
An Algorithm for Area and Delay Optimization of Sequential
Machines through Decomposition

Auro bindo Dasgup t a
Dept. of Electrical and Computer Engg.

University of Massachusetts
Amherst, MA 01003

Israel Koren
Dept. of Electrical and Computer Engg.

University of Massachusetts,
Amherst, MA 01003

Presented by Wayne Burleson

Abstract
A new algorithm is presented for decomposing a Fi-

nite State hfachine(FSM) to reduce the area and dekay.
For a known state encoding, it partitions the nezt state
and output bi ts so as to decrease the cost, which is a
function of the area and delay. A state encoding which
yields a IOW cost is deriued by wing a heuristic aIgo-
rithm. This algorithm differs from ezwting algorithms
in that it wes a meaaure for the area that is more re-
flective of the actual area of the final chip. For most

due to the fact that both algorithms for state assign-
ment and logic partitioning work better for smaller
machines. In [l, 18, 71, the area is calculated as the
sum of the areas of the smaller interacting FSMs.
3. Smaller machines may be required when there are
restrictions on the number of product terms or on the
number of input and output lines (for example, in
PLA-based FPGAs). A technique to optimally create
several smaller machines instead of one big machine is
useful in these cases.

ezamples, the resuIts obtained on a set of benchmarka
are better than those of [l] and [18] . 2 Layout Topology

Figure 1 shows the proposed layout of a decomposed
1 Introduction
Sequential circuits play a major role in the control of
digital systems and efficient tools for their design are
essential for computer-aided design of VLSI circuits.
Area and performance optimization involves the de-
velopment of algorithms for state assignment[6, 121
and decomposition of finite state machines (FSMs)
[I, 7, 8, 18, 19, 201.
High quality algorithms for state assignment, tar-
geting two-level and multilevel logic implementations
have been developed in [4, 12, 201 and their relation-
ship to state assignment has been investigated in [5].
It is desirable to decompose FSMs into smaller inter-
acting machines for a number of reasons:
1. The implementation of sequential circuits as inter-
acting FSMs improves performance as a result of the
reduction in the longest path between the latch inputs
and outputs. This might improve the performance of

finite state machine. Every input is available to all
submachines. The states of cach submachine are made
available to the others if necessary. The outputs
are generated directly by the individual submachines.
Note that the state information is shared and that, in
general, the submachines are not independent of each
other. The submachines are implemented as PLAs.
The area, which is the product of the width and height,
also includes unused/wasted area of the chip.

3 Objectives of the Decomposition
The motivation for FSM decomposition is to optimize
the performance and area. For a PLA implementation
of the submachines, these measures may be estimated
as follows:

The performance of a circuit is
the delay along the longest path. Based on the delay
model presented in [7], the delay for a PLA implemen-
tation can be estimated as

e Performance:

FSM controllers, which often dictate the required du-
ration of the system i:lock[l].
2. Decomposing a m FSM into smaller interacting
FSMs can lead to a decrease in chip area. This is
partly due to the paxtitioning of the logic and partly

DPLA = m z i , j (f ~ ; + f ~ j)

where fr; is the fanout for the ith input line Ii and
fpj is the fanout for the line corresponding to the j t h
product term.

1060-3425194 $03.00 0 1994 IEEE
36 Proceedings of the Twenty-Seventh Annual Hawaii

International Conference on System Sciences, 1994

total width

I

Submachine

I I I Input - -
? ? ? ‘ct

Suhachine 3

I -

-

Figure 1: The proposed layout of the decomposed finite state machine.

Additional delay is due to the storage elements and
the interconnections between the machines, and is
not considered here. Since each submachine is im-
plemented as a PLA, the submachine with the longest
delay will determine the period of the clock or the
delay of the decomposed FSM.

0 Area: The measure used for calculating area in
[I], [7] and [18] is the sum of the areas of the individual
submachines. We estimate the area of the decomposed
FSM according to the layout shown in Fig. 1. This
assumes that the submachines of the FSM are placed
next to each other. Approximating the area as that
occupied by the AND-OR planes of the constituent
submachines yields

Area = P,,, x width

where P,, is the maximum number of product terms
among all the submachines and
width = C (I + O) over all submachines where I and 0
are the inputs and outputs, respectively, in which each
includes the state bits(present state bits for I and next

state bits for 0). If the submachines are placed next
to each other according to the layout in Figure 1 then
this proposed measure is more reflective of the actual
area of the chip than those of [l], [7] and [18] because
it includes the unused(wasted) area. This measure
for area would be important when the submachines of
the FSM are not distributed in a chip to be closer to
the logic that they control. The justification for this
measure for area appears in Appendix A.

4 Partitioning the state and output

An algorithm is proposed to distribute the next state
and output bits among the submachines with the pri-
mary goal being to reduce some function of the area
and delay for the decomposed FSM. This is achieved
by attempting to decrease the total number of product
terms in all submachines simultaneously while keep
ing the number of submachines small. In this method,
FSM decomposition is done in two steps. The first
step is to estimate the number of product terms re-
quired for each of the next state and output bits, when

bits

37

implemented as a single PLA. This corresponds to a
decomposition where all submachines have two states
each. This can be done using any 2-level logic mini-
miser (e.g., ESPRESSO [2]).
The next step is to combine the bits of the next state
and output and assign them to submachines so that
the maximum number of product terms among the
submachines is minimised. This method ensures that
the empty or wasted area in the layout is minimised.
The choice of the bits allocated to a submachine wil l
depend on the number of product terms required for
each bit, as calculated in the first step. The number of
product terms in the resultant submachine can never
exceed the sum of the product terms associated with
each bit of the next state and output which is assigned
to that submachine.
The pseudo code for the algorithm for assigning state
and output bits to submachines and calculating the
cost is shown below.

Bit
position Calculate-Cost ()

Find minimum Cost for number-plas = 1 to number
of state and output bits

{

t
Distribute-StateAnd-Output-Bits(number-plas)
Effective-Height = height of submachine with max-

imum number of product terms
Effective-Width = (2 - number-plas (# of primary

inputs+# of state bits)) + (# of state bits + output)
Area = Effective-Height - Effective-Width
Calculate delay of FSM
Cost = Area . Delay(De'aU Weight IArea "'eight)

1
1

Number of
Product terms

Distribute-State-And-Output-Bits(number-plas)

average-height
=(Sum of pdt. t e r m of all st. & out. bits when
implemented separately) + number-plas
No bit is assigned to any pla.
While there exists an unassigned state bit and output
bit

{

{
Free-pla=pla with maximum free space(auerage

Assign the bit which reduces the most free space to
height-prod-term assigned to that pla)

Free-pla
1

so
sl
92
01
02

5
7
8
6
5

If bits s0,sl and 01 are to be computed in one PLA
then the minimum number of product terms can never
exceed 5+7+6 = 18, which is the sum of the minimum
number of product terms required to implement SO, sl
and 01 separately in individual PLAs. We choose the
configuration which partitions the bits such that the
upper limit of the area calculated, using the method
just described, is minimum. The total number of next
state and output bits is 5, the value for each bit being
calculated in exactly one submachine. The total num-
ber of lines, true and inverted, entering the input plane
of each PLA is 2 t (1 + 3) = 8. Hence the width of the
decomposed FSM is 8 * n + 5, where n is the number of
interconnected FSMs (submachines) which are imple-
mented as PLAs. The area upper bounds ((8 + n + 5)+
upper limit of product terms) for decompositions cor-
responding to different numbers of submachines are
shown in Table 1.
We choose the decomposition that corresponds to the
least upper bound for the area. The exact area of
this decomposition is then calculated by minimising
the two-level logic of each of the submachines. The
submachine with the largest number of product terms
determines the effective height (see Figure 1) of the
decomposed FSM. In this example, decomposing the

38

Table 1: Area upper bounds for different decomposi-
tions of the FSM in Example 1.

Number of
submachines state & output bits
1
2

3 8 (62)

P artition of next

31 (SO, a l l a2,ol, 02)

4

5 8 a2
7 a1
6 01
5 so
5 02

Area
Upper bound
31 x 13=403

18~21=378

12 x 29=348

10 x 37=370

8 x 45=360

FSM into three interacting FSMs with the assigned
bits a2 and s 0 , s l and 01,02, respectively, results in
the least upper bound of the area for the chip. This is
how we determine the decomposition for an FSM with
a given state encoding.

5 A Heuristic Algorithm to Obtain a

Given a method which arrives at the decomposition
for a known state encoding, the problem of arriving
at a state encoding which minimizes a cost function
which depends, in general, on area and delay, is of
exponential complexity. To arrive a t a state encod-
ing which minimises the value of the cost function,
we will have to calculate the cost function for every
possible state assignment. We use the minimum code
length for encoding the states of the FSM. The mini-
mum code length required for an FSM with N states
is peg, NI bits. 2r'Og~q is the total number of codes
that could be assigned to a single state. Therefore, the
number of different possible state assignments for an
FSM with N states is 2r10g2q!!/(2r10g1q -N)!, which
is an exponential function. To find the optimal solu-
tion to this problem would be intractable. Hence, we
have decided to use a heuristic algorithm to obtain a
good, though not necessarily optimal, state encoding.
A heuristic algorithm that seems to be well suited for
this problem is simulated annealing [9, 171.
The simulated annealing algorithm starts with an ini-

Good Encoding

tial solution and then examines another solution (not
necessarily a neighboring solution) with the purpose
of reducing the cost. It also allows occasional "Uphill
moves" (moves that worsen the current solution) in
an attempt to reduce the probability of being stuck
at a locally optimal solution. These uphill moves are
controlled probabilistically by a parameter called the
temperature T, and become less and less likely toward
the end of the annealing process, as the value of T de-
creases. In our algorithm a specific state encoding cor-
responds to a solution in the solution space. The solu-
tion space consists of configurations (solutions) which
correspond to all the different possible state encodings.

5.1 Annealing Schedule
Our temperature schedule is of the form TI =
r-Tk-1, k = 1,2,3 A typical value of r, the temper-
ature reduction rate, is 0.85. The initial temperature
To is determined by performing a sequence of random
moves and computing the quantity ArW9, the average
value of the magnitude of the change in cost per move.
The probability of acceptance is exp-*IT, where A is
the change in cost per move at temperature T. The
algorithm can start at any initial encoding which can
be far from optimal.
At each temperature, enough moves are attempted un-
til either there are M downhill moves or the total num-
ber of moves exceeds 2116, where M = k' , k being the
minimum number of bits required to encode the states.
We found through repeated experiments that choosing
a function like M = k resulted in too few moves and a
function like M = k3 required a very large number of
moves for any particular temperature. Too few moves
would result in very few configurations being investi-
gated, lowering the quality of the result, and a large
number of moves would increase the execution time
of the program excessively. The annealing process is
terminated [17] when the number of accepted moves
is less than 5% of all moves made at a certain temper-
ature or the temperature is sufficiently low. Experi-
mental results on the effect of changing the annealing
parameters and a justification for the final values of
the parameters that are chosen are given in Appendix
B.

6 Results
The algorithm described above was implemented as a
C program. The algorithm was tested on a number
of examples obtained from the MCNC FSM bench-
mark suite [ll]. The motivation for FSM decompe
sition was elucidated in some detail in the previous

39

sections. Based on the properties desired, the efficacy
of a decomposition algorithm can be judged from the
following criteria.
The comparison between the areas of the two-level im-
plementation of the encoded submachines and the two-
level implementation of the prototype machine (using
NOVA [IS]) presented in Table 2.

PI denotes the number of Primary Inputs (Input bits),
S denotes the number of States,
PO denotes the number of Primary Outputs (Output
bits),
P denotes the number of Product terms.
Areal (in column 10) is the area calculated using the
cost function in section 3
Area2 (in column 11) is the area in Areal + the rout-
ing area. This was calculated by generating the layout
of the FSM.
The cost function used here is the area of the de-
composed machine. The area and delay of the pro-
totype machine were derived using the state encoding
obtained from NOVA [16]. The delay was calculated
using the method described in [7]. As expected, the
delay of the decomposed machine is much less than
the delay of the prototype machine in all examples.
The area of the decomposed machine is the smallest
rectangle enclosing all the submachines when they are
placed next to each other. This area which is more
reflective of the actual chip area was compared to the
area (using NOVA) of the prototype machine. We as-
sume that, in general, all input bits are required in
every submachine because it is unlikely for any next
state or output bit to be independent of an input bit.
Hence, the effective width of the layout of a decom-
posed machine will be larger for an example with a
relatively large number of input bits compared to the
number of state bits, thus resulting in a larger area
when decomposed. This explains why in examples like
sla, ex4 and ex6 where the number of input bits is
greater than the number of state bits, we found that
the area of the best decomposed machine is greater
than the area of the prototype machine as calculated
using NOVA [16]. This area is not shown in Table
2 because in all such examples the program discov-
ered a state encoding which when used to calculate
the area for a single undecomposed machine would re-
sult in a smaller area than the area of the prototype
machine, which is shown in Table 2. The algorithm
in the program can very well be expected to arrive at
a decomposition, if it exists, with less area than the
prototype machine.

Our program also investigates the decomposition
based on the encoding derived from NOVA. In all the
examples, in Table 2, our algorithm found an encod-
ing Merent from that derived using NOVA because
the encoding resulted in a lower coat function. In four
examples (dk15, ex6, lion and train4) the areas were
equal to that derived from NOVA but the delay of the
FSM using our encoding was less.

In Table 3 we show the results of our program when
using the cost functions Area x Delap" and Area x
Delay"-'. As expected, the FSMs tend to decom-
pose (decreasing the delay) when the weight for the
Delay is increased relative to the Area. In these
carrecl too, Area includes the unused or wasted area of
the decomposed FSM. When using the cost function
Area x D e l a p ' we found that in most examples the
FSM was decomposed into submachines with one out-
put each (i.e, two-state submachines). In this case, the
FSM cannot be decomposed further and its delay can-
not be reduced anymore. So using other cost functions
like Area x Delay where the ratio of the exponents of
the Delay to Area is greater than 0.5, may not pro-
duce results which are better than Area x

The comparison of the results of our algorithm with
two recent works [l] and [18] in this field is shown
in Table 4. The product terms and delay estimates
were not available in [l] for comparison.The area and
delay in most examples show an improvement in our
algorithm. It should be noted that the area, in column
4 and 6, is defined in [l] and [18] as the sum of the areas
of the submachines only, whereas in our definition, the
area, in column 2, also includes the unused or wasted
area. If we had considered only the sum of the areas
of the submachines, then our results would have been
even better. An estimate of the unused/wasted area
using the implementation in [18] can be made from the
product terms of the decomposed submachines shown
in column 5. The average percentage improvement of
our result when compared to the results of [I, 181 are
also shown.
The delay of an FSM is determined by the longest
delay among the delays of the submachines. Our al-
gorithm tries to ensure that all submachines have a
nearly equal number of product terms (by minimizing
wasted area) as much as possible. This forces the val-
ues of the delays of the submachines to be close to each
other. This might not be true in other schemes where
the resultant FSM has submachines such that the dif-
ference between the number of product terms is high.

40

Table 2: Comparison of the encoded prototype machine and our results.

Example
bbara
bbtas

beecount
dk14
dk15
dk27

dk512
ex3
ex4
ex5
ex6
ex7
lion

lion9
modulo12

sla
shiftreg

styr
tav

I Yo STD. DEV.

=F FJr
4
2
3
3
3
1
1
2
6
2
5
2
2
2
1
8
1
9
4
2

- -

-

-
- -

-
,tot
3
10
6
7
7
4
7

15
10
14
9
8

10
4
9

12
20
8

30
4
4

- -

-

-
- -

3
pu

2
2
4
5
5
2
3
2
9
2
8
2
1
1
1
0
1

10
4
1

- -

-

-
- -

T
m
13
12
30
18
8

19
18
14
15
25
17
6

15
15
65
8

94
11
6

-

-
-
- -

m
572
Area

195
228
600
306
104
323
324
465
270
675
612
66

153
585

2015
216

4042
198
66

18
11
13
18
13
7
7

13
15
20
18
19
5
6
8

65
5

63
6
6 -

This is why our FSM has a smaller delay than [l8]. In
only one example ala , the delay is larger because our
results in Table 4 were calculated with area as the only
cost function. However in Table 3 with the cost func-
tion Area. Delayo.5, an encoding was found such that
the delay of the FSM sla is 1 (the lowest possible). In
this case decomposition consists of 5 submachines.

Comparison of the area of the decomposed machine
with that of the prototype machine, when imple-
mented in multilevel logic is shown in Table 5. The
multilevel area of the prototype machine is calculated
for the state encoding obtained from NOVA [16](which
targets two level implementations) , MUSTANG [4]
and JEDI [IO](which targets multilevel implementa-
tions). The multilevel area in column 2 is calculated
for the decomposed machine which uses a state en-
coding (derived using our algorithm described in the
previous sections) intended for a good two-level im-
plementation. The multilevel areas were calculated
using MIS11 [3]. An improved script [14] was used for
logic minimisation. A standard cell layout was then
obtained separately for each submachine and the pro-
totype machine via the program WOLFE [15]. The
decomposed machines were then laid out so that the
area of the smallest enclosing rectangle is minimum.

-0
P
919/8

515
10
26
18

3/3/3
10/10

17
13
12
25

6
7

53

87

l o p 0

515

1/1/1/1

Submadune area
162/1621144

' 60165
190
520
306

130/140
306
429
2 16
675

150/150
66

119
65/60

1643

3741

27/30/30

9/9/9/9

EZr
468
125
190
520
306
87

270
306
429
216
675
300
66

119
125

1643
36

3741
132
66

22.07
23.43

- AreaS
586
148
190
520
306
98

303
306
429
216
675
34 1

66
119
146

1643
42

3741
166
66

18.06
22.71

Delay
2
3
7
8
7
2
4
6

13
6

11
3
3
5
3
6
1

15
2
3

58.23
21.24

This is the area shown in column 2. This area too, thus
includes the unused or wasted area. The areas shown
in column 4 ,6 and 8 are the multilevel areas of the pro-
totype machine Using NOVA, MUSTANG and JEDI.
We have then shown the percentage area improvement
(column 10) and delay improvement (column 11) when
compared to the best area and best delay using NOVA
or MUSTANG or JEDI, respectively. In five of the ten
examples the multilevel area for the decomposed ma-
chine was less than the multilevel area of the prototype
machine. There was an improvement in the delay in
all but one case. The delay was calculated using a
gate delay model (every gate in the circuit was asso-
dated with a rise time delay and a fall time delay).
The proposed algorithm, though designed for a good
decomposition in two-level logic, also results in a good
decomposition in multilevel logic.

The figures for delay in Tables 1-4 were derived using
the method in [7] so that it is possible to compare our
results to that in [18]. The method in [7] is used there.
The figures for delays in Table 5 have Merent units
and were calculated using MISII[3]. This is because
the method in [7] can be used for PLAs only and not
for multilevel circuits.

41

Table 3: Results obtained for two different cost functions.

1 pi&%
Example Submachines Area

135
268
640
376
90

329
765
234
675
390
81

159
135

1984
56

156
56

8.76
32.59

a68

2 8
2 6
1 5
2 7
2 9
6 6

11 6
1 6
1 3
2 5
2 4
6 5
2 4
1 6
2 3

77.58
13.19

7 Conclusion
Described in this paper is an approach to decom-

posing finite state machines to reduce area and delay.
Given a state encoding, it indicates how to group the
next state and output bits to minimile area and de-
lay. A heuristic is then proposed to arrive at a state
encoding which minimixes the cost function. Results
for both 2-level and multilevel implementations of the
decomposed machines have been compared to that of
prototype machines. Comparisons with [l] and [le]
have been made. An estimate for the area which is
more reflective than previous works of the actual chip
area has been made. The execution time of the pro-
gram ranges from a few minutes to 100 CPU minutes
on a DEC station 5000. Methods to reduce the ex-
ecution time by tuning the parameters of the simu-
lated annealing algorithm while maintaining the qual-
ity of the results are being investigated (some direc-
tions of investigation have been explained in Appendix
B). The execution times in [l] and [18] were not avail-
able for comparison.

8 Acknowledgements
This work was supported in part by a grant from

NSF under contract number MIP-9013013. Discus-
sions with Wayne Biirleson and Maceij Ciesielski are

Delay"*'

Area

135
364
728
462
135
385
772
390

1177
390

81
195
188

3381
36

156
81

612

-15.23
44.88

Delay
-7

2
1
1
1
1
1
2
1
2
1
1
1
1
1
1
1
1

88.16
5.55

gratefully acknowledged.

References
[l] P. Ashar, S. Devadas and A. R. Newton,

"Optimum and heuristic algorithms for an
approach to Finite State Machine decompo-
sition", IEEE Thans. Computer-Aided De-
sign, V01.10, March 1991.

[2] R. K. Brayton, G. D. Hatchel, C. T.
McMullen and A. Sangiovanni-Vincentelli,
Logic Minimization algorithm for VLSI
Synfhesh, Kluwer Academic Publishers,
1984.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-
Vincentelli and A. Wang,"MIS: A multiple-
level logic optimisation system", IEEE
Thansactiow on Computer-Aided Design,
Nov. 1987.

[4] S. Devadas, H-K. T. Ma, A. R. New-
ton, and A. Sangiovanni-Vincentelli, "MUS
TANG: State assignment of finite state ma-
chines targeting multi-level logic implemen-
tations", IEEE h w . Computer-Aided De-
sign, vol. 7 , pp 1290-1300, Dec. 1988.

42

o u r Resul ts Result of [l] Result of [18]
Example Area Deia Y Area Prod. terms Area Uela Y .

dk27 87 2 85 4/4/3 110 4
dk512 270 4 342 5151716 276 5

s l a 1643 31 1862 29/29/44 3060 26
ex4 429 13 453

modulo12 126 3 161
styr 3741 16 4317
tav 132 2 150
ex3 306 6 6/13 298 11

bbara 468 2 91919 495 8
beecount 190 7 71613 237 7

AVERAGE %
IMPROVEMENT 7 14.73 28.54

!% STD. DE?. 7.94 16.77 31.81

Circt.

bbtas
dk14
dk512
ex5
lion

1 :%lo12
I sla ' stvr

Delay

--Km
8.39
5.29
6.93
4.41
5.14
4.63
9.33

24.71

D-pd.
maclune

Area
72896

230880
162240
172640
45312
64152
62952

615760
1734792

I k 4 I 165784 5.58 ~ ~~ __ -
Average I 332741 8.14
Std. Dv. 1 493342 5.73

Table 5: Comparison of Multilevel Areas.

Prototype I Prototype I Prototype I
F S M A k a Delay *

245496 21.10
213776 22.45
209808 17.47
46176 7.07
88000 11.88
91168 10.44

1011096 34.21
1705072 49.83
186120 11.61
387101 19.47
513756 12.75

[5] S. Devadas and A. R. Newton, "Decompo-
sition and factorisation of sequential finite
state machines", IEEE %ns. Computer-
Aided Design, vol. 8 , pp. 1206-1217, Nov.
1989

[6] J . Hatmanis and R. E. Stearns, Algebriuc
Structure Theory of Sequentiul Machines,
Prentice Hall, Eaglewood Cliffs, NJ,1966.

229392 21.62
242104 16.31
153032 17.35
58368 7.25
81168 11.88

[7] Z. Hasan and M. J . Ciesielski, "FSM de-
composition for performance optimisation" ,
Technical Report TR-91-CSE14, Depart-
ment of Electrical & Computer Engineering,
University of Massachusetts, Amherst,l991.

[8] F. C. Hennie, Finite State Models for Logical
Machines, Wiley, New York, 1968.

[9] S. Kirkpatrick, C. D. Gelatt Jr., and
M.P.Vecchi, "Optimisation by simulated an-
nealing", Science, 220(4598), pp 671-680,
1983.

[lo] B. Lin, A. R. Newton, "Synthesis of Multi-
ple level logic from Symbolic High-Level De-
scription Languages", Proc. IFIP Int. Conf.
on Very Large Scale Integmtion (vLsIJa9),
pp. 187-196, North-Holland, Amsterdam,
1990.

43

[11] R. Lisanke, ed. "FSM Benchmark suite",
Microelectronics Center of North Carolina,
Research Triangle Park, NC, 1987.

then the area measure of [I], [7] and [18] would be
suitable. However, in our results (in Section 6) we
have shown that using our algorithm on benchmarks,

Circ.
I

sla 8
dk15 3

[12] G. De Micheli, R. K. Brayton, and A.
Sangiovanni-Vincentelli, "Optimal state as-
signment of finite state machines", IEEE
I).cms. Computer-Aided Design, vol. CAD-
4, pp. 269-285, July 1985.

[13] T. H. Cormen, C. E. Lieserson and
R. L. Rivest, Introduction to Algorithms,
McGraw-Hill Book Company, 1990.

[14] H. Savoj, H. Wang and R. K Brayton, "Im-
proved Scripts in MIS-I1 for Logic Minimixa-
tion of Combinational Circuits" , Interna-
tional worbhop on logic synthesis, MCNC,
1991.

[15] C. Sechen and A. Sangiovanni-Vincentelli,
"The Timber Wolf Placement and Routing
Package", lEEE Journal of Solid State Cir-
cuital April 1985.

[16] T. Villa and A. Sangiovanni-Vincentelli,
"N0VA:State assignment of finite state ma-
chines for optimal two-level logic implemen-
tations" , IEEE l h n s . Computer-Aided De-
sign, vol. 9, pp. 905-924, Sept.1990.

[17] D. F. Wong, H. W. Leong and C. L.
Liu, Simulated Annealing for VLSI Design.
Kluwer Academic Publishers, 1988.

[18] M. K. Yajnik and M. J. Ciesielski,"Finite
State Machine Decomposition using Multi-
way Partitioning", International Conference
on Computer Design, 1992.

[19] M. Yeoli,"?'he cascade decomposition of se-
quential machines" , IRE Ikms. Electron
Computing, pp 587-592, Apr. 1961.

[20] H. P. Zeiger,"Loopfree synthesis of finite
state machi.nes", Ph.D dissertation, Dept. of
Electrical Engineering, MIT, Sept. 1964.

Appendix A:: Justification of the area
measure
The area measure used in this paper (in Section 3)
is based on the layout of the submachines shown in
Figure 1. If the submachines are distributed in a chip
to be closer to the ditta flow logic that they control,

State Number of % routing
bits 0 Submch. area

5 0 5 15
2 5 6 13

the area (total submachine area + wasted area) using
the area measure in Section 3 is less than the area
(total submachine area) in [l], [7] and [18]. So even
when the submachines are distributed in a chip the
encoding generated by our algorithm has yielded good
results.
Also, distributing the submachines of the FSM such
that they are closer to the logic that they control wil l
increase the routing area because all the state bits
(present state bits) and the primary inputs which are
required by all submachines wil l then have to be made
available to the submachines in different parts of the
chip. For a layout like that shown in Figure 1 the rout-
ing area is considerably less than in [l, 7, 181 because
the submachines are close to each other.
The table below shows the fraction of the routing area
in some examples using our algorithm and the p r e
posed layout. Primary inputs and state bits are re-
quired by all submachines and outputs are not. We
would expect those FSMs with a large number of
primary inputs and state bits compared to primary
outputs to have a greater percentage for the routing
area. This would also depend on the complexity of
the Boolean functions that realige the primary out-
puts and the next state bits. We have calculated the
fraction of the routing area using our encoding algo-
rithm (for the cost function Area - Delayo.5, see Ta-
ble 3) and the layout of Figure l on a few benchmark
examples. The fraction of the routing area was calcu-
lated from the layouts of these examples. In all these
examples the fraction for the routing area was for the
worst case since the FSM was decomposed into the
m e u m possible number of submachines. The re-
sults are shown below.

er7
tav

2 4 2 6 16
4 2 4 6 20

As in the calculation of area in [l], [7] and [18], our cal-
culated area does not include the routing area. How-
ever, in our scheme, since the layout of the subma-
chines are such that they are always next to one an-
other, our scheme probably requires the smallest frac-
tion for the routing area. The actual area (including
the routing area) is 1.25 times (for the layout in Figure

44

1) the area estimated using our equation in the worst
case for the examples shown above.
Decomposition may not reduce the area of FSMs if
the number of inputs is large when compared to the
number of outputs. Let IS be the total number of
inputs (complemented and uncomplemented primary
inputs and state bits)in the prototype machine, OS be
the total number of outputs(number of primary out-
puts and state bits) in the prototype machine, P r o d ,
be the number of product terms in the prototype ma-
chine and ProdDl be the m h u m number of product
terms when the machine is decomposed into 2 subma-
chines. If decomosition is uneconomical with the area
as the cost function, then

(I + 0) - P r o d , < (2 . I + 0) -Prodo2

AREA
Example 0.80 0.85 0.90

bbtaa 135 135 125
bmount 209 190 190

dk27 91 87 87
ahiftren 56 36 56

If I > 0 then it is likely that the condition is satisfied
which would result in a decomposition with a larger
area when compared to the prototype machine.

0.80 0.85 O m .
549 573 940
427 486 749
427 486 749
421 394 616

Appendix B: Experiments on the param-
eters of Simulated Annealing

The tables above show the effect of change in the tem-
perature reduction rate (r) and the number of down-
hill moves allowed a t any temperature (M) on the
Area and Execution time for four examples.
For higher values of r (the decrease in temperature
is smaller) more state assignments are searched (the
program goes through more levels of temperatures)
which requires a longer execution time and yields a
lower area. This is supported by the results shown
in Table 6. A deviation from the expected behavior
was found in the example shiftreg. This anomalous
behavior could be attributed to the fact that shiftreg
has a simple and regular state transition table.
When M increases we would expect longer execution
times and smaller areas because a greater number of
state assignments are searched a t every temperature.
This was contrary to the results we observed (shown in
Table 7). In these cases a higher value of M yielded
a low area state assignment(high powers of k , close
to the initial high temperature) which terminated the
algorithm a t the next lower temperature. The number
of accepted moves was less than 5% of all moves at that
temperature [17]. This also resulted in a decrease in
execution times for higher values of M.

Example
bbtas

bmount
dk27

shiftreg

Table 6: Effect of change in temperature reduction
rate (r) on the area and execution time

A m A
k k' k' k k' k'

140 140 135 582 573 267
209 190 190 724 486 427
104 87 91 494 486 192
36 36 56 392 394 204

Example
bbtas

beecount
dk27

0% 2% 5% 0% 2% 5 % 4
140 140 140 594 577 560
209 209 209 1108 1074 1057

87 87 87 523 504 488 I shiftreg 11 36 36 36 11 403 395 368 1

Table 8 shows the effect of a change in the parameter
of the terminating condition, p, which is the percent-
age such that the program wil l stop when the fraction
of the number of moves accepted over all moves at
a particular temperature is less than p. When p in-
creases the execution time should decrease and the
area should increase. But for small values of p like in
Table 8 the area wil l not change appreciably. This is
because the algorithm has found a low value for the
area just before termination for small values of p.

The figures for the areas shown in the tables were
the figures that appeared in 50-70% of the number of
times (10-15 times) the program was run. The values
for r , M and p which resulted in the greatest reduction
in cost (in this case AREA) without high execution
times were chosen. The values that we chose for r , M
and p were 0.85,k2 and 5%, respectively.

45

