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Abstract 
A new algorithm is presented for decomposing a Fi- 

nite State hfachine(FSM) to reduce the area and dekay. 
For a known state encoding, it partitions the nezt state 
and output bi ts  so as to decrease the cost, which is a 
function of the area and delay. A state encoding which 
yields a IOW cost is deriued by wing a heuristic aIgo- 
rithm. This algorithm differs from ezwting algorithms 
in that it wes a meaaure for the area that is more re- 
flective of the actual area of the final chip. For most 

due to the fact that both algorithms for state assign- 
ment and logic partitioning work better for smaller 
machines. In [l, 18, 71, the area is calculated as the 
sum of the areas of the smaller interacting FSMs. 
3. Smaller machines may be required when there are 
restrictions on the number of product terms or on the 
number of input and output lines (for example, in 
PLA-based FPGAs). A technique to optimally create 
several smaller machines instead of one big machine is 
useful in these cases. 

ezamples, the resuIts obtained on a set of benchmarka 
are better than those of [l] and [18] . 2 Layout Topology 

Figure 1 shows the proposed layout of a decomposed 
1 Introduction 
Sequential circuits play a major role in the control of 
digital systems and efficient tools for their design are 
essential for computer-aided design of VLSI circuits. 
Area and performance optimization involves the de- 
velopment of algorithms for state assignment[6, 121 
and decomposition of finite state machines (FSMs) 
[I, 7, 8, 18, 19, 201. 
High quality algorithms for state assignment, tar- 
geting two-level and multilevel logic implementations 
have been developed in [4, 12, 201 and their relation- 
ship to state assignment has been investigated in [5]. 
It is desirable to decompose FSMs into smaller inter- 
acting machines for a number of reasons: 
1. The implementation of sequential circuits as inter- 
acting FSMs improves performance as a result of the 
reduction in the longest path between the latch inputs 
and outputs. This might improve the performance of 

finite state machine. Every input is available to all 
submachines. The states of cach submachine are made 
available to the others if necessary. The outputs 
are generated directly by the individual submachines. 
Note that the state information is shared and that, in 
general, the submachines are not independent of each 
other. The submachines are implemented as PLAs. 
The area, which is the product of the width and height, 
also includes unused/wasted area of the chip. 

3 Objectives of the Decomposition 
The motivation for FSM decomposition is to optimize 
the performance and area. For a PLA implementation 
of the submachines, these measures may be estimated 
as follows: 

The performance of a circuit is 
the delay along the longest path. Based on the delay 
model presented in [7], the delay for a PLA implemen- 
tation can be estimated as 

e Performance: 

FSM controllers, which often dictate the required du- 
ration of the system i:lock[l]. 
2. Decomposing a m  FSM into smaller interacting 
FSMs can lead to a decrease in chip area. This is 
partly due to the paxtitioning of the logic and partly 

DPLA = m z i , j ( f ~ ;  + f ~ j )  

where fr; is the fanout for the ith input line Ii and 
fpj is the fanout for the line corresponding to the j t h  
product term. 
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Figure 1: The proposed layout of the decomposed finite state machine. 

Additional delay is due to the storage elements and 
the interconnections between the machines, and is 
not considered here. Since each submachine is im- 
plemented as a PLA, the submachine with the longest 
delay will determine the period of the clock or the 
delay of the decomposed FSM. 

0 Area: The measure used for calculating area in 
[I], [7] and [18] is the sum of the areas of the individual 
submachines. We estimate the area of the decomposed 
FSM according to the layout shown in Fig. 1. This 
assumes that the submachines of the FSM are placed 
next to each other. Approximating the area as that 
occupied by the AND-OR planes of the constituent 
submachines yields 

Area = P,,, x width 

where P,, is the maximum number of product terms 
among all the submachines and 
width = C ( I + O )  over all submachines where I and 0 
are the inputs and outputs, respectively, in which each 
includes the state bits(present state bits for I and next 

state bits for 0). If the submachines are placed next 
to each other according to the layout in Figure 1 then 
this proposed measure is more reflective of the actual 
area of the chip than those of [l], [7] and [18] because 
it includes the unused(wasted) area. This measure 
for area would be important when the submachines of 
the FSM are not distributed in a chip to be closer to 
the logic that they control. The justification for this 
measure for area appears in Appendix A. 

4 Partitioning the state and output 

An algorithm is proposed to distribute the next state 
and output bits among the submachines with the pri- 
mary goal being to reduce some function of the area 
and delay for the decomposed FSM. This is achieved 
by attempting to decrease the total number of product 
terms in all submachines simultaneously while keep 
ing the number of submachines small. In this method, 
FSM decomposition is done in two steps. The first 
step is to estimate the number of product terms re- 
quired for each of the next state and output bits, when 

bits 
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implemented as a single PLA. This corresponds to a 
decomposition where all submachines have two states 
each. This can be done using any 2-level logic mini- 
miser (e.g., ESPRESSO [2]). 
The next step is to combine the bits of the next state 
and output and assign them to submachines so that 
the maximum number of product terms among the 
submachines is minimised. This method ensures that 
the empty or wasted area in the layout is minimised. 
The choice of the bits allocated to a submachine wil l  
depend on the number of product terms required for 
each bit, as calculated in the first step. The number of 
product terms in the resultant submachine can never 
exceed the sum of the product terms associated with 
each bit of the next state and output which is assigned 
to that submachine. 
The pseudo code for the algorithm for assigning state 
and output bits to submachines and calculating the 
cost is shown below. 

Bit 
position Calculate-Cost () 

Find minimum Cost for number-plas = 1 to number 
of state and output bits 

{ 

t 
Distribute-StateAnd-Output-Bits(number-plas) 
Effective-Height = height of submachine with max- 

imum number of product terms 
Effective-Width = (2 - number-plas (# of primary 

inputs+# of state bits)) + (# of state bits + output) 
Area = Effective-Height - Effective-Width 
Calculate delay of FSM 
Cost = Area . Delay(De'aU Weight IArea "'eight)  

1 
1 

Number of 
Product terms 

Distribute-State-And-Output-Bits( number-plas) 

average-height 
=(Sum of pdt. t e r m  of all st. & out. bits when 
implemented separately) + number-plas 
No bit is assigned to any pla. 
While there exists an unassigned state bit and output 
bit 

{ 

{ 
Free-pla=pla with maximum free space(auerage 

Assign the bit which reduces the most free space to 
height-prod-term assigned to that pla) 

Free-pla 
1 

so 
sl 
92 
01 
02 

5 
7 
8 
6 
5 

If bits s0,sl and 01 are to be computed in one PLA 
then the minimum number of product terms can never 
exceed 5+7+6 = 18, which is the sum of the minimum 
number of product terms required to implement SO, sl 
and 01 separately in individual PLAs. We choose the 
configuration which partitions the bits such that the 
upper limit of the area calculated, using the method 
just described, is minimum. The total number of next 
state and output bits is 5, the value for each bit being 
calculated in exactly one submachine. The total num- 
ber of lines, true and inverted, entering the input plane 
of each PLA is 2 t (1 + 3) = 8. Hence the width of the 
decomposed FSM is 8 * n +  5, where n is the number of 
interconnected FSMs (submachines) which are imple- 
mented as PLAs. The area upper bounds ((8 + n + 5)+ 
upper limit of product terms) for decompositions cor- 
responding to different numbers of submachines are 
shown in Table 1. 
We choose the decomposition that corresponds to the 
least upper bound for the area. The exact area of 
this decomposition is then calculated by minimising 
the two-level logic of each of the submachines. The 
submachine with the largest number of product terms 
determines the effective height (see Figure 1) of the 
decomposed FSM. In this example, decomposing the 
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Table 1: Area upper bounds for different decomposi- 
tions of the FSM in Example 1. 

Number of 
submachines state & output bits 
1 
2 

3 8 (62) 

P artition of next 

31 (SO, a l l  a2,ol, 02) 

4 

5 8 a2 
7 a1 
6 01 
5 so 
5 02 

Area 
Upper bound 
31 x 13=403 

18~21=378 

12 x 29=348 

10 x 37=370 

8 x 45=360 

FSM into three interacting FSMs with the assigned 
bits a2 and s 0 , s l  and 01,02, respectively, results in 
the least upper bound of the area for the chip. This is 
how we determine the decomposition for an FSM with 
a given state encoding. 

5 A Heuristic Algorithm to Obtain a 

Given a method which arrives at  the decomposition 
for a known state encoding, the problem of arriving 
at  a state encoding which minimizes a cost function 
which depends, in general, on area and delay, is of 
exponential complexity. To arrive a t  a state encod- 
ing which minimises the value of the cost function, 
we will have to calculate the cost function for every 
possible state assignment. We use the minimum code 
length for encoding the states of the FSM. The mini- 
mum code length required for an FSM with N states 
is peg, NI bits. 2r'Og~q is the total number of codes 
that could be assigned to a single state. Therefore, the 
number of different possible state assignments for an 
FSM with N states is 2r10g2q!!/(2r10g1q -N)!, which 
is an exponential function. To find the optimal solu- 
tion to this problem would be intractable. Hence, we 
have decided to use a heuristic algorithm to obtain a 
good, though not necessarily optimal, state encoding. 
A heuristic algorithm that seems to be well suited for 
this problem is simulated annealing [9, 171. 
The simulated annealing algorithm starts with an ini- 

Good Encoding 

tial solution and then examines another solution (not 
necessarily a neighboring solution) with the purpose 
of reducing the cost. It also allows occasional "Uphill 
moves" (moves that worsen the current solution) in 
an attempt to reduce the probability of being stuck 
at a locally optimal solution. These uphill moves are 
controlled probabilistically by a parameter called the 
temperature T, and become less and less likely toward 
the end of the annealing process, as the value of T de- 
creases. In our algorithm a specific state encoding cor- 
responds to a solution in the solution space. The solu- 
tion space consists of configurations (solutions) which 
correspond to all the different possible state encodings. 

5.1 Annealing Schedule 
Our temperature schedule is of the form TI = 
r-Tk-1, k = 1,2,3 .... A typical value of r, the temper- 
ature reduction rate, is 0.85. The initial temperature 
To is determined by performing a sequence of random 
moves and computing the quantity ArW9, the average 
value of the magnitude of the change in cost per move. 
The probability of acceptance is exp-*IT, where A is 
the change in cost per move at temperature T. The 
algorithm can start at any initial encoding which can 
be far from optimal. 
At each temperature, enough moves are attempted un- 
til either there are M downhill moves or the total num- 
ber of moves exceeds 2116, where M = k' , k being the 
minimum number of bits required to encode the states. 
We found through repeated experiments that choosing 
a function like M = k resulted in too few moves and a 
function like M = k3 required a very large number of 
moves for any particular temperature. Too few moves 
would result in very few configurations being investi- 
gated, lowering the quality of the result, and a large 
number of moves would increase the execution time 
of the program excessively. The annealing process is 
terminated [17] when the number of accepted moves 
is less than 5% of all moves made at a certain temper- 
ature or the temperature is sufficiently low. Experi- 
mental results on the effect of changing the annealing 
parameters and a justification for the final values of 
the parameters that are chosen are given in Appendix 
B. 

6 Results 
The algorithm described above was implemented as a 
C program. The algorithm was tested on a number 
of examples obtained from the MCNC FSM bench- 
mark suite [ll]. The motivation for FSM decompe 
sition was elucidated in some detail in the previous 
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sections. Based on the properties desired, the efficacy 
of a decomposition algorithm can be judged from the 
following criteria. 
The comparison between the areas of the two-level im- 
plementation of the encoded submachines and the two- 
level implementation of the prototype machine (using 
NOVA [IS]) presented in Table 2. 

PI denotes the number of Primary Inputs (Input bits), 
S denotes the number of States, 
PO denotes the number of Primary Outputs (Output 
bits), 
P denotes the number of Product terms. 
Areal (in column 10) is the area calculated using the 
cost function in section 3 
Area2 (in column 11) is the area in Areal + the rout- 
ing area. This was calculated by generating the layout 
of the FSM. 
The cost function used here is the area of the de- 
composed machine. The area and delay of the pro- 
totype machine were derived using the state encoding 
obtained from NOVA [16]. The delay was calculated 
using the method described in [7]. As expected, the 
delay of the decomposed machine is much less than 
the delay of the prototype machine in all examples. 
The area of the decomposed machine is the smallest 
rectangle enclosing all the submachines when they are 
placed next to each other. This area which is more 
reflective of the actual chip area was compared to the 
area (using NOVA) of the prototype machine. We as- 
sume that, in general, all input bits are required in 
every submachine because it is unlikely for any next 
state or output bit to be independent of an input bit. 
Hence, the effective width of the layout of a decom- 
posed machine will be larger for an example with a 
relatively large number of input bits compared to the 
number of state bits, thus resulting in a larger area 
when decomposed. This explains why in examples like 
sla, ex4 and ex6 where the number of input bits is 
greater than the number of state bits, we found that 
the area of the best decomposed machine is greater 
than the area of the prototype machine as calculated 
using NOVA [16]. This area is not shown in Table 
2 because in all such examples the program discov- 
ered a state encoding which when used to calculate 
the area for a single undecomposed machine would re- 
sult in a smaller area than the area of the prototype 
machine, which is shown in Table 2. The algorithm 
in the program can very well be expected to arrive at  
a decomposition, if it exists, with less area than the 
prototype machine. 

Our program also investigates the decomposition 
based on the encoding derived from NOVA. In all the 
examples, in Table 2, our algorithm found an encod- 
ing Merent  from that derived using NOVA because 
the encoding resulted in a lower coat function. In four 
examples (dk15, ex6, lion and train4) the areas were 
equal to that derived from NOVA but the delay of the 
FSM using our encoding was less. 

In Table 3 we show the results of our program when 
using the cost functions Area x Delap"  and Area x 
Delay"-'. As expected, the FSMs tend to decom- 
pose (decreasing the delay) when the weight for the 
Delay is increased relative to the Area. In these 
carrecl too, Area includes the unused or wasted area of 
the decomposed FSM. When using the cost function 
Area x D e l a p '  we found that in most examples the 
FSM was decomposed into submachines with one out- 
put each (i.e, two-state submachines). In this case, the 
FSM cannot be decomposed further and its delay can- 
not be reduced anymore. So using other cost functions 
like Area x Delay where the ratio of the exponents of 
the Delay to Area is greater than 0.5, may not pro- 
duce results which are better than Area x 

The comparison of the results of our algorithm with 
two recent works [l] and [18] in this field is shown 
in Table 4. The product terms and delay estimates 
were not available in [l] for comparison.The area and 
delay in most examples show an improvement in our 
algorithm. It should be noted that the area, in column 
4 and 6, is defined in [l] and [18] as the sum of the areas 
of the submachines only, whereas in our definition, the 
area, in column 2, also includes the unused or wasted 
area. If we had considered only the sum of the areas 
of the submachines, then our results would have been 
even better. An estimate of the unused/wasted area 
using the implementation in [18] can be made from the 
product terms of the decomposed submachines shown 
in column 5.  The average percentage improvement of 
our result when compared to the results of [I, 181 are 
also shown. 
The delay of an FSM is determined by the longest 
delay among the delays of the submachines. Our al- 
gorithm tries to ensure that all submachines have a 
nearly equal number of product terms (by minimizing 
wasted area) as much as possible. This forces the val- 
ues of the delays of the submachines to be close to each 
other. This might not be true in other schemes where 
the resultant FSM has submachines such that the dif- 
ference between the number of product terms is high. 
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Table 2: Comparison of the encoded prototype machine and our results. 

Example 
bbara 
bbtas 

beecount 
dk14 
dk15 
dk27 

dk512 
ex3 
ex4 
ex5 
ex6 
ex7 
lion 

lion9 
modulo12 

sla 
shiftreg 

styr 
tav 

I Yo STD. DEV. 

=F FJr 
4 
2 
3 
3 
3 
1 
1 
2 
6 
2 
5 
2 
2 
2 
1 
8 
1 
9 
4 
2 

- - 

- 

- 
- - 

- 
,tot 
3 
10 
6 
7 
7 
4 
7 

15 
10 
14 
9 
8 

10 
4 
9 

12 
20 
8 

30 
4 
4 

- - 

- 

- 
- - 

3 
pu 

2 
2 
4 
5 
5 
2 
3 
2 
9 
2 
8 
2 
1 
1 
1 
0 
1 

10 
4 
1 

- - 

- 

- 
- - 

T 
m 
13 
12 
30 
18 
8 

19 
18 
14 
15 
25 
17 
6 

15 
15 
65 
8 

94 
11 
6 

- 

- 
- 
- - 

m 
572 
Area 

195 
228 
600 
306 
104 
323 
324 
465 
270 
675 
612 
66 

153 
585 

2015 
216 

4042 
198 
66 

18 
11 
13 
18 
13 
7 
7 

13 
15 
20 
18 
19 
5 
6 
8 

65 
5 

63 
6 
6 - 

This is why our FSM has a smaller delay than [l8]. In 
only one example ala ,  the delay is larger because our 
results in Table 4 were calculated with area as the only 
cost function. However in Table 3 with the cost func- 
tion Area. Delayo.5, an encoding was found such that 
the delay of the FSM sla is 1 (the lowest possible). In 
this case decomposition consists of 5 submachines. 

Comparison of the area of the decomposed machine 
with that of the prototype machine, when imple- 
mented in multilevel logic is shown in Table 5. The 
multilevel area of the prototype machine is calculated 
for the state encoding obtained from NOVA [16](which 
targets two level implementations) , MUSTANG [4] 
and JEDI [IO](which targets multilevel implementa- 
tions). The multilevel area in column 2 is calculated 
for the decomposed machine which uses a state en- 
coding (derived using our algorithm described in the 
previous sections) intended for a good two-level im- 
plementation. The multilevel areas were calculated 
using MIS11 [3]. An improved script [14] was used for 
logic minimisation. A standard cell layout was then 
obtained separately for each submachine and the pro- 
totype machine via the program WOLFE [15]. The 
decomposed machines were then laid out so that the 
area of the smallest enclosing rectangle is minimum. 

-0 
P 
919/8 

515 
10 
26 
18 

3/3/3 
10/10 

17 
13 
12 
25 

6 
7 

53 

87 

l o p 0  

515 

1/1/1/1 

Submadune area 
162/1621144 

' 60165 
190 
520 
306 

130/140 
306 
429 
2 16 
675 

150/150 
66 

119 
65/60 

1643 

3741 

27/30/30 

9/9/9/9 

EZr 
468 
125 
190 
520 
306 
87 

270 
306 
429 
216 
675 
300 
66 

119 
125 

1643 
36 

3741 
132 
66 

22.07 
23.43 

- AreaS 
586 
148 
190 
520 
306 
98 

303 
306 
429 
216 
675 
34 1 

66 
119 
146 

1643 
42 

3741 
166 
66 

18.06 
22.71 

Delay 
2 
3 
7 
8 
7 
2 
4 
6 

13 
6 

11 
3 
3 
5 
3 
6 
1 

15 
2 
3 

58.23 
21.24 

This is the area shown in column 2. This area too, thus 
includes the unused or wasted area. The areas shown 
in column 4 ,6  and 8 are the multilevel areas of the pro- 
totype machine Using NOVA, MUSTANG and JEDI. 
We have then shown the percentage area improvement 
(column 10) and delay improvement (column 11) when 
compared to the best area and best delay using NOVA 
or MUSTANG or JEDI, respectively. In five of the ten 
examples the multilevel area for the decomposed ma- 
chine was less than the multilevel area of the prototype 
machine. There was an improvement in the delay in 
all but one case. The delay was calculated using a 
gate delay model (every gate in the circuit was asso- 
dated with a rise time delay and a fall time delay). 
The proposed algorithm, though designed for a good 
decomposition in two-level logic, also results in a good 
decomposition in multilevel logic. 

The figures for delay in Tables 1-4 were derived using 
the method in [7] so that it is possible to compare our 
results to that in [18]. The method in [7] is used there. 
The figures for delays in Table 5 have Merent units 
and were calculated using MISII[3]. This is because 
the method in [7] can be used for PLAs only and not 
for multilevel circuits. 
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Table 3: Results obtained for two different cost functions. 

1 pi&% 
Example Submachines Area 

135 
268 
640 
376 
90 

329 
765 
234 
675 
390 
81 

159 
135 

1984 
56 

156 
56 

8.76 
32.59 

a68 

2 8 
2 6 
1 5 
2 7 
2 9 
6 6 

11 6 
1 6 
1 3 
2 5 
2 4 
6 5 
2 4 
1 6 
2 3 

77.58 
13.19 

7 Conclusion 
Described in this paper is an approach to decom- 

posing finite state machines to reduce area and delay. 
Given a state encoding, it indicates how to group the 
next state and output bits to minimile area and de- 
lay. A heuristic is then proposed to arrive at a state 
encoding which minimixes the cost function. Results 
for both 2-level and multilevel implementations of the 
decomposed machines have been compared to that of 
prototype machines. Comparisons with [l] and [le] 
have been made. An estimate for the area which is 
more reflective than previous works of the actual chip 
area has been made. The execution time of the pro- 
gram ranges from a few minutes to 100 CPU minutes 
on a DEC station 5000. Methods to reduce the ex- 
ecution time by tuning the parameters of the simu- 
lated annealing algorithm while maintaining the qual- 
ity of the results are being investigated (some direc- 
tions of investigation have been explained in Appendix 
B). The execution times in [l] and [18] were not avail- 
able for comparison. 
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Delay"*' 

Area 

135 
364 
728 
462 
135 
385 
772 
390 

1177 
390 

81 
195 
188 

3381 
36 

156 
81 

612 

-15.23 
44.88 

Delay 
-7 

2 
1 
1 
1 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 

88.16 
5.55 
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Appendix A:: Justification of the area 
measure 
The area measure used in this paper (in Section 3) 
is based on the layout of the submachines shown in 
Figure 1. If the submachines are distributed in a chip 
to be closer to the ditta flow logic that they control, 

State Number of % routing 
bits 0 Submch. area 

5 0 5 15 
2 5 6 13 

the area (total submachine area + wasted area) using 
the area measure in Section 3 is less than the area 
(total submachine area) in [l], [7] and [18]. So even 
when the submachines are distributed in a chip the 
encoding generated by our algorithm has yielded good 
results. 
Also, distributing the submachines of the FSM such 
that they are closer to  the logic that they control wil l  
increase the routing area because all the state bits 
(present state bits) and the primary inputs which are 
required by all submachines wil l  then have to be made 
available to the submachines in different parts of the 
chip. For a layout like that shown in Figure 1 the rout- 
ing area is considerably less than in [l, 7, 181 because 
the submachines are close to each other. 
The table below shows the fraction of the routing area 
in some examples using our algorithm and the p r e  
posed layout. Primary inputs and state bits are re- 
quired by all submachines and outputs are not. We 
would expect those FSMs with a large number of 
primary inputs and state bits compared to primary 
outputs to have a greater percentage for the routing 
area. This would also depend on the complexity of 
the Boolean functions that realige the primary out- 
puts and the next state bits. We have calculated the 
fraction of the routing area using our encoding algo- 
rithm (for the cost function Area - Delayo.5, see Ta- 
ble 3) and the layout of Figure l on a few benchmark 
examples. The fraction of the routing area was calcu- 
lated from the layouts of these examples. In all these 
examples the fraction for the routing area was for the 
worst case since the FSM was decomposed into the 
m e u m  possible number of submachines. The re- 
sults are shown below. 

er7 
tav 

2 4 2 6 16 
4 2 4 6 20 

As in the calculation of area in [l], [7] and [18], our cal- 
culated area does not include the routing area. How- 
ever, in our scheme, since the layout of the subma- 
chines are such that they are always next to one an- 
other, our scheme probably requires the smallest frac- 
tion for the routing area. The actual area (including 
the routing area) is 1.25 times (for the layout in Figure 
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1) the area estimated using our equation in the worst 
case for the examples shown above. 
Decomposition may not reduce the area of FSMs if 
the number of inputs is large when compared to the 
number of outputs. Let IS be the total number of 
inputs (complemented and uncomplemented primary 
inputs and state bits)in the prototype machine, OS be 
the total number of outputs(number of primary out- 
puts and state bits) in the prototype machine, P r o d ,  
be the number of product terms in the prototype ma- 
chine and ProdDl be the m h u m  number of product 
terms when the machine is decomposed into 2 subma- 
chines. If decomosition is uneconomical with the area 
as the cost function, then 

( I  + 0) - P r o d ,  < (2 . I  + 0) -Prodo2 

AREA 
Example 0.80 0.85 0.90 

bbtaa 135 135 125 
bmount  209 190 190 

dk27 91 87 87 
ahiftren 56 36 56 

If I > 0 then it is likely that the condition is satisfied 
which would result in a decomposition with a larger 
area when compared to the prototype machine. 

0.80 0.85 O m .  
549 573 940 
427 486 749 
427 486 749 
421 394 616 

Appendix B: Experiments on the param- 
eters of Simulated Annealing 

The tables above show the effect of change in the tem- 
perature reduction rate ( r )  and the number of down- 
hill moves allowed a t  any temperature (M) on the 
Area and Execution time for four examples. 
For higher values of r (the decrease in temperature 
is smaller) more state assignments are searched (the 
program goes through more levels of temperatures) 
which requires a longer execution time and yields a 
lower area. This is supported by the results shown 
in Table 6. A deviation from the expected behavior 
was found in the example shiftreg.  This anomalous 
behavior could be attributed to the fact that shiftreg 
has a simple and regular state transition table. 
When M increases we would expect longer execution 
times and smaller areas because a greater number of 
state assignments are searched a t  every temperature. 
This was contrary to the results we observed (shown in 
Table 7). In these cases a higher value of M yielded 
a low area state assignment(high powers of k ,  close 
to the initial high temperature) which terminated the 
algorithm a t  the next lower temperature. The number 
of accepted moves was less than 5% of all moves at that 
temperature [17]. This also resulted in a decrease in 
execution times for higher values of M. 

Example 
bbtas 

bmount  
dk27 

shiftreg 

Table 6: Effect of change in temperature reduction 
rate (r) on the area and execution time 

A m A  
k k' k' k k' k' 

140 140 135 582 573 267 
209 190 190 724 486 427 
104 87 91 494 486 192 
36 36 56 392 394 204 

Example 
bbtas 

beecount 
dk27 

0% 2% 5% 0% 2% 5 % 4  
140 140 140 594 577 560 
209 209 209 1108 1074 1057 

87 87 87 523 504 488 I shiftreg 11 36 36 36 11 403 395 368 1 

Table 8 shows the effect of a change in the parameter 
of the terminating condition, p, which is the percent- 
age such that the program wil l  stop when the fraction 
of the number of moves accepted over all moves at 
a particular temperature is less than p. When p in- 
creases the execution time should decrease and the 
area should increase. But for small values of p like in 
Table 8 the area wil l  not change appreciably. This is 
because the algorithm has found a low value for the 
area just before termination for small values of p. 

The figures for the areas shown in the tables were 
the figures that appeared in 50-70% of the number of 
times (10-15 times) the program was run. The values 
for r ,  M and p which resulted in the greatest reduction 
in cost (in this case AREA ) without high execution 
times were chosen. The values that we chose for r ,  M 
and p were 0.85,k2 and 5%, respectively. 
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