
1052 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

On Switching Policies for Modular Redundancy
Fault-Tolerant Computing Systems

MENACHEM BERG AND ISRAEL KOREN, SENIOR MEMBER, IEEE

Abstract-The objective of fault-tolerant computing systems is running user applications. It is always less than or equal to the
to provide an error-free operation in the presence of faults. The system availability and can be computed from it by subtracting
system has to recover from the effects of a fault by employing the portion of time that the system is executing the above
certain recovery procedures like program rollback, reload, and mentioned tasks.
restart, etc. However, these recovery procedures, result in
interruptions in the system's operation, thus reducing the avail- Note that the application-oriented availability is different
ability of the system for user applications. Fault-tolerant systems from the computational availability as defined in [3]. Compu-
for critical applications include, therefore, standby spares that tational availability is an appropriate measure in cases where
are ready to replace active modules which fail to recover from the the computational capacity of the system is varying. For
effects of a fault. A standby spare may also be used to replace a
module suffering from frequent fault occurrences resulting in too systems in which a failure results in an interruption in the user
many repetitions of the recovery process, in order to increase the service but does not change the computational capacity of the
availability of the system for user applications. system, the measure of application-oriented availability is

In this case a module switching policy is needed indicating appropriate.
upon a fault occurrence, whether to retry a failing module or The difference between the application-oriented availability
switch it out and replace it by a spare, considering the remaining
mission time and the probability of a system crash. A module and the classical system availability measure may be quite
switching policy for dynamic redundancy systems is presented in substantial, e.g., a frequently occurring failure in an active
this paper and the improvement in application-oriented availabil- module of a computing system may result in a large number of
ity due to the use of this policy is illustrated. time-consuming error-recoveries and resynchronizing proc-
Index Terms-Application-oriented availability, deterioration esses. A situation like this might have an intolerable impact on

models, failure rate, fault tolerance, modular redundancy, the performance of a critical real-time control system (e.g., in
module switching policy, recovery, standby spare. aerospace applications like vehicle guidance systems). In these

I. INTRODUCTION cases it might be beneficial to replace such a module with a
T HE purpose of incorporating fault-tolerance into a spare one if available, in order to achieve a higher application-
I computing system is to minimize or even eliminate service oriented availability.

interruptions which are due to faults. A fault-tolerant comput- To study these phenomena we have to consider the possible
ing system should not be just a system producing error-free failure modes and the appropriate recovery procedures.

outputs but useful error-free outputs. Any time the system is Failures occurring in digital systems come from a variety of
performing tasks which are not directly related to its opera- sources, e.g., defective components, design deficiencies, and
tional objectives, this time period is considered wasted. environmental causes. Each of these sources generates faults
Examples of such tasks are error detection procedures, in a different way and of different types. Still, faults may be
recoveries from failures, restoring of data or programs, roughly classified intothreetypes, permanent faults, intermit-
reconfigurations of the system, initialization and synchroniza- tent faults, and transient faults [1], [2], [9]-[14]. Permanent

tion processes. faults are solid hardware failures. Intermittent faults are due totion processes.
Consequently, we distinguish here between application- physical defects in the hardware that manifest themselves

oriented availability and system availability. The latter is intermittently in an unpredictable manner (in this class we may
defined as the steady-state probability that the system is include data sensitive design errors [4]). Transient faults are
operational. We define the application-oriented availability as due to temporary environmental conditions (such as tempera-
the steady-state probability that the system is operational and is ture, humidity, vibration, power fluctuation, electromagnetic

fields, etc.) which may persist for an unpredictable period of
time [10].

Manuscript received February 27, 1985; revised November 6, 1985 and thog i trsse
October 9, 1986. This work was supported in part by the Electrical, Although intermittent and transient faults disappear after a
Computer, and System Engineering Division of the National Science short duration, their damage to the information structure of the
Foundation under Grant ECS-81-05276. system is in many cases permanent. Since the exact nature of
M. 'Berg is with the Department of Industrial Engineering, University of tefutadisefcsaeuulyukonuocurne

Toronto, Toronto, Ont., Canada MSS1A4, on leave from the Department of
Statistics, University of Haifa, Haifa 31999, Israel. recovering from the fault is one of the system's most complex

I. Koren is with the Department of Electrical and Computer Engineering, and difficult functions (e.g., [6], [15]). If the system suffers a
University of Massachusetts, Amherst, MA 01003 on leave from Technion- permanent fault, the failing module must then be identified and
Israel Institute of Technology, Haifa 3200, Israel.
IEEE Log Number 8715301. replaced. However, it is known that the nonpermanent faults

0018-9340/87/0900-1052$01.00 ©C 1987 IEEE

BERG AND KOREN: SWITCHING POLICIES FOR FAULT-TOLERANT COMPUTING SYSTEMS 1053

(i.e., intermittent and transient ones) constitute the majority of to system crashes for which the system becomes inoperational
the faults occurring in computing systems [12], [13]. Hence, for the remaining mission time. Based on this we define a
recovery capabilities for nonpermanent faults which do not system cost function which is the expected cost of all system
require giving up hardware resources prematurely, are usually down-time periods (more accurately, periods at which the user
built into these systems. Various recovery techniques are used applications are not being executed) and derive an optimal
nowadays in fault-tolerant computing systems, like instruction switching policy that minimizes this cost function.
retry, program rollback, reload, and restart, etc. [1], [11]- Clearly, the optimal module switching policies for various
[13]. None of these techniques can be effective against all structures of fault-tolerant computing systems are not neces-
possible faults. Hence, several recovery steps are employed in sarily the same. In this paper we concentrate on dynamic
support of one another to increase effectiveness [1], [8], [11]- (standby) redundancy fault-tolerant systems. Similar policies
[13]. for other configurations of fault-tolerant systems are being
Due to the complexity of the recovery problem, each investigated.

recovery procedure has its deficiencies and may fail and cause A module replacement policy for dynamic redundancy
a system crash [1], [12], [15]. In some systems, recovery systems has been presented in [7]. However, it has been
deficiencies account for as much as 35 percent of the down- assumed there that the switched-out module is considered
time [15]. Even if the recovery procedure is successful, an faulty and discarded. The drawback of such a decision is that
overhead time is involved. First, there is a detection time the premature retiring of a module which might still have a
between fault occurrence and fault detection and then, there is useful life service may unnecessarily reduce the system's
the recovery time including initialization and synchronization mission time.
of the failing module [5], [6], [11]. Consequently, we consider here the switched-out module as

Usually, the information processing performed by the a possible spare which will be used, if and only if no
system during the detection time (and even before that if a "perfect" spare is available. Under this assumption the
reload and restart operation is needed) is contaminated and reasons against switching out the module (which is subject to
must be repeated. Thus, a cost to the system is associated with frequent nonpermanent fault occurrences) are the possibility of
every recovery procedure activated. The cost of a single a system failure during reconfiguration due to imperfect
application of a recovery procedure might be low; however, a coverage (e.g., a fatal switching failure) and the overhead time
frequently occurring nonpermanent fault will considerably associated with reconfiguration.
reduce the application-oriented availability of the system. The optimal switching policy for a dynamic redundancy
Moreover, the rate of some intermittent faults like those system is derived in Section III after the underlying mathemat-
caused by deteriorating or aging components, gradually ical model is outlined in Section II. Numerical examples are
increases until they become permanent. Their transition into then presented in Section IV. Section V is devoted to possible
solid faults may take from a few minutes to several months extensions of our mathematical model and final conclusions
during which the frequency of their occurrence increases are presented in Section VI.
intolerably. Such a situation should be avoided on time.

In addition, too many applications of a recovery procedure
will undoubtedly increase the probability of an unsuccessful Consider a computing system, one of whose modules has m
recovery leading to a system failure. Consequently, in some standby spares ready to be switched in upon failure of the
cases it may be worthwhile to switch out the module which is active module. The active module is subject to fault occur-

subject to nonpermanent fault occurrences and reconfigure the rences and we adopt here the viewpoint that fault occurrences

system. obey a Poisson process [4]-[9], [11]-[14]. Although the
What is needed, therefore, is a module switching policy that failure rate is treated as a constant in most related works, it is

will indicate the kind of operation to be taken by the system recognized that it may be a function of time and even some

whenever a module fails, i.e., should we retry the module that module parameters. It is apparent in particular, that as time
has failed or maybe switch it out and replace it by a spare. This goes on certain types of faults are more likely to occur and the
module switching policy should optimize some system cost status of the module may be deteriorating.
function. The application-oriented availability measure as One way to model the deterioration process of modules is to
defined above is concerned only with the portion of time that assume that the failure rate increases with the occurrence of
the system is operational and running user applications. This failures. The simplest model in this direction is one that
measure does not make a distinction between several brief distinguishes only between modules that had no failures, the
interruptions in service (which may in some cases be harm- failure rate of which is X0, and the modules that had at least
less), and a single interruption period equaling in length to the one failure-whose failure rate is 1 (> X0). Restated, the
sum of the shorter ones. The latter might be disastrous to failure rate of a module is initially X0 and after the first failure
critical real-time applications, it increases to X1, and remains so thereafter. A module with

Hence, instead of maximizing the application-oriented failure rate Xo (X1) is said to be in state 0(1). This dichotomized
availability we attempt to optimize a more complex version of deterioration model is analyzed in this work in detail. More
this availability measure. Namely, we assign one cost per time general deterioration models are discussed in Section V.
unit to brief periods of service interruption and a different cost When a failure occurs we have two possible actions at our
per time unit to longer interruptions, paying special attention disposal: we can retry the failed module in order to bring it

1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

back to operation, or else replace it by a spare-if one is still Consequently, this convention simplifies the expressions to
available. The cost associated with a replacement, denoted by follow and their analysis.
Cs, represents the loss due to system's down-time while the The optimality equation for DiN(t) is given by
replacement operation is being executed. A replacement action
could bring about a crash of the system, the probability of D t= Xle-xi(t-11) min {h (r) (u); h (s) (u)I du
which event is denoted by s, in which case a penalty of Cf is k 0N(t)=

k,N k,N

paid for any unit of time in the uncompleted portion of the
mission. If a crash does not occur, then the system resumes N= 1, 2, ; k= 1, 2, , N; i=0, 1 (1)
operation with the new active module while the module that where
has been switched out from operation is to be tested. This
testing procedure, which does not result in any cost since no h(r) (u)= Cr+rC u+(1 -r)[(l -p)D,N(u)
system down-time is involved, either completes successfully,
if the fault is not permanent, or fails. In the former event, the +p{C5+sCfU+(l -s)DO N(u)}]
probability of which we denote by 1 - p, the retired module
becomes a standby spare, while otherwise it is discarded and is the expected cost in (0, u) if there is a failure at u upon
the group of spares is decreased by one. which a retry action is taken and afterwards an optimal policy

The alternative operation, i.e., retrying the module that has is followed, and
failed, incurs cost Cr and has the following outcomes. Either a
crash occurs, the probability of which is denoted by r, and a h (s) (u)= C, + sCfu
penalty of Cf is paid for any unit of uncompleted mission time. + (1 - s)[pD° -p)DO
Or, a crash does not occur, then with probability 1 - p the +(k-l,l I, (U)±(l k) 1,N(u)I
retry operation proceeds and the system resumes operation, or is the expected cost in (0, u) if there is a failure at u upon
else (with probability p) the fault is permanent, the retry which a replacement action is taken and afterwards an optimal
operation fails and the failed module must be replaced. The policy is followed.
costs and consequences of this forced replacement are as The latter two expressions hold for k . 1, while for k 0
described above only that now the switched-out module is to (i.e., no spares at state 0 are available) we have
be discarded right away (no further testing is needed), i.e., the
size of the group of spares is necessarily decreased by one. t

Obviously, when a replacement is made, either immediately DO,N(t) = | X1 e-i (tu) min {h (u); h 0Nu)} du (2)
or following an unsuccessful retry operation, the module
chosen for replacement is one in state 0, i.e., an unused one, where
as long as this type of module has not been yet exhausted.
The decision whether to retry or replace a failed module h (r) = Cr+rCfu+(1- r)[(1 -p)D N(u)

depends on all the factors that have been mentioned above: the 0,N' rf
probabilities of crash s and r, the probability that a failure +p{Cs+sCfu + (1-s)DI,N
results in a permanent fault p, and the costs Cr, Cs, and Cf. and
Since the latter cost factor Cf, is per time unit, the decision
also depends heavily on the remaining mission time. A crash =s)[D)closer to the end of the mission will incur less failure penalty. N= sC + (1- N(a) + (1

III. CONSTRUCTION OF THE OPTIMAL POLICY When N = 0, the only action available to us is a retry of the

The dependence of the optimal action on the remaining module. Hence,
mission time leads to a time-continuous dynamic programming
formulation of the problem. First we note that the state space DI,0(t)= iX Xe-Xl(t- u)

of the decision process at any time consists of N-the total
number of spares (N = 0, 1, 2,), k-the number of spares {C,+ rCfu + (l - r)[(1 -p)Dl0(u) +pCfu]} du.
in state 0 (0 c k s N), and the state i (i = 0, 1) of the active
module. However, at a failure epoch before any action has
been taken, the last component of the state space is redundant 1 / C \
since by virtue of our dichotomized deterioration model, the DI0(t)= (Cr-1) (1-e-XlI'rt) + Cft (3)
state of the active module at failure must be 1. rI~X /
LetDkN(t)(N =0,1<** ; k =0,* *,N;i =0,1; t.2 where4r = 1 - (1 -r)(l - p).

0) be the minimal expected cost (of all the time periods at For Do°0(t) we have,
which the user applications are not serviced) at time t where
N, k, and i are as defined above. The time t is measured D
backwards from the end of the mission. This convention has Do,ot - J0
been adopted (throughout the paper) since only the remaining{C+[+(-rpCu+(1-r(-)D0u}d.
portion of the mission time affects our decision process. {r[+lrpCu(-)lpD,() u

BERG AND KOREN: SWITCHING POLICIES FOR FAULT-TOLERANT COMPUTING SYSTEMS 1055

Substituting (3) and integrating yields Thus, due to (5), this simple check which does not require

1 (CfCf\1 knowledge of the unknown functions, tells us which action
DO (t) lCr) +Dr (o(1te) comes first, i.e., it reveals the optimal order of the actions.
O)r L\XI k X1 0 Moreover, the optimal order is invariant with respect to k and

(1 -br)X0 / CC\ N, a result that will prove to be of much use later.
+ Cft- (CjrC) (e- r1t-e-ot) (4) The derivation of the optimal policy is detailed in the

(X0- 4rXl)cbr \ XI / Appendix where closed-form expressions for the cost func-

The expressions in (3) and (4) provide us with the necessary tions are derived. Having closed-form expressions simplifies
starting points for the solution of the recursive optimality the reevaluation of the cost function which might be needed
equation (2). Once the functions Di l(t), **, DIN have also whenever a module fails (and the system recovers from the
been computed, they provide us, in turn, with the boundary effect of the failure) since some system parameters may
functions for the solution of the recursive optimality equation change upon a failure, e.g., number of spares and state of
(1). spares or active modules.
We begin the solution process by stating two basic

properties of the functions DIN(t) that can be verified from IV. NUMERICAL EXAMPLES
the optimality equations, and the results in (3) and (4). For all A software package (based on the IMSL double-precision
functions DN(t),N= 0, 1, ;k=0,= , N; i = 0, 1, library) for the calculation of the cost functions DiN(t) and
we have (recall that time is always measured backwards), the policy switching points has been prepared. Using this

i)D''0~-0 package several examples have been analyzed, some of whichi) Di()=k,NO = 0 are presented in the following.
ii) DkN(t) iS continuously increasing in t, (5) The first example chosen for presentation is a system with a

Since we have only two actions at failure, the optimal policy single standby spare which has, when the mission starts, aSine w hae oly wo ctinsat ailre,theoptmalpolcy failure rate Xo. The operational module which may be replacedfor any given (k, N) must alternate between these two r m
actions.Co sequently, there exists for anygivn by the spare one, has initially the same failure rate. Conse-actions. Consequently, there exists, for any given (k, NV , a , r

sequence of numbers X,(k, N), X2(k, N), ... so that if a quently, the cost function which is to be calculated is DO (t).
failure occurs in the time intervals [X2,(k, N), X2, I(k, N)l] However, its evaluation requires the calculation of D 1(t),
one of the actions is optimal. While if the failure occurs in the D01(t) D01(t), D80(t) and Do0(t). These in turn, require the
intervals [X2,+ (k, N), X2n+2(k, N)] the other action is computation of two sets of policy switching points namely,
optimal (n = 0, 1,). This can be presented graphically as Xj(0, 1) and Xj(l, 1).
follows. In Fig. 1, four of these cost functions are depicted for a

Policy I Policy II Policy ~ system with the following set of parameters.
Policy I Policy II Policy I Set I: XI/X0 = 10, p = 0.05, r = 0.05, s = 0.03, Cs/Cr

| =2,Cf=103.
X2(k, N) XI (k, N) Mission time In this figure time has been normalized and one time unit

Once the values of these Xj(k, N) are known, we may equals the average lifetime of a module with a failure rate XI.
calculate the minimal ex d ct DFor the system given by Set I, a single policy switching point

calculate the minimal expected cost Dk N(t). Thus, deriving ank N(t) was found for (k, N) = (0, 1) and similarly for (k, N) = (1,
optimal policy for a given (k, N) is reduced to calculating a

sequene of plicy sitchin point X1(k,N), (I= 1, 2 1). The computed values are XI (0, 1) * X 0.432 and XI (l,seq)ueThe nbfoolicy switching points Xj(k, N), (J = 1, 2 1) * XI = 0.256. This means that for (k, N) = (1,1) the
* *). The number of these policy switching points iS expected
to be small'as has been verified in many numerical examples. optimal policy calls for replacement of the operational module

Therefore, the computational complexity of our scheme is by the standby spare upon failure, up to 0.256/X1 time units
dynamic before the mission is over. From this point on the operationalsubstantially lower than that of the conventional dynamc b r u .

programming approach where the cost function is usually mouewl .bere upo falr
The resulting optimal policy has an intuitive explanation.

calculated for every time-step (the size of which determines The cost ratio Cs/Cr = 2 indicates that the immediate cost
Theaccuracy oftheinal rsults)in points Xj(k, N)j =, incurred when replacing the operational module by the spare
The sequence of ol ting ointsof n), i.e., one is twice as high as that incurred when the module is

2, ...) depends on the optimal order of the actions, i.e., retried. On the other hand, the probability of a system crash
which action corresponds to which set of intervals, but not on
the state of the active module which is necessarily 1 upon

when a replacement iS performed (s) rS lower than that for a

TodetermintheIoptia r of t a w m e retry operation (r) givtng preference to a replacement opera-

' .'. 1 tlon.~~~Whentheremaining1mission tim beisoarer(1Ssal,thwon-er aeffc

key observation that of a possible system crash iS of more concern than the

h 5)(0) <h (Q) (0), if and only if Cr/CS<1 -p(l -r) (6) immediate cost. Therefore, we prefer replacement of the
S ~~~~~~~~~~~~~~moduleover retrying it.

fo ll N-=0,1l*,* k-=0,1,* * N. Expressions for the functions D° 1 and D1 l were derived

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

COST

Dol0o (t)
3

2

Do(t)
= C g ~~~~~~~~~~~~~~~~DI,1(t)

A1 t
0.2 0.4 0.6

Fig. 1. Four system cost functions for Set I of system parameters.

COST

0.3 D(RT)(t)

D(sw')(t)

D/ (t)

0.2

0.1

Al t
0.2 0.4 0.6

Fig. 2. The system cost (Set I of parameters) for optimal and nonoptimal
policies.

and evaluated for the different time intervals and the resulting The improvement in system cost due to the adoption of the
values are plotted in Fig. 1. It is interesting to note that in Fig. optimal policy is illustrated in Fig. 3. The improvement is
1 D,(t) > DOO(t), i.e., for the given system parameters, defined by 1 - D, 1(t)/D(sw)(t) and similarly for D(RT)Q}
having a single operational module (with no spare) with a For example, the cost is reduced by as much as 40 percent if
failure rate X0 is preferable to having two modules (one in instead of switching out the operational module (and replacing
operation, the other a standby spare), both with a higher it by the spare) upon failure, one follows the optimal policy
failure rate XI. The opposite has been observed in other that calls for a retry operation when the mission is about to be
examples. over.

In Fig. 2 the cost (in system down-time) incurred when the The deterioration model that we have employed requires the
optimal policy is followed, is compared to the system cost for estimation of the failure rate ratio X1/Xo. This ratio is clearly
two other policies according to which the same decision difficult to accurately estimate and, therefore, the sensitivity
(switch out or retry) is made throughout the mission time. In of the optimal policy to this ratio has to be analyzed. As an
this figure D(sw-)(t) denotes the cost if the operational module example of such a sensitivity analysis we have calculated the
is always switched out and replaced upon failure. D(RT)(t) is policy switching points for the above system parameters but
defined similarly for a retry operation. The system cost with two different estimated failure rate ratios namely, X1/X0
associated with the optimal policy is clearly lower than those = 2 and X1/X0o = 15. For each of these two values we have
associated with the nonoptimal policies, calculated the cost function D, (t) for a system with a failure

BERG AND KOREN: SWITCHING POLICIES FOR FAULT-TOLERANT COMPUTING SYSTEMS 1057

PERCENTAGE OF
IMPROVEMENT

40

30-

20Rer

10; 10.~~~Swtrch

__- t
0.2 0.4 0.6

Fig. 3. Percentage of improvement in cost due to the optimal policy (Set I of
parameters).

PERCENTAGE OF
COST INCREASE

4

2

2

0.2 0.4 0.6

Fig. 4. Percentage of cost increase due to inaccurate estimation of the failure
rate ratio.

rate ratio of X1/X0 = 10 (as before) but for which the policy Set1II. '/X0 = 10,p = 0.05, r = 0.01, s = 0.08, Cs/Cr
switching points were precalculated based on an inaccurate = 0.5, Cf = 103.
estimation of the above ratio. The results are illustrated in Fig. Here, two policy switching points were computed, X1(0, 1)
4 showing that the system cost increase due to inaccurate *X = 0.162 and X1(1, 1) * =- 0.202, where the optimal
estimation of the failure rate ratio is almost negligible policy calls for switching out of the operational module upon
compared to the reduction in cost due to the adoption of the failure (and replacing it by the spare) in the time interval near
optimal policy (Fig. 3). the end of the mission. The reason for this decision is the
The above calculations were repeated for a second set of lower immediate cost incurred when replacing the operational

parameters, i.e.. module (Ci) compared to the retry cost (Cr). When the

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

PERCENTAGE OF
IMPROVEMENT

40

300

20

10

0.2 0.4 0.6

Fig. 5. Percentage of improvement in cost due to the optimal policy (Set II
of parameters).

PERCENTAGE OF
IMPROVEMENT

t ~~~~~~SetIV

55-/

< ~~~~~~~~~SetIII

50-

] I 8 t M A, t
0.2 0.4 0.6

Fig. 6. Percentage of improvement in cost due to the optimal policy (Sets III
and IV of parameters).

remaining mission time is large, the long-term cost of a system the same type of operation throughout the mission time [the
crash is of concern and, therefore, the optimal policy calls for operation is determined by (6)], one might gain by following
a retry operation which has a lower probability of system crash this policy. In Fig. 6 two such cases are depicted. One has the
(r). Fig. 5 depicts the improvement in system cost due to the same system parameters as in Set I except that Cr/Cs = 0.5,
adoption of the optimal policy. Here, too, the improvement is we call it Set III. The second, Set IV, is similar to Set II except
quite substantial illustrating the effectiveness of the optimal that CS/Cr = 2. For example, the lower curve in Fig. 6 shows
policy. the improvement in system cost if the optimal policy that calls
The importance of following the optimal policy is not for a replacement upon failure throughout the mission time is

restricted to cases where finite values for the policy switching followed, instead of the nonoptimal policy of always retrying
points exist. Even in cases where the optimal policy calls for the failing module. Fig. 6 shows that cost reductions higher

BERG AND KOREN: SWITCHING POLICIES FOR FAULT-TOLERANT COMPUTING SYSTEMS 1059

than 50 percent might be expected when selecting the right The last term in (9) and (10) should be replaced as was done
policy. for (8) if ko = 0 or ko = k, = 0. Similar changes should be

In summary, the above presented numerical results illustrate done with the next to last term in these two equations.
the reductions in system cost one may expect when optimal The models considered hitherto may look in certain situa-
module switching policies are applied. tions too rigid due to the assumption that the failure rate

increases at every single failure. The following simple model
V. MORE GENERAL DETERIORATION MODELS extension allows much more flexibility in this aspect. We can

The dichotomized deterioration model can be generalized in add control parameters to the model and make the change of
a natural way by assuming that the failure rate increases at the failure rate, at the failure epoch, depend on the relation
every failure epoch and does so until the Mth failure after between these parameters and the time that has elapsed since
which it does not change any more. A module can, therefore, the last failure of the module. The motivation behind this
be in states: 0, 1, * M where its failure rate is Xo, X1, * *, approach is that frequent failures indicate worsening of the
XM, respectively. Thus, Xo corresponds to the failure rate of module status, whereas sparsed failures may be interpreted as
modules that have not yet failed, XI corresponds to modules "normal" or even an indication of improvement (a Bayesian
that have failed exactly once, and so forth. revision mechanism of the failure rate has similar complica-
The mathematical approach that has been developed for the tions although in a different conceptual framework).

special case M = 1, i.e., the dichotomized deterioration To illustrate these ideas consider again the dichotomized
model, can be readily extended to this more general situation. model and assume that a module which had a failure rate X0
It, however, requires the enlargement of the state space to an (XI) prior to the failure will have a change to failure rate XI (N0)
M + 1 dimensional one since a counter for the number of if the time that has elapsed since the last failure is less (more)
spares in each of the possible M + 1 states is needed. than "a" ("b"); otherwise no change of failure rate occurs.

Specifically, define first a vector k = (ko, k1, * , kM l, For this simple model extension with two control parameters a
N) where N is the total number of spares, ki is the number of and b we obtain the following functional expression.
sparesinstatei(i = 0, 1, M - l)andN- Ym-Ikki 2 0
is the number of spares in state M. Then, define Dik(t) as the Di (t) Lb X e-Xit-u * m hk,N(u) d
optimal expected cost at time t (measured backwards) where k,NOh=1h(U) j
the active module is in state i (i = 0, 1, '', M) and the k,N

spares are in state k. We can again form a recursive integral 1 ((r)(U)'
equation for the function Dik(t), recalling that if the opera- + Xi,e-xi(1- u) * min9kOmU du. (11)
tional module is switched out upon failure, the replacement b 3 k,N(u))
module is taken from the subgroup of available modules with The expressions for h()N(u) and h (s)N(u) are the same as
the smallest failure rate. As an illustration consider the caseM before, see (2), while gk,)N(u) and g$)(u) ar g

2. The recursive functional equations are in this case follows,

D Xie-xi(t-u) * min du -r)pCs+[r+(I -r)ps]Cfu
hko,kl,N(U

(7) +((-r)(1-p)DO -u+p1r)(1-s)DOk N U (12)
where for ko > 1,

g k,N(u)-C5+ sCfu + (-s)(l -p)DQ N(U)
h ulN(C)=Cr+(l -r)pC5+[r+(l -r)ps]Cf u

+ (1 - r)(l -p)D k1kN N(u)
0 A close look at the sets of equations (7) and (11) reveals that

+p(l -r)(l -s)Dk0,-I,kl,N1l(u). (8) they can be treated by the very same tools that were used for

If ko = 0 and k1 > 0, then the last term in (8) should be the solution of the dichotomized model. The solution of (11)
replaced by Dok1_ IN- l(u), and if ko = 0 and k, = 0 then it can then be used to find the optimal replace or retry policy, as

h trlb 0 N a function of a and b, as was illustrated for the basic
has to be replaced by Do0,- IMU(s),i 0 0.Ndichotomized model.

For h k0,k1,N(U) we have to distinguish between the cases i
- 0 and i = 1, 2. For i = 0, VI. CONCLUSIONS

h ('kOkiN(U) = Cs + sC1u + (1 - s)(l -p) Optimal module switching policies have been introduced in

1k1+P(l- SDk~ I,k1,N Ithe paper and one such policy has been developed for dynamic
'°k k + l,N(U) +pl-sDo- ,l (u) (9) redundancy fault-tolerant computing systems. A dichotomized

an*o ,2w ae model for the deterioration process of active modules wasand for Z=l,2we have, ~~~adopted here. However, it has been shown that the algorithm

h (okkNy(u) = Q, + SCfU 01s(-)k_lk Va for constructing the optimal policy can be extended so as to01' + (I - s)(l-p)Dk0 l,k1,N(U handle other, more general models for the deterioration
+P(l1-s)Dk0- I,k1,N- 1(U). (10) process.

1060 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9, SEPTEMBER 1987

A software package for the calculation of the system cost The solution of this equation is given by
functions and the determination of the policy switching points
has been developed. The package was used for the numerical oNs(-X)
analysis of several examples, some of which were presented in (Nx
this paper. These examples show that the application of the KCs (SC-1e- Is(-x))
optimal switching policy might improve substantially the Is x1 (s J
computational availability of a fault-tolerant system.

Similar optimal switching policies for other fault-tolerant + -(-xe-SfS(V-X)
architectures of computing systems like hybrid redundancy (s
systems and gracefully degrading systems (e.g., [13]) should s)
be developed. + X|(Dse x+s(v-u)DI -ju) du (A-5)

APPENDIX D
In this Appendix we derive the optimal policy assuming that where (D = - (1 - s)(1 - p).

(6) holds as it is (so that a retry action comes first). From the To find the first policy switching point X1(0, N) we
structure of (2) we may conclude that compute BO,N(U, X) for an increasing sequence of values of x,

say x = d, 2d, 3d, * * * where v is set at x + c (e being very
D N(t)=AO,N(t) for 0c t<X1(0, N) (A-1) small). Let x = md be the first time we have

where AO,N(t) is the solution of the integral equation, Bo,N(X+ E, x) <Ao,N(X+)

l (t- v (t-u) Then X1(0, N) belongs by construction to the interval [md,
0,N =-J 1 e hN . (m + l)d]. Subsequently, we may further subdivide this

interval and reapply the same procedure to approach X1(O, N)
Solving (A-2) we obtain as close as we wish.

AoN(t)=,X, [Cr+(l - C -] -eXl4r) If X1(0, N) is finite, we denote Bo,N(t) = BO,N(t, X1(0,AO,AO C + (I-r,pCs-- e' x tr) N)) and obtain

I' c+p(l -r)(l -s) DoN(t)=BoN(t) for XI(0, N)<t<X2(0, N). (A-6)
+- Cr1t+ s 0 N

+rCfr+4) We now proceed to the computation of X2(0, N). To do that
we define CO,N(V, x) as the expected cost if a retry is done

liltrexlbr(tT)Dl(T) dT (A-3) upon failure if it occurs in [0, X1(0, N)], a replacement is
0 0,N- 1 done if the failure happens in [X1(0, N), x], and a retry is

where t = r + (I - r)ps. done if the failure occurs in [x, v], where XI(O, N) < x < v.

Since AO N(t) depends on DON 1(t) we have to carry out the This function is obtained by solving the integral equation
solution procedure for successively increasing values of N.
Starting with N = 1, we obtain from (A-3) after the COeN(V, x)=BOwN(x)e-X(vx)+i | Xe ul(t)h(r) (U) du
substitution of D"o(t) from (3), x

where in h(r)N(u) we set CO,N(U, x) for DN(u).
[((t=\Crf-)(r+P(j -J) The solution of this equation is given by

CO,N(V, X)=BO,N(X)e-X1 r(U-x)

+(1-r)pCs] (1-e-XIrt) +I- [C+(f-r)pCs--- (1-eXIr(vX))

-+-Cft- >\p(l -r)(I - () teXlI rt +- Cf(vs)xeXlImr(ux))

Now define BO,N(V, X) as the expected cost in [0, v] of a +(-)1s iv Xlrex1,eAr¢(UuN)DvoN-I(U) du.
policy which prescribes a retry upon failure if it occurs in [0,
x] but a replacement if it occurs in [x, v], (0 < x < v). The (A-7)
active module at time x is assumed to be in state 1. This Aan ycmaigC,(,x n o()w

funcioncanbeepresedby eansof he ntegal quaion determine X2(0, N). If the resulting policy switching point is

firnite, we denote Co,N(t) = CoN(t, X2(0, N)) and obtain,

BO~~~~~~~~~~~~~~~~~~ XIVX)=re-()AI(X) |)r(u--ItS (U)Idu u

No N(V,x)Aex) cd1 c DNN(t)=xCooN(t) for]X2(0, N)a<(t<X3(0, N). (A-8)

where in h psu) we set BO,N(U, X) for DeN(U). The above procedure with the necessary algebraic modifica-

BERG AND KOREN: SWITCHING POLICIES FOR FAULT-TOLERANT COMPUTING SYSTEMS 1061

tions, is repeated and as a result the sequence Xj(0, N); i = 1, To obtain XI(k, N) we, as for k = 0, define Bk,N(V, x) as
2, * is generated and in the process the function DIN(t) is
obtained. Bk,N(V, x)=AkN(X)eX1(v)
Once D N(t) is known we can compute DON(t) by using

the equation + " X1e-x1(t-u)h(s)u(u) du

DO | Oe- Xo(`-U) min {h r) (u); h (s)(u)} du (A-9)
=Ak,N(x)e XA(U-x)+ Cs (I-e-x(v-

whose validity rests on the fact that the sequence Xj(0, N) is f
not affected by the change of the state, from 1 to 0, of the
active module at time t. Under our current assumption that (6) + sC (v-xeXlv-x) v± i texl(t)[(1 -4w)
holds, h)N(U) is selected in the interval [0, X1(0, N)], x

h(s)N(U) is selected in the interval [XI(0, N), X2(0, N)] and so (u) +p(l-s)D0 N(U)] du.
ON. k- -,Ns -

D N

We start with the calculation of D1l(t) and D° 1(t) and
continue to N = 2 by employing a similar procedure to (A-14)
generate the sequence XI(0, 2), X2(0, 2), ... and compute
DI2(t) and DO2(t). The procedure is then repeated for Here, as opposed to the case of k = 0, no equation has to be
increasing values ofN as far as desired. solved. Instead, we have to substitute the known by then

Next, we consider again (1). First we need to solve the expressions for D0_ 1,N(U) and D N (U) and integrate. By
general integralequation comparing ~~~~~~~~k1,()a k- 1N- I

general integral equation comparing 9Bk,N(X + e, x) to Ak,N(x + e), as was done for k
I (r)

= 0, one finds the policy switching point XI(k, N). If X1(k,
DIN(t) = XIe-xI(`u)hkiNv(u) du N) is fini; e, we denote Bk,N(t) = Bk,N(t, XI(k, N)) and

proceed to compute X2(k, N). We define, as for k = 0,
N= 1, 2, *;k=l1, 2, * ,N. (A-10)

The solution of this equation is given by Ck,(V, x) = Bk,N(x)e-l4r(v-x)

Ak,N(t)=-D [Cr+(l-r)pCs-,, (I] e(-e lrt) +- [Cr+(l-r)PCs--] 1e- x r('-X))

1-C Ct (p(- -sg(e r)(I cms)odif iaons, we g th optimalr)(po-s)

Xi),re- X1tr(tr-)D0k_ I_(u) du . (A-lIl) .| 4)re- l Pr(v -u)DO_ _l()d A 5

The dependence of (A-11) on D°_ (t) leads to a
kA (S - C + and compare the resulting expression to BksN to determine

recursive solution procedure and starting wutndN th assmpwe Xk6N
obtain, after substituting D° O(u) from (4)2()

°h Repeating the very same procedure, with the necessary
+Cft (r)Ol (CC fN AP(lr)(l-r)(lx*rt calgebraic modibe cations, we generate the optimal policy

A l,,(t) =- t(1- r)pCs + tCr- X l+ J switching points and compute the functions DI't)(=1

r04'i \\rXlJ rr replacemt2* k precedesN) as far asneededoi The order of the

/Cf Cf\ ~~~~~~~~~computation is D'l 2() Di 2t, Dil 3t, Di 3t, Di 3(t.**.
+p(l - r)(l - s) (- - 1-e-XOlsrt) where each time we first treat the case i = I and then i = O.

\ ' °/ J ~~~~~~Theabove derivation was under the assumption that (6)

0 - 'tr) XOX Ic p(l r)(I s)holds. It is easy to observe that essentially the same procedure
+C t (-+ro\ (C J_cA (-)l5te_xOY can also be applied when the reverse of (6) is true, i.e.,

0- 4,r)\ XI(1br replacement precedes retry in the optimal order of actions.

p(l -r)(l -S) X\i4r (1 (' CJ r (1 4'r)X01 REFERENCES
+
P (I -< .> k CT\J lb - 4 r1 I [1] T. Anderson and P. A. Lee, Fault-Tolerance, Principles ana

rki "0 "1 r r "1 L Practice. Englewood Cliffs, NJ: Prentice-Hall, 1981.

[2] A. Avizienis, "Architecture of fault-tolerant computing systems," in

"C C\ Dig. 5th Int. Symp. Fault-Tolerant Comp., June 1975, pp. 3-16.

)(1. (e/ ing systems," IEEE Trans. Comput., vol. C-27, pp. 540-547, June
1 ~~~~~~~~~~~~~~~~~1978.

[4] A. Costes, C. Landrault, and J. C. Laprie, "Reliability and availability
Then models for maintained systems featuring hardware failures and design

faults," IEEE Trans. Comput., vol. C-27, pp. 548-559, June 1978.

D~1l(t)=A1,1(t) for 0.tcX1(b, 1). (A-13) [5] A. L. Hopkins, Jr., T. B. Smith, III, and J. H. Lala, "FTMP-A

1062 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 9. SEPTEMBER 1987

highly reliable fault-tolerant multiprocessor for aircraft," Proc. IEEE, 115] W. N. Toy, "Fault-tolerant design of local ESS processors," Proc.
vol. 66, pp. 1221-1239, Oct. 1978. IEEE, vol. 66, pp. 1126-1145, Oct. 1978.

16] H. Ihara et al., "Fault-tolerant computer system with three symmetric
computers," Proc. IEEE, vol. 66, pp. 1160-1177, Oct. 1978.

[7] 1. Koren and M. Berg, "A module replacement policy for dynamic Menachem Berg received the M.Sc. and Ph.D.
redundancy fault-tolerant computing systems," in Dig. lth Int. degrees in operations research from the Technion-
Symp. Fault-Tolerant Comput., June 1981, pp. 90-95. Israel Institute of Technology, Haifa, and the B.Sc.

[8] 1. Koren, Z. Koren, and S. Y. H. Su, "Analysis of a class of recovery degree in statistics and mathematics from the
procedures," IEEE Trans. Comput., vol. C-35, pp. 703-712, Aug. Hebrew University, Jerusalem, Israel.
1986. He is a Senior Lecturer in the University of Haifa

19] 1. Koren and S. Y. H. Su, "Reliability analysis of N-modular and currently on a visiting appointment in the
redundancy systems with intermittent and permanent faults," IEEE University of Toronto. His previous visiting ap-
Trans. Comput., vol. C-28, pp. 514-520, July 1979. pointments were in the University of California at

[10] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, "The measure- Berkeley, Georgia Institute of Technology, Univer-
ment and analysis of transient errors in digital computer systems," in sity of Illinois at Chicago, University of British
Dig. 9th Int. Symp. Fault-Tolerant Comput., June 1979, pp. 67-69. Columbia, Vancouver, and University of Sussex, Brighton, U.K. His major

Ill] Y. W. Ng and A. Avizienis, "A model for transient and permanent areas of interest are reliability theory and maintenance policies. He has
fault recovery in closed fault-tolerant systems," in Dig. 6th Int. Symp. published papers on general reliability modeling, computing fault-tolerance,
Fault-Tolerant Comput., June 1976, pp. 182-188. power system reliability, spares provisioning, and replacement and mainte-

[12] D. P. Siewiorek et al., "A case study of C.mmp, Cm *, and C.vmp: nance policies. Currently he is working on problems within the above topics as
Part I-Experiences with fault tolerance in multiprocessor systems," well as on software reliability and reliability growth analysis. He also has
Proc. IEEE, vol. 66, pp. 1178-1199, Oct. 1978. interest in applications of Bayesian decision and inference procedures in

[13] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of reliability theory.
Reliable System Design. Bedford, MA: Digital, 1982.

[14] S. Y. H. Su, I. Koren, and Y. K. Malaiya, "A continuous parameter
Markov model and detection procedures for intermittent faults," IEEE Israel Koren (S'72-M'76-SM'87), for a photograph and biography, see this
Trans. Comput., vol. C-27, pp. 567-570, June 1978. issue, p. 1029.

