
An Analytical Model of High Performance Superscalar-Based MultiprocessorsDavid H. Albonesi and Israel KorenDepartment of Electrical and Computer EngineeringUniversity of Massachusetts, Amherst, MA 01003, USAalbonesi,koren@ecs.umass.edu
AbstractSeveral shared memory multiprocessor models using approx-imate Mean Value Analysis (MVA) have been developed andused to evaluate a number of system architectures. Sincethis time, the complexity of multiprocessor systems has in-creased as superscalar processors and latency reduction tech-niques are employed in these systems. We present an MVAmultiprocessor performance model which incorporates thesenew features and in addition, increases the level of modelingdetail to improve 
exibility and accuracy. We describe in de-tail extensions present in our model that allow us to analyzethe impact of these new features. We then use the modelto demonstrate some of the tradeo�s involved in designingmodern multiprocessors, including the impact of highly su-perscalar architectures on the scalability of multiprocessorsystems.1 IntroductionAn analytical modeling technique that has been frequentlyused to evaluate shared memory multiprocessors is approx-imate Mean Value Analysis (MVA)[12]. In MVA, a set ofequations that represent the mean response times and meanwaiting times of various performance elements are derivedusing the mean values of various system parameters as modelinputs. For example, a simple multiprocessor MVA modelmay include the mean response time of a cache miss as aresponse time equation, the mean bus waiting time as awaiting time equation, and the mean time between cachemisses as a model input. Once constructed, these equationshave circular dependencies and must be solved iteratively.The power of MVA modeling lies in its computation e�-ciency. Convergence is usually achieved within a second,independent of the number of processors and memories inthe model. Many models of multiprocessor systems havebeen created using this technique and have been used toevaluate the performance of both research prototype[9, 13]and commercial[10] multiprocessors. The results obtainedfrom approximate MVA models have been shown[5] to cor-relate well with those obtained from trace-driven simulationmodels.Since these models have been constructed, superscalar

microprocessor-based multiprocessor systems using latencyreduction techniques such as nonblocking caches and datawraparound on cache misses have been introduced. Thesenew aspects of modern multiprocessors impact both the sys-tem latencies and waiting times at each design level, and asa result, require extensions to the basic techniques used inMVA modeling of shared memory multiprocessors.In this paper, we extend existing models of these systemsto include the above aspects of high performance, superscalar-based multiprocessors. We describe the modi�cations to thelatency and waiting time calculations, and in addition, pro-pose modi�cations to the basic assumptions that have beenused in past models. We also discuss additional features thatwe have incorporated into our model in order to increase the
exibility and accuracy of the model. We show that the fea-tures incorporated and the modeling assumptions used havea great impact on the performance results obtained.The rest of this paper is organized as follows. We �rstdescribe previous MVA models, and then discuss extensionsto these models to take into account the e�ects of superscalarprocessors and latency reduction techniques. Next, we usethe model to examine the performance impact of modifyingsystem parameters included in the model but not in previousmodels. Then we describe the underlying assumptions andlimitations of the model, and conclude and discuss futureextensions to our work.2 Previous WorkSeveral MVA models of bus-based, shared memory multi-processors have been previously developed to study archi-tectural tradeo�s and coherency protocols. The model de-veloped by Vernon et al[20] was one of the �rst MVA multi-processor models to appear in the literature. The results ofthe model were compared with those obtained using Gener-alized Timed Petri Nets and good correlation (within 3%)was shown. In [5], the results of an MVA model were com-pared with those obtained through trace-driven simulation.A large number of con�gurations were modeled and goodcorrelation (within 3% in most cases for processor through-put) was achieved. In [6], the same model was used to exam-ine tradeo�s involving block size, associativity, and other pa-rameters. A prototype commercial multiprocessor was mod-eled and analyzed in [10], and several design tradeo�s usingthe model were explored. Inputs to the model were derivedfrom hardware measurements and simulation. In [1], anMVA multiprocessor model was used along with cache andbus cycle time models to analyze performance/area tradeo�s



in the design of single chip multiprocessor systems.Models of larger scale multiprocessors have been de-veloped as well. An MVA model[14] of the WisconsinMulticube[9] was developed in order to examine designtradeo�s and issues such as scalability of the architecture.Another similar model[21] was used to analyze the perfor-mance of a multiprocessor system using a hierarchy of cachesand buses. An open queueing network model[19] looselybased on the DASH[13] multiprocessor was developed, andused to evaluate the e�ect of data locality, cluster band-width, and other parameters on system performance.All of these models share several common characteristicswhich limit their applicability to the analysis of modern mul-tiprocessors. All are based around scalar processors whichgenerate misses serially and whose caches are blocking. Inaddition, the models are all fairly high level in terms of de-sign detail (although [10] goes into more detail than therest). For example, cache overheads are typically lumpedinto a single average number instead of being calculated us-ing detailed knowledge of the underlying hardware opera-tions of the hierarchy. Writebacks of dirty blocks are alsoassumed to cause the processor to stall for the entire dura-tion of the operation as support for bu�ering is not included.There are several signi�cant di�erences between thesemodels as well. Di�erent levels of 
exibility are incorpo-rated. For example, since [20] was used to evaluate co-herency protocols, several protocols are supported, whilein others, a single protocol is assumed. Some models at-tempt to model cache interference while others ignore thise�ect. Jog[10] goes into greater detail in modeling the sys-tem hardware than the other models, by including proces-sor overheads for various requests. The DASH model[19]accounts for the fact that the full network latency may notneed to be paid on every transaction. We combine the mer-its of these previous models and in addition, expand themsigni�cantly to incorporate new features inherent in modernmultiprocessors.3 Model Description3.1 General FeaturesThe general philosophy behind the development of the modelwas to build in as much 
exibility as possible in order to beable to analyze a wide design space and model in detail thehardware at various levels (processor, caches, etc) of thesystem.Either scalar or superscalar-based multiprocessor sys-tems can be modeled. The degree of superscalar executionand the amount of load/store activity generated by the pro-cessor and workload can be varied1. Unlike previous modelswhich simply incorporate cache hit rates into their mod-els, we model the cache hierarchy explicitly. Two generalcache hierarchy con�gurations are supported: a single levelof writeback, allocate-on-write cache (as used in most cur-rent HP-PA implementations, e.g., [4]), or a multilevel cachehierarchy. The single cache can be optionally backed bya displacement bu�er for hiding the latency of dirty blockwritebacks. The multilevel hierarchy consists of either uni-�ed or split (Icache and Dcache) L1 caches and a uni�ed,1Our intent is not to provide a detailed superscalar processor ana-lytical model, but rather to represent the increased L1 cache utiliza-tion and system tra�c of a superscalar processor. A detailed super-scalar uniprocessor model can be found in [7].

writeback, allocate on write L2 cache. The L2 cache can beoptionally backed by a displacement bu�er.The write policy for the L1 data cache for the cachehierarchy is writethrough, non-allocate on write (as for ex-ample in the Alpha 21064[11]), and the cache is optionallybacked by a write bu�er. Support for writeback L1 cachewrite policies (as in the Pentium[3]) is currently being im-plemented. The overheads due to maintaining the write andvictim bu�ers is variable, as is the cache coherence protocol.(Write update, write invalidate, or hybrid[18] protocols aresupported.) Modeling a superscalar processor and a cachehierarchy explicitly a�ords signi�cant advantages over previ-ous models: we are able to rapidly explore the design spaceof a much wider range of machine parameters, and quicklygain insight into the interactions of processor and cache hi-erarchy architecture with multiprocessor performance.The level of design detail provided in the model is muchgreater than that in previous models. This allows great
exibility in the studying of candidate architectures, andthe precise modeling of hardware overheads at each designlevel. Every level contains parameters for calculating laten-cies and waiting times for each individual operation type (in-struction read, data read, data invalidate, data writeback,etc). The motivation behind this is three-fold. First of all,resource overheads and latencies vary according to the op-eration being performed. For example, if the Icache andDcache block sizes are di�erent, then the duration of mainmemory instruction and data read operations will di�er aswell. Secondly, a higher degree of design detail can increasethe accuracy of the model. Lastly, for nonblocking caches,waiting times and latencies need to be separately calculatedfor each operation type. The reasons behind this are furtherdiscussed in a later section.Remote cache interference is modeled in detail as well.The workload parameters include entries that re
ect theprobability that an operation interferes with another cache.For example, the parameter PL2remote du hit is the probabil-ity that a cache update operation hits in the remote cache.Separate overhead and latency parameters exist for each ofthese remote operation types as for example, the overheadof a write invalidate may di�er from that for a write update.The model also supports various cache tag organizations forbus snooping. If duplicate tags are assumed, then only thosebus transactions that \hit" in these tags interfere with thecache2. If no duplicate tags are present, then the main tagsmust be checked for all transactions. Di�erent overheadsexist for transactions that hit, and those that miss.We use the same approach to modeling cache interfer-ence as bus and memory contention. We treat each cacheas a resource that is shared by the processor and the bus.Queueing, utilization, and waiting times are calculated inthe same way as for the bus and memory, except that in thecase of the caches, the waiting times for processor transac-tions will be less than those for bus transactions. This isbecause the processor more heavily utilizes the cache, andthus the probability of a busy cache due to processor oper-ations is much higher than that due to bus transactions.3.2 Modeling Superscalar Processor-Based SystemsThe main di�erence between a scalar processor and a su-perscalar one (from a modeling standpoint), is that a su-2We also model the overhead required to maintain consistency be-tween the main and duplicate tags.



perscalar processor consumes more than one instruction si-multaneously. If the processor contains multiple load/storeunits, then it may also perform multiple loads or stores (or acombination of the two) simultaneously. Thus, the instruc-tion and data level bandwidth requirements of the processorgrow as the degree of superscalar execution increases. In or-der to compare various superscalar and scalar processors, weuse an instruction fetch cycle as the basic cycle of operationexecuted by the processor, and use the measure cycles perinstruction fetch (CPIF) to describe the length of this ba-sic cycle. We use the input parameters NIfetch to describethe average number of instructions that are fetched by theprocessor each CPIF interval, and CPIproc as the cycles perinstruction rating of the processor with no memory systemoverhead. Thus, the value of CPIF is determined by mul-tiplying CPIproc and NIfetch, calculating reference rates ofinstruction and data cache operations for this interval, andadding in any additional factors due to memory system over-heads induced by these references. The overall CPI value in-cluding memory overhead can then be computed by dividingCPIF by NIfetch.A superscalar processor containing multiple load/storeunits can perform more than one load or store each CPIF.This requires that the Dcache be multiported, banked[17],or restricted to performing multiple Dcache operations inthe same cache block. The input parameter NDaccess is theaverage number of Dcache accesses each CPIF and is a func-tion of both the workload characteristics (average numberof loads and stores in the program), and the architecture'sability to �ll the load/store units. The maximum value forthis parameter is one, which is the case where there is atleast one load or store being accessed each CPIF, and repre-sents an aggressively designed superscalar processor and/ora workload with a high degree of loads and stores. This pa-rameter is used in calculating the portion of cache utilizationdue to load and store operations.3.3 Modeling Latency Reduction E�ectsSeveral techniques exist for hiding the latency inherent inhigh performance multiprocessors, including:� Providing concurrency in the hardware, including re-turning the desired instruction or data in a cache block�rst when a miss occurs, and bypassing the cache withthe desired instruction or data while loading the cacheblock in parallel;� Non-blocking loads;� Non-blocking stores (write bu�ers);� Victim bu�ers.We now discuss each of these in turn in terms of howlatency calculations are performed. We then address howwaiting time calculations need to be modi�ed to account forthese e�ects.3.3.1 Hardware ConcurrencyPreviously developed multiprocessor models use the trans-action time of a resource to calculate both its utilization andits latency. For example, if the bus data transaction timeis 3 cycles, then a data transfer across the bus consumes3 cycles of that resource and requires 3 cycles of latency.The problem with this approach is that it does not correctly

represent the hardware concurrency of modern systems, inwhich operations at di�erent design levels are overlappedwith those in others. An example of this occurs when, ona cache miss, the desired word (the actual word within theblock which caused the cache miss) is transferred at the headof the block, and once received, the processor can resume ex-ecution while the rest of the cache block is written to cache.Thus, the bus which we just described when operating in thismanner may still have a transaction time of 3 cycles, but astall time of only 1 cycle. The stall time is that portion ofthe transaction time which contributes to the stalling of theprocessor. In our model, we calculate resource utilizationand waiting time in the usual manner using the transactiontime parameters, but we decouple these calculations fromthe stall time calculations. The latter are used in the calcu-lation of CPIF. Thus, for each transaction time parameterin the model there is a corresponding stall time parameter.Whether or not these values are equal depends on the capa-bilities of the resource. Furthermore, separate transactionand stall time parameters exist for each operation type. Forexample, while Dcache misses may use desired word �rstwith bypass, Icache misses may require the entire block toreturn before the desired word is loaded into the pipeline.Separate stall and transaction times are assigned at everylevel of the model, from the L1 cache to the main memorysystem, and for each operation type. This a�ords great 
ex-ibility in the modeling detail that can be described. For ex-ample, cache controller overheads can be precisely describedin this way. The transaction and stall times of a cache readoperation may be 4 cycles and 3 cycles, respectively, a cachewrite operation may be 3 cycles and 2 cycles, respectively,while a remote cache invalidate may require 4 cycles and6 cycles (to propagate the acknowledgement), respectively.The di�erences can be more pronounced for other opera-tions, such as main memory writebacks. When a writebackoccurs, the cache controller may only need con�rmation thatthe main memory can accept the operation (it has room inits queue), rather than needing to wait for the actual mem-ory write to occur. Thus, the transaction and stall times fora memory write operation can di�er dramatically. This, webelieve, more accurately represents the machine hardwarethan using the transaction time as the stall time, and as weshow in Section 4, can have a great impact on the perfor-mance results obtained. The model contains a total of 76transaction and 76 stall time parameters to allow for thislevel of modeling 
exibility.3.3.2 Nonblocking LoadsA data cache that uses nonblocking loads has the ability tohandle more than one load miss simultaneously. The amountof latency that can be eliminated due to this technique de-pends on two major factors[8]:� The compiler's ability to schedule non-dependent in-structions during the cache miss; this partially dependson the cache miss latency;� The hardware implementation.The �rst factor represents the compiler's aptitude atoverlapping computation with the load miss service time.This depends on the compiler technology, workload charac-teristics, degree of superscalar execution, and the duration ofthe service time. (Longer service times require more nonde-pendent instructions to be found to hide the latency.) The



Tm1

...

...

Tm2

Tm3

Tm4

Tm5

Tm6

Tm7

E1

time

E2 E3 E4 E6E5 E7 E8

Figure 1: E�ective Stall Time - Example 1second factor represents the structural limits of the hard-ware in terms of how many misses it is equipped to handlesimultaneously, and whether these misses can be to the samecache block, in which case they need not be issued but ratherare merged with an already outstanding miss.Three input parameters are introduced to account forthese factors. The parameter percentolap is the average per-centage of the load miss service time that is overlapped withcomputation. The second, Nbefore block is the number ofload fetches that can be issued before the next one blocks.While a miss refers to the absence of a datum that was at-tempted to be read from the cache, a fetch refers to the read-ing of a cache block in response to one or more misses. Witha nonblocking cache with appropriate hardware support, onefetch can satisfy several misses to the same block[8]. For ablocking Dcache, Nbefore block is zero. The probability thata load miss can be merged with another load miss is de-scribed by Pload merge. A high degree of merges may reducethe average latency of a Dcache miss as well as the rate offetches introduced into the system.With these de�nitions in hand, we now illustrate howto calculate the e�ective stall time or the amount of stallcycles due to each load miss when the above e�ects aretaken into account. Consider the case shown in Figure 1in which Nbefore block = 2 and percentolap = 6=7. EachE is the time between successive load misses, and Tm isthe miss service time. The white areas represent compu-tation time, the lightly shaded areas the time that com-putation is not overlapped with the miss service time, or(1� percentolap) �Tm, and the dark shaded areas additionalprocessor stalling due to architectural limitations. As Fig-ure 1 illustrates, once a steady-state condition is reached,periods of processor stalling occur at regular intervals. Fur-thermore, we can calculate the average amount of stall timethese periods contribute to each load miss as follows:stall period = Tm=Nbefore block �Eavg sswhere Eavg ss is the average time between successive loadmisses once steady state is reached. Thus, the total stalltime for each load miss isTstall = stall period+ (1� percentolap) � TmFigure 2 shows another example where Nbefore block = 3and percentolap = 14=15. Here, we see thatTm = Nbefore block �Eavg ssand so the stall period is zero as shown. Thus, the total stalltime is simplyTstall = (1� percentolap) � TmOf course, we could have the situation in which Tm <Nbefore block � Eavg ss. Here the total stall time is the sameas that calculated from Figure 2. Thus, a lower bound on

Tm1

...

Tm2

Tm3

Tm4

Tm5

Tm6

Tm7

Tm8

time

E1 E2 E3 E4 E5 E6 E7 E8 E9

Figure 2: E�ective Stall Time - Example 2the total stall time for a nonblocking Dcache isTstall � (1� percentolap) � TmNote that Eavg ss is easily calculated asEavg ss = CPIF=Pload misswhere Pload miss is the load miss reference rate in an instruc-tion fetch interval. Clearly, the value of CPIF will dependon the total stall time, which in turn depends on the valueof CPIF. Thus, we have the circular dependencies which arethe trademark of MVA and must resort to iterative solutiontechniques.3.3.3 Nonblocking Stores (Write Bu�ers)In a multilevel cache hierarchy, consisting of a writethroughL1 data cache and a writeback L2 cache, it is common for awrite bu�er to be placed between the L1 and L2 caches sothat writes only cause stalls when the bu�er is full or whena Memory Barrier instruction[16] requires the bu�er to be
ushed. When the former situation occurs, the processor isstalled until enough writes are retired from the bu�er to al-low the new entry to be made. Several input parameters areused to describe the write bu�er. Pfull wbuf is the probabil-ity that the bu�er is found full when a write occurs; Nwbufis the number of entries in the write bu�er when full, andNwait wbuf is the number of entries that must be fully re-tired (which may require remote invalidations to propagateout from the L2 cache for example) before the new write canbe loaded. Thus, the stall time for a write is:Tstall write = Pfull wbuf � (Nwbuf � (Twait L2 EWB +Tstall L2 EWB) +Nwait wbuf � Tretire)where Twait L2 EWB is the waiting time at the L2 cache foran empty write bu�er entry operation, Tstall L2 EWB is thecorresponding stall time parameter, and Tretire is the timeto retire each write. The latter depends on input parameterssuch as the L2 cache data write miss rate, the probabilityof writing to shared data, the invalidate protocol, the prob-ability of displacing a dirty block from cache, etc.We note that the above describes stall time calculations.The transaction time calculations for writes are carried outusing the usual MVA techniques (with a few exceptions asnoted later).



3.3.4 Victim Bu�ersA victim bu�er (or displacement bu�er) provides temporarystorage for dirty blocks displaced from cache when a miss oc-curs. The motivation for victim bu�ers is similar to that forwrite bu�ers (prevent displaced blocks from slowing downcache misses). The corresponding parameters Pvbuf full,Nvbuf , and Nwait vbuf are used along with the stall andwaiting times in the same way as described for write bu�ers.3.4 Waiting Time Calculation Modi�cationsThe models described in Section 2 are suitable for multipro-cessor systems made up of scalar processors. These modelsassume that requests from a given processor occur serially;in other words, a request introduced into the system will notencounter any tra�c due to other requests from the sameprocessor. In a multiprocessor system using superscalar pro-cessors with decoupled instruction and data streams andnonblocking data caches, this assumption may not be appro-priate. In this section, we describe modi�cations to waitingtime equations in order to take these factors into account.The terminology we adopt is the following. Caches canhave local and remote requests. A request is local when it isproceeding down its originating processor's cache hierarchy,onto the bus, into the main memory system, and in thecase of a cache miss, back to itself. A request that travelsup another processor's cache (such as a cache invalidate ora read request for data found modi�ed in that cache) isremote. Thus a local request can be impeded by remoterequests and possibly other local requests.We de�ne three request categories: Icache request, Dcacheload request, and Dcache store request. Each category con-sists of several di�erent request types. For example, therequest types in the Icache request category are instructionmiss, writeback due to instruction miss, empty victim bu�erdue to instruction miss, and return of cache block due toinstruction miss. Similar types exist for the Dcache load re-quest category, while the Dcache store request category hasadditional types due to the many request types (invalidatesfor example) that may result from store operations.The amount of local tra�c observed by a local requestvaries depending on the request type. We note the following:1. Each request category observes all the tra�c due toother request categories. For example, an Icache re-quest can be impeded by Dcache load and store re-quests since the instruction and data streams are as-sumed decoupled.2. Icache request and Dcache store requests can be con-sidered blocking and therefore observe no other localIcache or Dcache store requests, respectively. Icacherequests are assumed to be handled serially, and thetransaction time of Dcache store requests is generallyshorter than the time between successive store requests(except in cases of workloads with high store instruc-tion rates). Thus, previous store requests are retiredbefore the next store request occurs.3. Dcache load requests in a blocking cache observe noother local Dcache load requests. For a nonblockingcache, other Dcache load requests may be observeddepending on the transaction time relative to the timebetween successive requests.

Tt7

Tt8

Tt9

Tt10

Tt11

Tt12

...

Tt13

t0 t1 t2

time

E10 E11 E12E7 E8 E9 E13 E14

Figure 3: Local Dcache Load Miss Tra�cThus, for Dcache load requests with a nonblocking cache,we must take into account other local load requests thatare present in the system when the new request occurs, andcalculate the fraction of the local Dcache load request tra�cobserved by the new load request.To illustrate the calculation of this fraction, we study theexample shown in Figure 3, which depicts the situation ofFigure 2 after steady state conditions are reached. Here wehave shown the transaction times (Tt) which are assumed tobe 33% longer than the miss service times. (The latter arenot shown for readability, but can be seen in Figure 2.) Or inother words, Tt=Eavg ss = 3:5. We evaluate the time periodbetween t0 and t2, or the time during which transaction10 takes place (Tt10). We observe that the average totalDcache load miss tra�c between times t0 and t1 is 3.5, andbetween times t1 and t2 is 4.0. Thus, the average total loadmiss tra�c between t0 and t2 istra�ctotal = (3 � 3:5 + 0:5 � 4:0)=3:5 = 3:57.We also observe that transaction 10 sees an average ofone less transaction than the average total tra�c, or a valueof 2.57. Thus, the fraction of the total Dcache load miss traf-�c observed by transaction 10 is (tra�ctotal-1)/tra�ctotal =2.57/3.57 = 0.72. Thus, transaction 10 is impeded by 72%of the local Dcache load miss tra�c, as well as all of thelocal Icache miss and Dcache store tra�c.In general, we can calculate the fraction observed as(tra�ctotal-1)/tra�ctotal by using the following formula tocalculate tra�ctotal:tra�ctotal = (b(Tt=Eavg ss)c�(Tt=Eavg ss)+((Tt=Eavg ss)� b(Tt=Eavg ss)c) � d(Tt=Eavg ss)e)=(Tt=Eavg ss)This formula holds for the conditions Nbefore block > 0 andTt > Eavg ss. The �rst ensures that the cache is nonblock-ing, and the second that the transaction time is longer thanthe average time between successive Dcache load misses. Ifone of these conditions does not hold, then a Dcache loadmiss sees no other Dcache load misses in the system.4 Performance ResultsNow that we have described the extensions made to themodel, we examine the performance impact of various sys-tem parameters. All of the results reported in this sectioncould not have been obtained using previous MVA mod-



els, as our model extends these models to take into accountnew parameters. We would like to emphasize that althoughthe capability of the model has been expanded considerablycompared to other models, this has very little impact onprocessing time. All of the runs performed for this paperconverged within 50 iterations (in most cases in less than10 iterations), and each run produced results in less than asecond. Thus, a wide design space could be examined in asmall fraction of the time required for simulation.4.1 Fixed Parameters and AssumptionsIn these illustrative examples, we �x a number of the archi-tectural parameters to limit the design space. Although themodel is capable of modeling single-level caches, multi-levelcaches are more common in modern multiprocessors, andtherefore we limit our examples to this organization. Wealso model modest multiprocessor con�gurations (no morethan eight processors), and unless otherwise noted, we limitthe processor architecture to a two-way superscalar imple-mentation with blocking caches.The cache coherence protocol that we model is a com-bined write invalidate and write update protocol[2]. Here,a write to shared data in the L2 cache causes a bus writeupdate operation to be performed. If the snooping L2 cachehas a copy of the block, and its associated L1 cache does aswell, then it accepts the update and invalidates the copy inthe L1 cache. If it has a copy, but the L1 cache does not,then the copy in the L2 cache is invalidated. The idea here isto eliminate updates to blocks that may have migrated fromone processor to another[18]. We model a system with a du-plicate set of L2 cache tags for bus snooping. This preventsthe main L2 cache tags from being interfered with except forcases in which a coherency operation must be performed.Unless otherwise stated, each L1 cache is backed by a4-entry write bu�er and each L2 cache by a 2-entry victimbu�er. With both of these, the probability is 10% that thebu�er has to be emptied when accessed, and when the lastentry is being removed from the bu�er, the waiting entrycan be loaded.In order to isolate memory contention from the otheraspects of the design we were interested in, we allocatedtwice as many memory modules as the number of processorsin all runs. This ensured that memory interference e�ectswould be of second order and not skew our results.In the results that follow, the processing power curvesinclude results representative of those obtained using ear-lier models. These models use scalar processors, blockingcaches, no local tra�c, no write or victim bu�ers, and usetransaction times for stall times (no hardware concurrency).The curve labeled \Old model (no L2)", uses a single levelof writeback cache, while the one labeled \Old model (L2)"uses the same multilevel hierarchy as the new results. Bothuse the default parameter values for the caches. The pur-pose of providing these curves is to quantify the increasein performance when calculated using the new parametersincorporated into the model, and to demonstrate the addi-tional results the model is able to obtain.Tables 2 through 7 at the end of this paper give defaultvalues for most of the parameters used in this section. Onlythe main memory stall and transaction time parameters areprovided for brevity. Parameters which are not applicableto the organizations we have chosen are omitted as well.

2 4 6 8
Number of Processors

0

2

4

6

8

Pr
oc

es
si

ng
 P

ow
er

Old model (no L2)
Old model (L2)
No hardware concurrency
High hardware concurrency

Figure 4: E�ect of Hardware Concurrency Level on Process-ing Power
2 4 6 8

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

B
us

 U
til

iz
at

io
n

High hardware concurrency
No hardware concurrency

Figure 5: E�ect of Hardware Concurrency Level on BusUtilization4.2 Hardware ConcurrencyIn this section, we investigate the impact of the level ofhardware concurrency on the processing power (de�ned asn=CPI where n is the number of processors and CPI thetotal cycles per instruction count of each processor) and busutilization of the machine. The latter is monitored in orderto assess to what degree scalability projections are a�ectedby concurrency variations.We compare two con�gurations, one in which the stalltime parameters are equal to the transaction time param-eters, and another in which it is assumed that all cachesuse bypass, all resources transfer the desired word �rst ina block, and overlap occurs when transferring informationfrom one resource to another. These organizations representthe two extremes of hardware concurrency, and thus providean upper bound on their performance di�erence (for the as-sumptions and parameters we have described in the previoussection). As shown in Figure 4, this upper bound is quitelarge, the upper curve yielding an increase of about 70% inprocessing power over the lower. This performance improve-ment however increases bus utilization (Figure 5) by about65%. Thus, we see that both processing power and scala-bility projections can be greatly impacted by the design ofthe machine hardware. A large amount of concurrency inthe hardware improves the processing power, but as a result,requires more aggressive interconnect resources in order toconnect large numbers of processors.We also see how results for the old models compare withthe present one. The presence of an L2 cache as expected has



2 4 6 8
Number of Processors

0

2

4

6

8

Pr
oc

es
si

ng
 P

ow
er

Old model (no L2)
Old model (L2)
Blocking cache
Nonblocking cache

Figure 6: Processing Power of 2-Way Superscalar-BasedSystems
2 4 6 8

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

B
us

 U
til

iz
at

io
n

Blocking Cache
Nonblocking cache, 50% load merges
Nonblocking cache

Figure 7: E�ect of Merging on Reduction of Bus Utilization(2-Way Superscalar)a large impact on the processing power obtained. The pres-ence of a 2-way superscalar processor and hardware bu�ershas an even greater impact, almost doubling the perfor-mance of the old model with an L2 cache. Thus, we see thatthe new architectural parameters we have incorporated intothe model have a tremendous impact on the performanceresults obtained.4.3 Nonblocking CachesThe impact of incorporating processors with nonblockingcaches on multiprocessor performance is now examined. Thenonblocking cache organization operates under an enhancedhit under miss scheme in which the processor can continueuntil a second fetch is required or the merge capability isexhausted. The latter can occur due to limited hardwareresources allocated for merges for example, or a workload inwhich load misses are spatially \scattered" and not clus-tered into recently referenced cache blocks. We initiallycompare two organizations: one with a blocking cache andanother with a nonblocking cache with percentolap = 0:85and Pload merge = 0:0. As shown in Figure 6, a signi�cantperformance improvement is obtained with a nonblockingcache, but the cost is an increase in bus utilization (Fig-ure 7). Intuitively, we would expect that a high degree ofmerges would reduce the increase in bus utilization, since theamount of Dcache load misses would be reduced. However,as seen in Figure 7, this is not the case. The explanationfor this is that the presence of a nonblocking cache reducesthe latency of each processor, and therefore increases it pro-

Parameter ValuePL1 ir miss 0.05PL1 dl miss 0.20PL2 ir miss 0.02PL2 dl miss 0.10PL2 ds miss 0.12Table 1: Miss Rates for 4-Way Superscalar-Based System
2 4 6 8

Number of Processors

0

2

4

6

8

10

12

P
ro

ce
ss

in
g 

P
ow

er

Old model (no L2)
Old model (L2)
Blocking cache
Nonblocking cache
Nonblocking cache, 50% load miss merges
Nonblocking cache, 80% load miss merges

Figure 8: Processing Power of 4-Way Superscalar-BasedSystemscessing rate, and consequently, the rate at which all missesoccur. This increased processing rate is the dominant e�ectin the increase in bus utilization, while the lesser e�ect (theincrease in the number of Dcache load misses) is the e�ectimproved by merging. Thus, in this example, the impact ofmerging on bus utilization is small, as is its impact on pro-cessing power (only about a 1% improvement). The latter isdue to the fact that with a large L2 cache providing a highhit rate, almost all of the miss latency is hidden by allowinga single outstanding miss, and not much more improvementcan be gained by merging.For more aggressive superscalar designs which generatehigher cache miss rates and whose performance is more de-pendent on latency reduction, merging may be more ben-e�cial. For example, the recently announced Alpha 21164microprocessor[15], a 4-way superscalar design, provides ag-gressive support for merging through its 6-entry Miss Ad-dress File. We examine the e�ect of nonblocking caches bycomparing four 4-way superscalar-based multiprocessor con-�gurations based around the following cache organizations:a blocking cache, a nonblocking cache with no merging, anonblocking cache with 50% merging, and a nonblockingcache with 80% merging. In order to re
ect the impactof a higher degree of superscalar execution on cache missrates (due to higher bandwidth requirements that cause itto sweep through the cache at a higher rate), we use de-graded cache miss rates as shown in Table 1. As Figure8 shows, the performance of the 4-way superscalar-basedmultiprocessor improves greatly with the addition of a non-blocking cache and a high degree of merging. Whereaswith a 2-way superscalar-based multiprocessor a 50% merg-ing rate o�ered little additional performance bene�t over anonblocking cache without merging, the 4-way superscalarsystem shows a signi�cant (about 20%) improvement in per-formance with 50% merges, and an additional smaller, but



2 4 6 8
Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

B
us

 U
til

iz
at

io
n

Blocking Cache
Nonblocking cache, 80% load merges
Nonblocking cache, 50% load merges
Nonblocking cache

Figure 9: Bus Utilization of 4-Way Superscalar-Based Sys-temsstill noteworthy (about 8%) improvement when the merg-ing rate increases to 80%. Thus, the results we were ableto obtain using the model appear to validate the decisionto support aggressive merging on the Alpha 211643 . Busutilization (Figure 9) is also reduced by merging (about 6-7% from no merging to 50% merging), but even so, the busutilization increase from a blocking cache to any of the non-blocking con�gurations is dramatic, around 35-40%. This asmentioned previously, is largely due to the simple fact thatthe processor is executing at a faster rate, and generatingmisses at a higher rate as well. We note that the bus utiliza-tion values for the 4-way superscalar-based multiprocessorare much greater than those for the 2-way superscalar-basedsystem (Figure 7). Thus, these examples illustrate how thedegree of superscalar execution has a very large impact onthe design of the memory system and interconnect in a mul-tiprocessor system.Note once again on these �gures, the di�erence betweenresults for the old models and the present one. The 4-way su-perscalar processor with a nonblocking cache and 80% merg-ing has a processing power that is �ve times that for the oldmodel with an L2 cache.4.4 Write Bu�ersThe presence of a write bu�er helps to hide the latencyof writes, allowing read misses to proceed ahead of them.Choosing a size for the write bu�er is a tradeo� betweenminimizing the percentage of time the bu�er is full when awrite occurs and the stall time in emptying the bu�er whenit is full. To illustrate this tradeo�, we compare the perfor-mance of three systems: one without a write bu�er, one witha 4-entry bu�er which is full on a write 20% of the time, andone with 8 entries that is full 10% of the time. We make sev-eral observations based on the results obtained in Figure 10.First of all, the performance improvement when employinga write bu�er is smaller than that of other parameters wehave studied so far, but still signi�cant (about 11%). Sec-ondly, we see that the 4-entry bu�er performs slightly betterthan the 8-entry bu�er due to the latter's higher penalty foremptying. We note however, that we assumed that the 8-entry bu�er would be full half as much as the 4-entry bu�er.This assumption is highly dependent on workload character-istics, processor architecture, and the L2 cache's emptying3With an L3 cache (optional on the 21164), latencies would bereduced and the need for merging would perhaps be less.

2 4 6 8
Number of Processors

0

2

4

6

8

Pr
oc

es
si

ng
 P

ow
er

Old model (no L2)
Old model (L2)
No write buffer
8 entry buffer, 10% full
4 entry buffer, 20% full

Figure 10: Processing Power of Various Write Bu�er Con-�gurations
2 4 6 8

Number of Processors

0

2

4

6

8

Pr
oc

es
si

ng
 P

ow
er

Old model (no L2)
Old model (L2)
New base model
+Hardware concurrency
+Buffers+cache interference
+Nonblocking caches with 50% load merges

Figure 11: Impact of Combinations of E�ects on ProcessingPoweralgorithm. Thirdly, the impact of a write bu�er stays rela-tively constant as the number of processors is varied. Thisis due to the fact that in the model, while stall time calcula-tions are varied with write bu�er organization, transactiontimes, which are calculated using conventional MVA tech-niques, do not. Thus, in our model, the write bu�er doesnot reduce tra�c (the writes are simply delayed), only stalltime. This is a limitation of MVA techniques as will beexplained in Section 5.Victim bu�ers can be studied in a similar manner, butthe performance improvement obtained is smaller than thatfrom write bu�ers due to the fact that they lie further downthe cache hierarchy. Their impact would be greater for asingle level of cache hierarchy, and the model allows thisorganization to be studied as well.4.5 Combined E�ectsFigure 11 shows how combinations of the previously stud-ied e�ects can impact performance. In addition, we includethe e�ects of cache interference. The curve labeled \Newbase model" represents a 2-way superscalar model with nohardware concurrency, no write or victim bu�ers, cache in-terference ignored, and blocking caches. Each successivecurve progressively adds new features to the previous curve.We make two observations from this �gure:� Using large amounts of hardware concurrency and non-blocking caches have the greatest impact on perfor-mance;



� E�ects which alone have a smaller performance e�ect(such as write and victim bu�ers) can add together toproduce a much more signi�cant impact.5 Limitations of the ModelThe model, although very 
exible, is not without limita-tions, as we rely on several assumptions which we discuss inthis section.A fundamental assumption of the superscalar aspects ofthe model is that the cache data path widths scale as the de-gree of superscalar execution is increased. For instance, ann-way superscalar implementation will fetch half the amountof instructions from the Icache each CPIF as a 2n-way super-scalar processor. This necessitates the increase in datapathwidth to meet the increased bandwidth. Thus, the impactof increased superscalar degree is primarily re
ected in in-creased cache miss and bu�er emptying rates, as the pro-cessor is able to sweep through these structures at a higherrate.Because MVA modeling relies on average values to com-pute performance, certain e�ects are di�cult to representusing this method. We assume that remote cache interfer-ence cannot be hidden through the existence of invalidate re-quest queueing for example. (In systems employing a cachehierarchy, L1 cache invalidate requests can be queued and,in most cases, the emptying of the queue is delayed untilthe cache idles due to a miss.) Similarly, by calculatingtransaction and waiting times due to writes using conven-tional MVA techniques, we assume that the presence of awrite bu�er between the L1 and L2 caches only serves toreduce write latency and not to reduce L2 cache contention(through emptying the bu�er during idle periods). A similarassumption holds for displacement bu�ers.We have found in our modeling of nonblocking cachesthat when an L2 cache is present, the average analysis usedin MVA modeling a�ects the amount of performance bene�treceived from allowing multiple outstanding misses. An L2cache (with a reasonably low miss rate) reduces the averagestall time of a Dcache load miss. This combined with a uni-form distribution of these misses limits the bene�ts obtainedfrom aggressive nonblocking schemes which allow many out-standing misses to be serviced simultaneously. This limita-tion arises because there is little overlap to hide, and allow-ing one outstanding cache miss serves to hide almost all ofit. In real machines, misses may be \clustered" and there-fore greater bene�t received from allowing many misses tobe outstanding. It is a subject of further investigation tomore throughly investigate this aspect of the model.6 ConclusionsAn approximate Mean Value Analysis model which incor-porates the features of modern multiprocessor systems hasbeen developed. The model is extremely detailed and in-cludes the e�ects of superscalar microprocessors and latencyreduction techniques and has been used to study a wide va-riety of design tradeo�s. We have demonstrated how themodel expands on earlier developed models, and how thise�ects the performance results obtained.Using the model, we have examined the impact of usingsuperscalar processors and nonblocking caches in multipro-cessor systems. The model has been used to determine the

impact of the degree of superscalar performance on the scal-ability of multiprocessor systems. We have demonstratedhow contrary to intuition, a high degree of merging of out-standing misses in a nonblocking cache has little impact onbus utilization and explained the reasons for this result. Wehave also shown how the model can be used to study theway bu�ering, interference, and other e�ects can a�ect sys-tem performance and scalability.Currently, we are expanding the model to include write-back L1 caches in a cache hierarchy, and other snooping tagstructures. The incorporation of a third level (or an arbi-trarily high level) of caching is another possibility for futureexpansion and research.References[1] D.H. Albonesi and I. Koren, \Tradeo�s in the Designof Single Chip Multiprocessors," 2nd International Con-ference on Parallel Architectures and Compilation Tech-niques (PACT94), pp. 25-34, 1994.[2] B.R. Allison and C. van Ingen, \Technical Descriptionof the DEC 7000 and DEC 10000 AXP Family," DigitalTechnical Journal, Vol. 4, No. 4, pp. 100-110, 1992.[3] D. Alpert and D. Avnon, \Architecture of the PentiumMicroprocessor," IEEE Micro, pp. 11-21, June 1993.[4] T. Asprey, et al, \Performance Features of the PA7100Microprocessor," IEEE Micro, pp. 22-35, June 1993.[5] M. Chiang and G.S. Sohi, \Experience with Mean ValueAnalysis Models for Evaluating Shared Bus, Through-put-Oriented Multiprocessors," SIGMETRICS'91, pp.90-100, May 1991.[6] M. Chiang and G.S. Sohi, \Evaluating Design Choicesfor Shared Bus Multiprocessors in a Throughput-Oriented Environment," IEEE Transactions on Comput-ers, pp. 297-317, March 1992.[7] P.K. Dubey, G.B. Adams III, and M.J. Flynn, \Instruc-tion Window Size Trade-O�s and Characterization ofProgram Parallelism," IEEE Transactions on Comput-ers, pp. 431-442, April 1994.[8] K.I. Farkas and N.P. Jouppi, \Complexity/PerformanceTradeo�s with Non-Blocking Loads," 21st InternationalSymposium on Computer Architecture, pp. 211-222,April 1994.[9] J.R. Goodman and P.J. Woest, \The Wisconsin Multi-cube: A New Large-Scale Cache-Coherent Multiproces-sor," 15th International Symposium on Computer Archi-tecture, pp. 422-431, June 1988.[10] R. Jog, P.L. Vitale, and J.R. Callister, \PerformanceEvaluation of a Commercial Cache-Coherent SharedMemory Multiprocessor," SIGMETRICS'90, pp, 173-182, May 1990.[11] E. McLellan, \The Alpha AXP Architecture and 21064Processor," IEEE Micro, pp. 36-47, June 1993.[12] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C.Sevcik, Quantative System Performance, ComputerAnalysis Using Queuing Network Models, Prentice Hall,Englewood Cli�s, N.J., 1991.



[13] D. Lenoski, et al, \The DASH Prototype: Implemen-tation and Performance," 19th International Symposiumon Computer Architecture, pp. 92-103, May 1992.[14] S.T. Leutenegger and M.K. Vernon, \A Mean-ValuePerformance Analysis of a New Multiprocessor Archi-tecture," SIGMETRICS'88, pp, 167-176, May 1988.[15] P. Rubinfeld, \An Overview of the 21164 Alpha AXPMicroprocessor," Hot Chips VI, August 1994.[16] R.L. Sites, \Alpha AXP Architecture," Digital Techni-cal Journal, Vol. 4, No. 4, pp. 19-34, 1992.[17] G. Sohi and M. Franklin, \High-Bandwidth Data Mem-ory Systems for Superscalar Processors," 4th Interna-tional Conference on Architectural Support for Program-ming Languages and Operating Systems, pp. 53-61, April1991.[18] C.P. Thacker, D.G. Conroy, and L.C. Stewart, \TheAlpha Demonstration Unit: A High-performance Multi-processor for Software and Chip Development," DigitalTechnical Journal, Vol. 4, No. 4, pp. 51-65, 1992.[19] J. Torrellas, J. Hennessy, and T. Weil, \Analysis ofCritical Architectural and Program Parameters in a Hi-erarchical Shared-Memory Multiprocessor," SIGMET-RICS'90, pp. 163-172, May 1990.[20] M.K. Vernon, E.D. Lazowska, and J. Zahorjan, \AnAccurate and E�cient Performance Analysis Techniquefor Multiprocessor Snooping Cache Consistency Proto-cols," 15th International Symposium on Computer Ar-chitecture, pp. 308-315, June 1988.[21] M.K. Vernon, R. Jog, and G.S. Sohi, \PerformanceAnalysis of Hierarchical Cache-Consistent Multiproces-sors," Performance Evaluation, Vol. 9, pp, 287-302,1989.Parameter Description ValuePload Prob instruction is a Load 0.25Pstore Prob instruction is a Store 0.10PL2 write shared Prob Store hit to shared data 0.05PL2 write private Prob Store hit to private data 0.01Table 2: Default Values for Local Cache Workload Parame-ters Parameter Description ValuePL1Rem di hit Prob L1 data invalidate hit 0.02PL2Rem di hit Prob L2 data invalidate hit 0.01PL2Rem du hit Prob L2 data update hit 0.02PL2Rem dpriv hit Prob L2 data mod hit (load) 0.01PL2Rem dmod hit Prob L2 data mod hit (store) 0.03Table 3: Default Values for Remote Cache Workload Pa-rameters

Parameter Description ValueCPIproc CPI with no memory overhead 0.7NIfetch # of instructions fetched each CPIF 2.0NDaccess # of Dcache accesses each CPIF 0.7Table 4: Default Values for Processor ParametersParameter Description ValuePL1 ir miss Prob of L1 Icache miss 0.03PL1 dl miss Prob of L1 Dcache load miss 0.13PL2 ir miss Prob of L2 cache instruction miss 0.01PL2 dl miss Prob of L2 cache data load miss 0.05PL2 ds miss Prob of L2 cache data store miss 0.08PL2 ir victim Prob L2 instr miss causes wrback 0.20PL2 dl victim Prob L2 load miss causes wrback 0.25PL2 ds victim Prob L2 store miss causes wrback 0.25Nwbuf # of write bu�er entries 4Nwait wbuf # entries retired before new write 3Pfull wbuf Prob full wr bu�er on data store 0.01Nvbuf # of victim bu�er entries 2Nwait vbuf # entries retired before new write 1Pfull vbuf Prob full victim bu�er on wrback 0.01Table 5: Default Values for Cache Hierarchy ParametersParameter Description ValueNproc # of processors x (variable)Nmem # of main memory modules 2xTarb # of cycles for arbitration 2Table 6: Default Values for Bus ParametersParameter Description CyclesTstall ir Icache miss stall time 45Tstall dl Dcache load miss stall time 45Tstall ds Dcache store miss stall time 45Tstall dlwb Dcache load miss wrback ack time 6Tstall dswb Dcache store miss wrback ack time 6Ttrans ir Icache miss trans time 47Ttrans dl Dcache load miss trans time 47Ttrans ds Dcache store miss trans time 47Ttrans irwb Icache miss wrback trans time 42Ttrans dlwb Dcache load miss wrback trans time 42Ttrans dswb Dcache store miss wrback trans time 42Table 7: Default Values for Memory Stall/Transaction TimeParameters


