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ABSTRACT 

Our previous research has found that the main defects in digital cameras are “Hot Pixels” which increase at a nearly 
constant temporal rate. Defect rates have been shown to grow as a power law of the pixel size and ISO, potentially 
causing hundreds to thousands of defects per year in cameras with <2 micron pixels, thus making image correction 
crucial. This paper discusses a novel correction method that uses a weighted combination of two terms - traditional 
interpolation and hot pixel parameters correction. The weights are based on defect severity, ISO, exposure time and 
complexity of the image.  For the hot pixel parameters component, we have studied the behavior of hot pixels under 
illumination and have created a new correction model that takes this behavior into account. We show that for an image 
with a slowly changing background, the classic interpolation performs well. However, for more complex scenes, the 
correction improves when a weighted combination of both components is used. To test our algorithm’s accuracy, we 
devised a novel laboratory experimental method for extracting the true value of the pixel that currently experiences a 
hot pixel defect. This method involves a simple translation of the imager based on the pixel size and other optical 
distances. 

Keywords: imager defect detection, hot pixel development, active pixel sensor APS, CCD, APS/CCD defects rates, 
imager defect correction 

 

1. INTRODUCTION 

The field of digital imaging and its associated technology has become a central focus of study and research in today’s 
world of photography. Digital imagers have spread into everyday products ranging from cell phones to embedded 
sensors in cars. They play a vital role in medical, industrial and scientific applications and are increasing in many 
engineering solutions. The inherent result is a drive to enhance these sensors via a decrease in pixel size and an increase 
in the sensitivity of the imager. Given that digital imager sensors are microelectronic in nature, they are susceptible to 
developing defects over time. In contrast to other devices, most in-field defects in digital imagers begin appearing soon 
after fabrication, are permanent, and their number increases continuously over the lifetime of the sensor. These 
permanent defects pose a serious problem for various applications where image quality and pixel sensitivity are a 
priority.  

Our research for the past several years had mainly focused on the development of in-field defects, their characterization 
and growth rate [1-6]. These studies have resulted in an empirical formula, which projects that as the pixel size shrinks 
and the sensitivity increases, defect numbers will grow via a power law of the inverse of the pixel size to the 3.3. It also 
suggests that as pixel sizes decrease to lower than two microns, and sensitivities move towards allowing low light night 
pictures, defect rates can grow to hundreds or even thousands per year. The defect growth rate is modeled as a function 
of pixel size, sensor area and ISO. It is our belief that in-field defects are likely the result of cosmic ray damage [1-3]. 
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This type of damage cannot be prevented by shielding, which further emphasizes the importance of characterizing these 
defects and creating algorithms to correct them in-field.  

The most common method for defect correction in the field without lab calibration is the classic nearest neighbors’ 
interpolation. This method is based on simple averaging of the faulty pixel’s neighbors and may not yield ideal results 
due to the large number of corrections, and as one or more of the neighbors could also be faulty. Furthermore, 
interpolation breaks down in busy scenes where there are larger contrasts between neighboring pixels. We suggest a 
novel correction algorithm which considers the local busyness of the pixels, and based on predefined weights uses a 
combination of interpolation with hot pixel correction methods. We then experimentally compare the correction results 
of our algorithm to those of conventional interpolation methods. Even with this ability to correct hot pixel defects with 
greater accuracy by knowing the pixel defect parameters, we are still left with some amount of error in our correction. 

In order to assess the effectiveness of our correction algorithm we need to compare the corrected value to the ‘true’ 
pixel value. Complicated methods were employed in the past to extract these true pixel values which in turn proved to 
be ineffective. In this paper, we use a simpler but accurate method to extract the true value of the defective pixel, by 
moving the camera. This procedure can, unfortunately, be performed only in lab conditions, but we found it useful to 
assess the accuracy of our different correction algorithms. One key point to note is that our methods do not involve 
injecting errors in known locations to assess the effectiveness of our algorithms. Rather, we make use of real 
photographs with a range of complexities as test images, allowing a more precise evaluation of the quality of our 
correction algorithm. 

One key element in our algorithm is the hot pixel correction method that relies heavily on the knowledge and 
characterization of hot pixels. This further justifies the study of hot pixels and their nature. Recent research had 
uncovered that hot pixel’s behavior is very sensitive to light. In this paper we briefly explore the effects of illumination 
on hot pixel behavior and compare our experimental results to the classic hot pixel model. 

This paper is organized as follows: Section 2 presents the classic model of hot pixels. Section 3 describes the growth 
rate of the hot pixels. Section 4 presents the algorithm we propose for correcting these defective pixels. Section 5 
describes the numerical experiments we conducted to validate the effectiveness of our algorithm, and Section 6 
discusses possible correction limitations. Section 7 explores the effects of illumination on hot pixel behavior, and 
Section 8 concludes the paper. 

 

Figure 1: Comparing the dark response of a good pixel and a hot pixel. 

2. CLASSIC MODEL OF HOT PIXELS 

Over the past 10 years [5,6], we have been studying the characteristics of imager defects by manually calibrating many 
commercial cameras, including 24 Digital Single Lens Reflex (DSLRs), using dark field exposure (i.e., no illumination). 
This allowed us to identify stuck-high and partially stuck defects; however, up until now we have not identified any 
stuck pixel types in our experiments, only hot pixels. The standard hot pixel has a dark response that has an 
illumination-independent component that increases linearly with exposure time. These types of hot pixels can be 
identified by capturing a series of dark field images at increasing exposure times. Figure 1 displays the dark response of 
a hot pixel, showing the normalized pixel illumination vs. the exposure time where illumination level 0 represents no 
illumination and level 1 represents saturation. Three different pixel responses are shown in Figure 1. Curve (a) shows 

Proc. of SPIE-IS&T Vol. 9403  94030T-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/08/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



the response of a good pixel. Since there is no illumination, we expect the pixel output to be constantly zero for all 
exposures. The other two curves depict the two different types of hot pixels [5]. Curve (b) is the response of a standard 
hot pixel which has an illumination-independent component that increases linearly with exposure time. The third 
response, see curve (c), is a partially stuck hot pixel which has an additional offset that manifests itself at no exposure. 
Although the overall digital imager is generally considered a digital device, the sensor itself is analog in nature. The 
classic assumed response of good and hot pixels to illumination can be modeled using Equation (1), where Ipixel is the 
response, Rphoto measures the incident illumination rate, Rdark is the dark current rate, Texp is the exposure time, b is the 
dark offset, and m is the amplification from the ISO setting. ܫ௣௜௫௘௟൫ܴ௣௛௢௧௢, ܴௗ௔௥௞, ௘ܶ௫௣, ܾ൯ = ݉ ∗ (ܴ௣௛௢௧௢ ௘ܶ௫௣ + ܴௗ௔௥௞ ௘ܶ௫௣ + ܾ) (1) 

For a good pixel, both Rdark and b are zero, and the output is therefore solely dependent on the incident illumination. For 
a hot pixel, these two terms create a signal that is added to the incident illumination, and therefore the output from such 
a pixel will appear brighter. The dark response of a pixel, denoted by Ioffset, can be found by setting Rphoto to zero which 
yields: ܫ௢௙௙௦௘௧൫ܴௗ௔௥௞, ௘ܶ௫௣, ܾ൯ = ݉ ∗ (ܴௗ௔௥௞ ௘ܶ௫௣ + ܾ) (2) 

The expression for the dark response (also called the combined dark offset) is linear. Therefore, the parameters Rdark and 
b can be extracted by fitting the pixel response in a dark frame vs. exposure time, as seen in Figure 1. For standard hot 
pixels, b is zero. These types of hot pixels are generally visible at larger exposure times, while the partially stuck 
generally appear in all images as the magnitude of b affects the response. Obtaining this data for each camera involves 
typically 5 to 20 calibration images per test at a wide range of exposure times and ISO’s, and their analysis with 
specialized software [2-4]. 

Using 24 DSLR camera including both APS and CCD sensors ranging from 1 and 10 years in age [9], we have been 
able to identify hot pixels. We have detected 243 hot pixels of which 44% were of the partially stuck type at ISO 400. 
Partially stuck hot pixels have a greater impact on images than standard hot pixels as they are evident at lower 
exposures. The ISO setting in an imager controls the amplification or sensitivity of the pixel output. Higher ISO settings 
enable objects to be captured under low light conditions or with very short exposures. Therefore, this removes the need 
for flash or a long exposure time when doing natural light photography. About 12 years ago, most DSLRs had ISO 
capabilities of 100 – 1600. As sensor technology improved and better noise reduction algorithms were developed, noise 
levels have been reduced and the usable ISO range has increased considerably, with recent DSLRs having an ISO range 
of 50 to 12,300 and high-end cameras having a range from 25,600 to 409,600 ISO. 

The large number of offset type hot pixels indicates that the development of stuck high pixels in the field may actually 
be due to the presence of hot pixels with very high offsets. This is consistent with our claim that a stuck hot pixel has 
not yet been detected.  

3. DEFECT GROWTH RATE 

Our research has studied the defect growth rate of pixels for various imagers. We have shown that these defects occur 
randomly over the sensor[1-6] which further indicates that the source of defects is most likely random in nature, such as 
cosmic rays. These results have also been observed by other authors, who have shown that neutrons seem to create the 
same hot pixel defect types [7,8]. Our more recent research [9] has developed an empirical formula that characterizes 
hot pixel growth. The formula is used to relate the defect density D (defects per year per mm2 of sensor area) to the 
pixel size S (in microns) and sensor gain (ISO) via the following equations: 

For CCD sensors ܦ =	10ିଵ.଼ସଽܵିଶ.ଶହܱܵܫ଴.଺଼଻ (3) 
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and for APS sensors ܦ = 10ିଵ.ଵଷܵିଷ.଴ହܱܵܫ଴.ହ଴ହ (4) 

These equations show that the defect rate increases drastically when the pixel size falls below 2 microns, and is 
projected to reach 12.5 defects/year/mm2 at ISO 25,600 (already available on some high-end cameras). Given that the 
current trend is to reduce the size of pixels, our experimental results project that the number of these defects will 
increase to very high levels, which makes the correction of these defects crucial. 

4. MODEL AND ALGORITHM FOR DEFECT CORRECTION 

The most common way to model a digital imager is as an array of U × V pixels, with xij denoting the incident 
illumination at location (i,j) for a given image. Each xij consists of separate pixel values, each pertaining to a different 
color component. The Bayer Color Filter Array (CFA) [3] (red, blue and two greens – see Figure 2a) is predominantly 
used in digital color imagers. For the purpose of this analysis we will define a repeated CFA pattern as a single CFA 
pixel. When the camera data is extracted, the individual colors form a single pixel, four of which make up this CFA 
pixel. 

  

a) b) 

Figure 2: a)Bayer Color Filter Array with k numbering;  b) Pixel color array showing surrounding pixels with relative (i,j). 

We denote by xij
(k) the incident illumination of color k (where k=1,2,3,4 – see Figure 2a), additionally it is standardized 

so that 0≤xij
(k )≤1. 

We then denote by yij
(k) the (standardized) sensor reading of color k in location (i,j) (where  i=1,…,U and j=1,…,V and 

k=1,2,3,4). For a defect-free CFA pixel, yij
(k) = xij

(k) for all k = 1,…, 4. 

Since the hot pixel defects are very small, at most one of the color components per CFA pixel will be hot, and for this k ݕ௜௝(௞) = ௜௝(௞)ݔ + ܽ + ܾܶ  (5) 

Where a+bT is the offset of the hot pixel defect. 

For simplicity of notation, we have removed the indices i, j, k from the discussion in the rest of the paper. Instead, the 
hot pixels are numbered m = 1,…,M. xm denotes the illumination and ym denotes the sensor reading of the hot (color) 
pixel m. The defective pixel in the center with the surrounding neighbor pixels is shown in Figure 2b. Any of the 
R,G,G,B in the center can be hot. 

The following notations are used in our correction algorithm: 

Am
(4): Conventional corrected value of hot pixel m based on 4 neighbors, i.e., the average of the four nearest neighbors. 

For example, if the color Red at (i,j) is faulty, then this averages the values of R (or k=1) for xi-1,j , xi+1,j ,xi,j+1, xi,j-1 
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Am
(8): Conventional corrected value of hot pixel m based on 8 neighbors which is the average of the eight nearest 

neighbors. 

Again, for the color Red (k=1) example, this averages the Red components of xi-1,j-1 , xi,j-1 ,xi+1,j-1, xi-1,j , xi+1,j , xi-1,j+1 , 
xi,j+1 ,xi+1,j+1 

We now denote by Dm a partially-corrected value based on the dark response parameters of the hot pixel (recall that 
these are relatively easy to obtain). ܦ௠ = ௠ݕ − (ܽ + ܾܶ) (6) 

One key point to note is that the 4 and 8 point interpolations give good results only when the 9 pixels of Figure 2b have 
a light that changes slowly across the image for the given color, i.e., a tilted plain of that color. However, in reality 
images can include many localized edges and a high level of busyness. Interpolation fails badly in these situations. 
Better image correction results can be achieved by using hot pixel correction in such situations. Still, our corrected 
value Dm (Equation (6)) may not be totally accurate as it is based on curve fitting and only on dark field measurements. 
We therefore suggest a correction algorithm that uses a weighted combination, denoted by Cm , of Am and Dm. 

Our algorithm differentiates between uniform areas on the image and rapidly changing areas, by comparing the two 
averages Am

(4) and Am
(8) - if they differ by less than a threshold ε, the area is considered uniform, otherwise it is 

considered “busy”. We allow two different sets of weights, α ,(1 - α ) and β ,(1 - β ) depending on whether the 
neighborhood is uniform or busy, respectively. 

Weighted Corrected Algorithm: For	a	hot − pixel	value	ݕ௠ Select		ε≥0, 0≤α≤1, 0≤β≤1 If		ܾܽ)ݏ	ܣ௠(ସ) − (	(଼)௠ܣ 	≤ ௠ܥ		by		௠ݕ		݈݁ܿܽ݌݁ݎ 				(area	changing	slowly	a	indicating)		ߝ 	= ௠(ସ)ܣߙ	 	+ (1	 − ௠ܥ		by		௠ݕ		changes) replace	sudden	(indicating	௠ Otherwiseܦ	(	ߙ 	= ௠(ସ)ܣߚ	 	+ (1	 − ௠ݕ		݂ܫ ௠ܦ(ߚ ≥ 	0.99	(indicating	saturation) replace ௠ݕ by ௠ܥ =  ௠(ସ)ܣ

(7) 

The algorithm parameters ε, α, and β need to be determined empirically. 

5. EXPERIMENTAL DETERMINATION AND TESTING OF HOT PIXEL CORRECTION  

Many researchers have tested their defect correction algorithms by artificially injecting defects into standard pictures. 
However, our experiments have shown this to be inadequate as it does not reflect the interaction between the hot pixel 
and the surrounding areas that happens in practice. The problem is that the conventional testing approach assumes that 
the true value of the undamaged pixel at the hot pixel location is known. Any correction algorithmic method (e.g. 
interpolation) makes assumptions about how the local area of the picture is changing and cannot provide the true value. 
This is especially a problem where the local scene area is rapidly changing (e.g., edges of objects with color changes). 
In this section we present an experimental method that allows us to accurately determine the true value of an 
undamaged pixel at the hot pixel location and use it to test our proposed correction algorithm in the lab on complex 
scenes. 
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have observed that hot pixels with R lower than 2, and pixel values (including the hot pixel addition) smaller than 0.2, 
exhibit this behavior for both the slope and offset. In this region, the slope and offset responses are being enhanced and 
grow rapidly with the interaction to light. After an overshoot, we see the second region in which the slope and offset 
response is nearly constant. We found that the majority of pixel values of the hot pixels at these illuminations of 
between 0.2 and 0.8 display this behavior, where the enhancement seen in the previous region is declined. Lastly, at 
larger combined pixel values we see that the response breaks down. This is where the defective pixels values are near or 
at saturation. 

It is clear that the usual behavior assumptions made for dark hot pixels are not valid in the illumination case. 
Additionally, this suggests that possibly the classic model described in Equation (1) is insufficient and inaccurate. 
Therefore, a further study of hot pixel behavior under the influence of light is needed in order to derive a more accurate 
model that will improve image correction. In our future research we will focus on characterizing pixel interaction with 
light and will develop a model to quanitfy this response. 

8. CONCLUSIONS 

This paper has described several methods of correcting hot pixel defects in images, and pointed out the problem in using 
the dark field characteristics of the hot pixel for correction. Using real images, we showed that although for modest 
illumination the hot pixel behaves closely to the dark field characteristics, at higher illuminations the light interacts with 
the damage to enhance the hot pixel effect. In our future research we will construct a more accurate model of the hot 
pixel response to illumination, which we will then use to develop improved correction algorithms that will combine this 
response with the surrounding pixel information. 
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