.14 for even and odd values of
k. respectively, as k — =,

Denoting by (! + x) the factor by which the signal detay through
an hexagonal PE is larger than that of a square PE, we find that even
if x > 0 {which is not nccessarily true), the roraf time delay in the
hexagonal scheme can be smaller than that of the square scheme. The
“break-even” value of x depends on &, the level of the tree. For 6 <
k = 10, x can be as large as 43 percent, and the asymptotic (k — =)
break-even values of x are 26 percent and 14 percent for cven and odd
valtues of k. respectively.

1V, DISTRIBUTEDR PLACEMENT ALGORITHM

The placement of a tree on an hexagonal array may be done cither
in a centralized manner, i.e.., totally from the outside (by some host),
or in a distributed fashion, i.e., mostly internally performed {by the
PE’s). The first approach relics on a “configuration string”™ externally
gencrated, containing sctup instructions that are distribuied 1o alt
relevant PE's.

messages in these directions. This process is repeated at each trec
nodc. until the leaves of the tree are reached. While the algorithm is
being exccuted. the PE’s communicate using messages of the
form:

M(LV.MR.CN,ST)

where L¥ s the level number within the tree, MR is a “mirror flag”
indicating (if “true™) that a mirror image of the basic tite is 10 be used,
CN s the number of PE’s which function as links before the next tree
node is reached, and the ST is the configuration string for the basic
tile.

A PE receiving such a message from its d-neighbor (ie., its im-
mediatc ncighbor in direction d[8]) executes the appropriate part of
the algorithm (according to the values of LV, MR and CN) and
transmits similar message(s) to its neighbor(s). Each PE may receive
or transmit a message in any one of six possible directions, numbered
for convenience O through 5. as shown in Fig. 7.

The directions of the outgoing messages arc determined relative
Lo d—the direction of the incoming message (0 < d £ 5). Thus, {d
+ 1) mod 6 (or (¢ — 5) mod 6) is the direction next to & when moving
clockwise (Fig. 7). Similarly, (¢ + 3) mod 6 is the opposite direction.
Since the culculations related Lo directions use modulo 6 arithmetic
throughout, we omit in the following the reference to the modulus and
write “d + /" instead of “(d + i) mod 6.”

A distributed algorithm for a zigzag replication of the tile shown
in Fig. 3 is depicted in Fig. 8. The first part of the algorithm deals with
tree nodes outside the basic tile, i.e., LV > ¢, where ¢ is the number
of levels in the subtree embedded in the basic tile. In this part, the
number of PE’s behaving as links between the present node and its
sons, is first determined using (3). Then, the directions of outgoing
messages and their appropriate mirror flags are calculated while
configuring in conformance with Fig. 3.
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Fig. 7. Absolute and relative to  numbering of directions.

Next, the case of a tree node inside the basic tile (L¥ < ¢) is dealt
with. To determine the directions of the outgoing messages in this
case, we usc a configuration string—ST. Each element of the string
indicates the outgoing directions, relative to the direction of the in-
coming message, for a specific PE in the basic tile.

In order to encode this information into the string elements, we use
a five-bit binary code X = (xgxax2x;xg), where x; = | indicates that
an outgoing message should be transmitted in direction d + {j + 1)
(i.e., the weights of the digits x4, x3, x3, x|, xo, are 5,4, 3, 2, 1, re-
spectively). For example, the code word 9 = 01001 means that two
oulgoing messages are to be transmitted, one in direction 4 + 4 and
the other in direction & + 1. Mirroring the basic tile is accomplished
by assigning the negative weights —5, —4, —3, =2, —1, to the digits
X4 X3, X3, X1, X, respectively. Thus, if mirroring is needed (according
to the value of MR), the code 9 = 01001 means that the outgoing
directions are d — 4 and & — 1, which are the same as  + 2 and d +
5 in our residue arithmetic system.

The first element X of ST is dropped after being used to determine
the outging direction(s), and the rest of the string is transmitted to
the next PE if a single bit in X is set (i.e., the present PE performs as
a link), or to the two sons if two bits in X aresct (i.e., the PE is a tree
node).

The order in which the elements in the string $7 are organized is
determined by the “even-odd™ numbering scheme [7]. Consequently,
if two bits x; and x, (f > k) in X are set, all odd-positioned (even-
positioned) elements in the rest of the string (1087 in APL notation)
are transmitted (o the neighbor specified by x;(xy ). For example, the
configuration string for the basic tile shown in Fig. 4 is

ST=4,96,20,18,6,6,10,9,6,12,17,24,6,9,9.

The first element in §T (i.e., 4) corresponds to the first and only
link element in the basic tile. When the processor inside the tile is
reached, the 9 = (1001 is dropped and two substrings are formed. If
the mirror flag is MR = false (MR = true) then the odd substring
6,18,6,9,12, 24, 9 is transmitted in direction d + 4{d ~ 4), and the
even substring 20, 6, 10, 6, 17, 6, 9 is transmitted in direction d + 1{d
-1).

Finally, the last part of the algorithm deals with PE’s acting as link
elements between tree nodes, outside the basic tile. If LV-¢ is even
for a certain node (at level L¥), then straight lines connect that node
to its sons (see Fig. 3). Otherwise, zigzagging is needed, and the di-
rection is changed every B + 1 linking PE’s, where 8 is the number
of processors on the smaller side of the basic parallelogram. Note that
the algorithm in Fig. 8 is the same for any parallelogram basic tile
(i.c.. values for A, B and ¢), Similar algorithms can be devised for
parallel and rectangular replications of basic tiles.

V. CONCLUSIONS

Mapping schemes for trees on hexagonal arrays have been intro-
duced in this paper. They were shown to be superior to the known
mapping of a tree on a square array (or grid), when area and propa-
gation time are considered. Next, a distributed atgorithm for placing
i tree on a given hexagonal array was presenied.

Appropriate mapping schemes and placement algorithms for other
multiprocessor structures are needed in order to increase the number
of applications utilizing the hexagonal array implemented in
YLSI.

A message M {LV, MR, CN, ST) is received from d-neighbor

§f CN=0 then § Entering a node in Lhe Lree
if_ lV>c then A node outside the basic tile |
CN':=Apy Refer to Equation {3)
ii=lV-e

il MR@®{i<2) then
2 levels outside basic tile, where}

_
_
Kr.ﬁu_.nnm_.m wsunw.onnmvwaonnhun_
outgoing directions are reversed t

1f_iodd then
transmit M (LV-1, ¥R, CN', ST} to {d+1)-neighbor
transmit M (LV-1, MR, CN", ST) to (d-1)-neighbor
eise
transmit M (LV-1, BR, CN', ST} to (d-1)-neighbor
transmit M (LV-1, MR. €V, 5T) to {d+2)}-neighbor
endif
glse

if _ iodd then
transmit M (LV-1, FR, CN', ST} to {d+2)-neighbor
transmit M (LV-1, MR, CN", ST) to (d-2)-neighbor
[1FT]
transmit M (LV-1, HR, CN', ST) to (d-2)-neighbor
trensmit M (LV-1, MR, CN, 5T} to (d+1)-neighber
ndif
endif
else m LV £ ¢ => a node inside basic tile i
X := first element in ST X = I Tazpx 2y ]
INV:={f MR then -1 glseg 1 gndif
1L asingle bit r; in X is set. fhen
“_ Drop first element in ST {1}ST in APL)
transmit M (LV, MR, 0, 1|ST} to d+(j+1)-INV
e | Two bits x; and x, are on, >k |

STeat = all odd-positioned elements in 1}ST
wen o= 8ll even-positioned elements in 1{ST
trensmit M Mr<._. MR, 0, ST w to d+{j+1}-INV

| Straight tile image, except for first |
| 2 levels outside tile (see above) |

transmit M (LV-1, MR, 0, ST,.,,) to d+(k+1)-INV
gndif
wndif
wise f CN#0 => this is a link element  §
{ between tree nodes putside basic tile §
if ieven then { Straight-line links at this level |

transmit M {LV, MR, CN-1, ST} to (d+3)-neighbor
aise { Zigzagging links at this level ]
if CNmod {(B+1) =0 then {Changein direction is needed |}

if MRO(;odd) then.

transmit W (LV, MR, CN-1, ST) to (d+2)-neighbor
eise
transmit M (LV, MR, CN-1, ST) to (d+4}-neighbor
endif
wige .
transmil M {LV, MR, CN-1, 5T} to (d+3)-neighbor
wndif
andif
endif,

A distributed placement algorithm for the zigzag replication of a
parallelogram tile.

Fig. 8.
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