An Analytical Model of High Performance Superscalar-Based Multiprocessors

David H. Albonesi and Israel Koren
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003, USA
albonesi,koren@ecs.umass.edu

Abstract

Several shared memory multiprocessor models using approx-
imate Mean Value Analysis (MVA) have been developed and
used to evaluate a number of system architectures. Since
this time, the complexity of multiprocessor systems has in-
creased as superscalar processors and latency reduction tech-
niques are employed in these systems. We present an MVA
multiprocessor performance model which incorporates these
new features and in addition, increases the level of modeling
detail to improve flexibility and accuracy. We describe in de-
tail extensions present in our model that allow us to analyze
the impact of these new features. We then use the model
to demonstrate some of the tradeoffs involved in designing
modern multiprocessors, including the impact of highly su-
perscalar architectures on the scalability of multiprocessor
systems.

1 Introduction

An analytical modeling technique that has been frequently
used to evaluate shared memory multiprocessors is approx-
imate Mean Value Analysis (MVA)[12]. In MVA, a set of
equations that represent the mean response times and mean
waiting times of various performance elements are derived
using the mean values of various system parameters as model
inputs. For example, a simple multiprocessor MVA model
may include the mean response time of a cache miss as a
response time equation, the mean bus waiting time as a
waiting time equation, and the mean time between cache
misses as a model input. Once constructed, these equations
have circular dependencies and must be solved iteratively.
The power of MVA modeling lies in its computation effi-
ciency. Convergence is usually achieved within a second,
independent of the number of processors and memories in
the model. Many models of multiprocessor systems have
been created using this technique and have been used to
evaluate the performance of both research prototype[9, 13]
and commercial[10] multiprocessors. The results obtained
from approximate MVA models have been shown[5] to cor-
relate well with those obtained from trace-driven simulation
models.

Since these models have been constructed, superscalar

microprocessor-based multiprocessor systems using latency
reduction techniques such as nonblocking caches and data
wraparound on cache misses have been introduced. These
new aspects of modern multiprocessors impact both the sys-
tem latencies and waiting times at each design level, and as
a result, require extensions to the basic techniques used in
MVA modeling of shared memory multiprocessors.

In this paper, we extend existing models of these systems
to include the above aspects of high performance, superscalar-
based multiprocessors. We describe the modifications to the
latency and waiting time calculations, and in addition, pro-
pose modifications to the basic assumptions that have been
used in past models. We also discuss additional features that
we have incorporated into our model in order to increase the
flexibility and accuracy of the model. We show that the fea-
tures incorporated and the modeling assumptions used have
a great impact on the performance results obtained.

The rest of this paper is organized as follows. We first
describe previous MVA models, and then discuss extensions
to these models to take into account the effects of superscalar
processors and latency reduction techniques. Next, we use
the model to examine the performance impact of modifying
system parameters included in the model but not in previous
models. Then we describe the underlying assumptions and
limitations of the model, and conclude and discuss future
extensions to our work.

2 Previous Work

Several MVA models of bus-based, shared memory multi-
processors have been previously developed to study archi-
tectural tradeoffs and coherency protocols. The model de-
veloped by Vernon et al[20] was one of the first MVA multi-
processor models to appear in the literature. The results of
the model were compared with those obtained using Gener-
alized Timed Petri Nets and good correlation (within 3%)
was shown. In [5], the results of an MVA model were com-
pared with those obtained through trace-driven simulation.
A large number of configurations were modeled and good
correlation (within 3% in most cases for processor through-
put) was achieved. In [6], the same model was used to exam-
ine tradeoffs involving block size, associativity, and other pa-
rameters. A prototype commercial multiprocessor was mod-
eled and analyzed in [10], and several design tradeoffs using
the model were explored. Inputs to the model were derived
from hardware measurements and simulation. In [1], an
MVA multiprocessor model was used along with cache and
bus cycle time models to analyze performance/area tradeoffs

in the design of single chip multiprocessor systems.

Models of larger scale multiprocessors have been de-
veloped as well. An MVA model[14] of the Wisconsin
Multicube[9] was developed in order to examine design
tradeoffs and issues such as scalability of the architecture.
Another similar model[21] was used to analyze the perfor-
mance of a multiprocessor system using a hierarchy of caches
and buses. An open queueing network model[19] loosely
based on the DASH[13] multiprocessor was developed, and
used to evaluate the effect of data locality, cluster band-
width, and other parameters on system performance.

All of these models share several common characteristics
which limit their applicability to the analysis of modern mul-
tiprocessors. All are based around scalar processors which
generate misses serially and whose caches are blocking. In
addition, the models are all fairly high level in terms of de-
sign detail (although [10] goes into more detail than the
rest). For example, cache overheads are typically lumped
into a single average number instead of being calculated us-
ing detailed knowledge of the underlying hardware opera-
tions of the hierarchy. Writebacks of dirty blocks are also
assumed to cause the processor to stall for the entire dura-
tion of the operation as support for buffering is not included.

There are several significant differences between these
models as well. Different levels of flexibility are incorpo-
rated. For example, since [20] was used to evaluate co-
herency protocols, several protocols are supported, while
in others, a single protocol is assumed. Some models at-
tempt to model cache interference while others ignore this
effect. Jog[10] goes into greater detail in modeling the sys-
tem hardware than the other models, by including proces-
sor overheads for various requests. The DASH model[19]
accounts for the fact that the full network latency may not
need to be paid on every transaction. We combine the mer-
its of these previous models and in addition, expand them
significantly to incorporate new features inherent in modern
multiprocessors.

3 Model Description

3.1 General Features

The general philosophy behind the development of the model
was to build in as much flexibility as possible in order to be
able to analyze a wide design space and model in detail the
hardware at various levels (processor, caches, etc) of the
system.

Either scalar or superscalar-based multiprocessor sys-
tems can be modeled. The degree of superscalar execution
and the amount of load/store activity generated by the pro-
cessor and workload can be varied!. Unlike previous models
which simply incorporate cache hit rates into their mod-
els, we model the cache hierarchy explicitly. Two general
cache hierarchy configurations are supported: a single level
of writeback, allocate-on-write cache (as used in most cur-
rent HP-PA implementations, e.g., [4]), or a multilevel cache
hierarchy. The single cache can be optionally backed by
a displacement buffer for hiding the latency of dirty block
writebacks. The multilevel hierarchy consists of either uni-
fied or split (Icache and Dcache) L1 caches and a unified,

1Qur intent is not to provide a detailed superscalar processor ana-
lytical model, but rather to represent the increased L1 cache utiliza-
tion and system traffic of a superscalar processor. A detailed super-
scalar uniprocessor model can be found in [7].

writeback, allocate on write L2 cache. The L2 cache can be
optionally backed by a displacement buffer.

The write policy for the L1 data cache for the cache
hierarchy is writethrough, non-allocate on write (as for ex-
ample in the Alpha 21064[11]), and the cache is optionally
backed by a write buffer. Support for writeback L1 cache
write policies (as in the Pentium[3]) is currently being im-
plemented. The overheads due to maintaining the write and
victim buffers is variable, as is the cache coherence protocol.
(Write update, write invalidate, or hybrid[18] protocols are
supported.) Modeling a superscalar processor and a cache
hierarchy explicitly affords significant advantages over previ-
ous models: we are able to rapidly explore the design space
of a much wider range of machine parameters, and quickly
gain insight into the interactions of processor and cache hi-
erarchy architecture with multiprocessor performance.

The level of design detail provided in the model is much
greater than that in previous models. This allows great
flexibility in the studying of candidate architectures, and
the precise modeling of hardware overheads at each design
level. Every level contains parameters for calculating laten-
cies and waiting times for each individual operation type (in-
struction read, data read, data invalidate, data writeback,
etc). The motivation behind this is three-fold. First of all,
resource overheads and latencies vary according to the op-
eration being performed. For example, if the Icache and
Dcache block sizes are different, then the duration of main
memory instruction and data read operations will differ as
well. Secondly, a higher degree of design detail can increase
the accuracy of the model. Lastly, for nonblocking caches,
waiting times and latencies need to be separately calculated
for each operation type. The reasons behind this are further
discussed in a later section.

Remote cache interference is modeled in detail as well.
The workload parameters include entries that reflect the
probability that an operation interferes with another cache.
For example, the parameter Praremote_du_hit 1S the probabil-
ity that a cache update operation hits in the remote cache.
Separate overhead and latency parameters exist for each of
these remote operation types as for example, the overhead
of a write invalidate may differ from that for a write update.
The model also supports various cache tag organizations for
bus snooping. If duplicate tags are assumed, then only those
bus transactions that “hit” in these tags interfere with the
cache®. If no duplicate tags are present, then the main tags
must be checked for all transactions. Different overheads
exist for transactions that hit, and those that miss.

We use the same approach to modeling cache interfer-
ence as bus and memory contention. We treat each cache
as a resource that is shared by the processor and the bus.
Queueing, utilization, and waiting times are calculated in
the same way as for the bus and memory, except that in the
case of the caches, the waiting times for processor transac-
tions will be less than those for bus transactions. This is
because the processor more heavily utilizes the cache, and
thus the probability of a busy cache due to processor oper-
ations is much higher than that due to bus transactions.

3.2 Modeling Superscalar Processor-Based Systems

The main difference between a scalar processor and a su-
perscalar one (from a modeling standpoint), is that a su-

2We also model the overhead required to maintain consistency be-
tween the main and duplicate tags.

perscalar processor consumes more than one instruction si-
multaneously. If the processor contains multiple load/store
units, then it may also perform multiple loads or stores (or a
combination of the two) simultaneously. Thus, the instruc-
tion and data level bandwidth requirements of the processor
grow as the degree of superscalar execution increases. In or-
der to compare various superscalar and scalar processors, we
use an instruction fetch cycle as the basic cycle of operation
executed by the processor, and use the measure cycles per
wnstruction fetch (CPIF) to describe the length of this ba-
sic cycle. We use the input parameters Nigecn to describe
the average number of instructions that are fetched by the
processor each CPIF interval, and CPI,,.. as the cycles per
instruction rating of the processor with no memory system
overhead. Thus, the value of CPIF is determined by mul-
tiplying CPI,roc and Nyfescn, calculating reference rates of
instruction and data cache operations for this interval, and
adding in any additional factors due to memory system over-
heads induced by these references. The overall CPI value in-
cluding memory overhead can then be computed by dividing
CPIF by Nifetch-

A superscalar processor containing multiple load/store
units can perform more than one load or store each CPIF.
This requires that the Dcache be multiported, banked[17],
or restricted to performing multiple Dcache operations in
the same cache block. The input parameter Npgccess 1S the
average number of Dcache accesses each CPIF and is a func-
tion of both the workload characteristics (average number
of loads and stores in the program), and the architecture’s
ability to fill the load/store units. The maximum value for
this parameter is one, which is the case where there is at
least one load or store being accessed each CPIF, and repre-
sents an aggressively designed superscalar processor and/or
a workload with a high degree of loads and stores. This pa-
rameter is used in calculating the portion of cache utilization
due to load and store operations.

3.3 Modeling Latency Reduction Effects

Several techniques exist for hiding the latency inherent in
high performance multiprocessors, including;:

e Providing concurrency in the hardware, including re-
turning the desired instruction or data in a cache block
first when a miss occurs, and bypassing the cache with
the desired instruction or data while loading the cache
block in parallel;

e Non-blocking loads;
e Non-blocking stores (write buffers);
e Victim buffers.

We now discuss each of these in turn in terms of how
latency calculations are performed. We then address how
waiting time calculations need to be modified to account for
these effects.

3.3.1 Hardware Concurrency

Previously developed multiprocessor models use the trans-
action time of a resource to calculate both its utilization and
its latency. For example, if the bus data transaction time
is 3 cycles, then a data transfer across the bus consumes
3 cycles of that resource and requires 3 cycles of latency.
The problem with this approach is that it does not correctly

represent the hardware concurrency of modern systems, in
which operations at different design levels are overlapped
with those in others. An example of this occurs when, on
a cache miss, the desired word (the actual word within the
block which caused the cache miss) is transferred at the head
of the block, and once received, the processor can resume ex-
ecution while the rest of the cache block is written to cache.
Thus, the bus which we just described when operating in this
manner may still have a transaction time of 3 cycles, but a
stall time of only 1 cycle. The stall time is that portion of
the transaction time which contributes to the stalling of the
processor. In our model, we calculate resource utilization
and waiting time in the usual manner using the transaction
time parameters, but we decouple these calculations from
the stall time calculations. The latter are used in the calcu-
lation of CPIF. Thus, for each transaction time parameter
in the model there is a corresponding stall time parameter.
Whether or not these values are equal depends on the capa-
bilities of the resource. Furthermore, separate transaction
and stall time parameters exist for each operation type. For
example, while Dcache misses may use desired word first
with bypass, Icache misses may require the entire block to
return before the desired word is loaded into the pipeline.

Separate stall and transaction times are assigned at every
level of the model, from the L1 cache to the main memory
system, and for each operation type. This affords great flex-
ibility in the modeling detail that can be described. For ex-
ample, cache controller overheads can be precisely described
in this way. The transaction and stall times of a cache read
operation may be 4 cycles and 3 cycles, respectively, a cache
write operation may be 3 cycles and 2 cycles, respectively,
while a remote cache invalidate may require 4 cycles and
6 cycles (to propagate the acknowledgement), respectively.
The differences can be more pronounced for other opera-
tions, such as main memory writebacks. When a writeback
occurs, the cache controller may only need confirmation that
the main memory can accept the operation (it has room in
its queue), rather than needing to wait for the actual mem-
ory write to occur. Thus, the transaction and stall times for
a memory write operation can differ dramatically. This, we
believe, more accurately represents the machine hardware
than using the transaction time as the stall time, and as we
show in Section 4, can have a great impact on the perfor-
mance results obtained. The model contains a total of 76
transaction and 76 stall time parameters to allow for this
level of modeling flexibility.

3.3.2 Nonblocking Loads

A data cache that uses nonblocking loads has the ability to
handle more than one load miss simultaneously. The amount
of latency that can be eliminated due to this technique de-
pends on two major factors[8]:

e The compiler’s ability to schedule non-dependent in-
structions during the cache miss; this partially depends
on the cache miss latency;

e The hardware implementation.

The first factor represents the compiler’s aptitude at
overlapping computation with the load miss service time.
This depends on the compiler technology, workload charac-
teristics, degree of superscalar execution, and the duration of
the service time. (Longer service times require more nonde-
pendent instructions to be found to hide the latency.) The

EL| E2 E3 E4 ES E6 E7 E8 er | e2| E3 E4 es | es | e7 | es | Eo
[| | [[-] j 1
fe— m—= e e — =
e— Tu ——=] = e —=
fe=— ™ms—= = ™ —=

Figure 1: Effective Stall Time - Example 1

second factor represents the structural limits of the hard-
ware in terms of how many misses it is equipped to handle
simultaneously, and whether these misses can be to the same
cache block, in which case they need not be issued but rather
are merged with an already outstanding miss.

Three input parameters are introduced to account for
these factors. The parameter percent,qp is the average per-
centage of the load miss service time that is overlapped with
computation. The second, Nicfore_biock i the number of
load fetches that can be issued before the next one blocks.
While a miss refers to the absence of a datum that was at-
tempted to be read from the cache, a fetch refers to the read-
ing of a cache block in response to one or more misses. With
a nonblocking cache with appropriate hardware support, one
fetch can satisfy several misses to the same block[8]. For a
blocking Dcache, Nefore_biock is zero. The probability that
a load miss can be merged with another load miss is de-
scribed by Pioad_merge- A high degree of merges may reduce
the average latency of a Dcache miss as well as the rate of
fetches introduced into the system.

With these definitions in hand, we now illustrate how
to calculate the effective stall time or the amount of stall
cycles due to each load miss when the above effects are
taken into account. Consider the case shown in Figure 1
in which Nyefore plock = 2 and percento, = 6/7. Each
FE is the time between successive load misses, and T,, is
the miss service time. The white areas represent compu-
tation time, the lightly shaded areas the time that com-
putation is not overlapped with the miss service time, or
(1 —percentoqp) - T, and the dark shaded areas additional
processor stalling due to architectural limitations. As Fig-
ure 1 illustrates, once a steady-state condition is reached,
periods of processor stalling occur at regular intervals. Fur-
thermore, we can calculate the average amount of stall time
these periods contribute to each load miss as follows:

Stall-pETiOd = Tm/Nbefore_block - Eavg_ss
where Fqq.4_ss is the average time between successive load
misses once steady state is reached. Thus, the total stall
time for each load miss is

Tstan = stall_period + (1 — percentoiap) - Tm

Figure 2 shows another example where Nyefore_block = 3
and percentoiap = 14/15. Here, we see that

Tm = Nbefore_block ' Eavg-ss
and so the stall period is zero as shown. Thus, the total stall
time is simply

Tstau = (1 - percentolap) T

Of course, we could have the situation in which T, <
Niefore_block * Favg_ss. Here the total stall time is the same
as that calculated from Figure 2. Thus, a lower bound on

Figure 2: Effective Stall Time - Example 2

the total stall time for a nonblocking Dcache is

Tstall Z (1 - percentolap) : Tm
Note that Fa.vg_ss is easily calculated as

Eavg_ss = CPIF/-Pload_miss
where Ploqd_miss 1S the load miss reference rate in an instruc-
tion fetch interval. Clearly, the value of CPIF will depend
on the total stall time, which in turn depends on the value
of CPIF. Thus, we have the circular dependencies which are
the trademark of MVA and must resort to iterative solution
techniques.

3.3.3 Nonblocking Stores (Write Buffers)

In a multilevel cache hierarchy, consisting of a writethrough
L1 data cache and a writeback L2 cache, it is common for a
write buffer to be placed between the L1 and L2 caches so
that writes only cause stalls when the buffer is full or when
a Memory Barrier instruction[16] requires the buffer to be
flushed. When the former situation occurs, the processor is
stalled until enough writes are retired from the buffer to al-
low the new entry to be made. Several input parameters are
used to describe the write buffer. Pruii_wsuy is the probabil-
ity that the buffer is found full when a write occurs; Nypuf
is the number of entries in the write buffer when full, and
Nuyait_wbuf is the number of entries that must be fully re-
tired (which may require remote invalidations to propagate
out from the L2 cache for example) before the new write can
be loaded. Thus, the stall time for a write is:

Tstatiwrite = Pfull_wbuf ' (wauf ' (Twait_LQ_EWB +
Tstati_r2_Ew B) + Nuwait_wbuf * Tretire
where Twyait_r2_rwB is the waiting time at the L2 cache for
an empty write buffer entry operation, Tsiqii_r2o_gw B 1S the
corresponding stall time parameter, and Tyetire is the time
to retire each write. The latter depends on input parameters
such as the L2 cache data write miss rate, the probability
of writing to shared data, the invalidate protocol, the prob-
ability of displacing a dirty block from cache, etc.

We note that the above describes stall time calculations.
The transaction time calculations for writes are carried out
using the usual MVA techniques (with a few exceptions as
noted later).

3.3.4 Victim Buffers

A victim buffer (or displacement buffer) provides temporary
storage for dirty blocks displaced from cache when a miss oc-
curs. The motivation for victim buffers is similar to that for
write buffers (prevent displaced blocks from slowing down
cache misses). The corresponding parameters Py f_fuil,
Nypus, and Nyait_vbus are used along with the stall and
waiting times in the same way as described for write buffers.

3.4 Waiting Time Calculation Modifications

The models described in Section 2 are suitable for multipro-
cessor systems made up of scalar processors. These models
assume that requests from a given processor occur serially;
in other words, a request introduced into the system will not
encounter any traffic due to other requests from the same
processor. In a multiprocessor system using superscalar pro-
cessors with decoupled instruction and data streams and
nonblocking data caches, this assumption may not be appro-
priate. In this section, we describe modifications to waiting
time equations in order to take these factors into account.

The terminology we adopt is the following. Caches can
have local and remote requests. A request is local when it is
proceeding down its originating processor’s cache hierarchy,
onto the bus, into the main memory system, and in the
case of a cache miss, back to itself. A request that travels
up another processor’s cache (such as a cache invalidate or
a read request for data found modified in that cache) is
remote. Thus a local request can be impeded by remote
requests and possibly other local requests.

We define three request categories: Icache request, Dcache
load request, and Dcache store request. Each category con-
sists of several different request types. For example, the
request types in the Icache request category are instruction
miss, writeback due to instruction miss, empty victim buffer
due to instruction miss, and return of cache block due to
instruction miss. Similar types exist for the Dcache load re-
quest category, while the Dcache store request category has
additional types due to the many request types (invalidates
for example) that may result from store operations.

The amount of local traffic observed by a local request
varies depending on the request type. We note the following:

1. Each request category observes all the traffic due to
other request categories. For example, an Icache re-
quest can be impeded by Dcache load and store re-
quests since the instruction and data streams are as-
sumed decoupled.

2. Icache request and Dcache store requests can be con-
sidered blocking and therefore observe no other local
Icache or Dcache store requests, respectively. Icache
requests are assumed to be handled serially, and the
transaction time of Dcache store requests is generally
shorter than the time between successive store requests
(except in cases of workloads with high store instruc-
tion rates). Thus, previous store requests are retired
before the next store request occurs.

3. Dcache load requests in a blocking cache observe no
other local Dcache load requests. For a nonblocking
cache, other Dcache load requests may be observed
depending on the transaction time relative to the time
between successive requests.

| |
I Tt7 =]

Tt9 |

Tt10

a2 i

' U3 |
|
t0 1 t2

Figure 3: Local Dcache Load Miss Traffic

Thus, for Dcache load requests with a nonblocking cache,
we must take into account other local load requests that
are present in the system when the new request occurs, and
calculate the fraction of the local Dcache load request traffic
observed by the new load request.

To illustrate the calculation of this fraction, we study the
example shown in Figure 3, which depicts the situation of
Figure 2 after steady state conditions are reached. Here we
have shown the transaction times (7}) which are assumed to
be 33% longer than the miss service times. (The latter are
not shown for readability, but can be seen in Figure 2.) Or in
other words, T;/Equvg_ss = 3.5. We evaluate the time period
between t0 and t2, or the time during which transaction
10 takes place (T:10). We observe that the average total
Dcache load miss traffic between times t0 and t1 is 3.5, and
between times t1 and t2 is 4.0. Thus, the average total load
miss traffic between t0 and t2 is

trafficiotar = (3-3.5 4+ 0.5 -4.0)/3.5 = 3.57.

We also observe that transaction 10 sees an average of
one less transaction than the average total traffic, or a value
of 2.57. Thus, the fraction of the total Dcache load miss traf-
fic observed by transaction 10 is (traffictotai-1)/trafficiotar =
2.57/3.57 = 0.72. Thus, transaction 10 is impeded by 72%
of the local Dcache load miss traffic, as well as all of the
local Icache miss and Dcache store traffic.

In general, we can calculate the fraction observed as
(trafficiotai-1)/trafficiotar by using the following formula to
calculate trafficiotar:

traﬁctotal = (l_(Tt/Ea'ug_ss)J '(Tt/Eavg_ss)+((Tt/Eavg_ss)

— LTt/ Bavg-ss)]) - [(Tt/ Eavg-ss)1)/(Tt/ Eavgss)
This formula holds for the conditions Nyefore_tiock > 0 and
T; > Eqvg_ss- The first ensures that the cache is nonblock-
ing, and the second that the transaction time is longer than
the average time between successive Dcache load misses. If
one of these conditions does not hold, then a Dcache load
miss sees no other Dcache load misses in the system.

4 Performance Results

Now that we have described the extensions made to the
model, we examine the performance impact of various sys-
tem parameters. All of the results reported in this section
could not have been obtained using previous MVA mod-

els, as our model extends these models to take into account
new parameters. We would like to emphasize that although
the capability of the model has been expanded considerably
compared to other models, this has very little impact on
processing time. All of the runs performed for this paper
converged within 50 iterations (in most cases in less than
10 iterations), and each run produced results in less than a
second. Thus, a wide design space could be examined in a
small fraction of the time required for simulation.

4.1 Fixed Parameters and Assumptions

In these illustrative examples, we fix a number of the archi-
tectural parameters to limit the design space. Although the
model is capable of modeling single-level caches, multi-level
caches are more common in modern multiprocessors, and
therefore we limit our examples to this organization. We
also model modest multiprocessor configurations (no more
than eight processors), and unless otherwise noted, we limit
the processor architecture to a two-way superscalar imple-
mentation with blocking caches.

The cache coherence protocol that we model is a com-
bined write invalidate and write update protocol[2]. Here,
a write to shared data in the L2 cache causes a bus write
update operation to be performed. If the snooping L2 cache
has a copy of the block, and its associated L1 cache does as
well, then it accepts the update and invalidates the copy in
the L1 cache. If it has a copy, but the L1 cache does not,
then the copy in the L2 cache is invalidated. The idea here is
to eliminate updates to blocks that may have migrated from
one processor to another[18]. We model a system with a du-
plicate set of L2 cache tags for bus snooping. This prevents
the main L2 cache tags from being interfered with except for
cases in which a coherency operation must be performed.

Unless otherwise stated, each L1 cache is backed by a
4-entry write buffer and each L2 cache by a 2-entry victim
buffer. With both of these, the probability is 10% that the
buffer has to be emptied when accessed, and when the last
entry is being removed from the buffer, the waiting entry
can be loaded.

In order to isolate memory contention from the other
aspects of the design we were interested in, we allocated
twice as many memory modules as the number of processors
in all runs. This ensured that memory interference effects
would be of second order and not skew our results.

In the results that follow, the processing power curves
include results representative of those obtained using ear-
lier models. These models use scalar processors, blocking
caches, no local traffic, no write or victim buffers, and use
transaction times for stall times (no hardware concurrency).
The curve labeled “Old model (no L2)”, uses a single level
of writeback cache, while the one labeled “Old model (L2)”
uses the same multilevel hierarchy as the new results. Both
use the default parameter values for the caches. The pur-
pose of providing these curves is to quantify the increase
in performance when calculated using the new parameters
incorporated into the model, and to demonstrate the addi-
tional results the model is able to obtain.

Tables 2 through 7 at the end of this paper give default
values for most of the parameters used in this section. Only
the main memory stall and transaction time parameters are
provided for brevity. Parameters which are not applicable
to the organizations we have chosen are omitted as well.

8 4~ High hardware concurrency j
No hardware concurrency

r — Oldmodel (L2) 1

t % %xOldmodel (noL2) J

6L u

g L]

e | i

24 _
7

L]

8 L il

x|]

2

ol w w]

2 4 6 8

Number of Processors

Figure 4: Effect of Hardware Concurrency Level on Process-
ing Power

10T _ High hardware concurrency B
&—— & No hardware concurrency 4

0.8 u

s o]
2 06 g
B]
5 L]
3 04+ B
@ b]
02k // i
0.0 | |]

2 4 6 8

Number of Processors

Figure 5: Effect of Hardware Concurrency Level on Bus
Utilization

4.2 Hardware Concurrency

In this section, we investigate the impact of the level of
hardware concurrency on the processing power (defined as
n/CPI where n is the number of processors and CPI the
total cycles per instruction count of each processor) and bus
utilization of the machine. The latter is monitored in order
to assess to what degree scalability projections are affected
by concurrency variations.

We compare two configurations, one in which the stall
time parameters are equal to the transaction time param-
eters, and another in which it is assumed that all caches
use bypass, all resources transfer the desired word first in
a block, and overlap occurs when transferring information
from one resource to another. These organizations represent
the two extremes of hardware concurrency, and thus provide
an upper bound on their performance difference (for the as-
sumptions and parameters we have described in the previous
section). As shown in Figure 4, this upper bound is quite
large, the upper curve yielding an increase of about 70% in
processing power over the lower. This performance improve-
ment however increases bus utilization (Figure 5) by about
65%. Thus, we see that both processing power and scala-
bility projections can be greatly impacted by the design of
the machine hardware. A large amount of concurrency in
the hardware improves the processing power, but as a result,
requires more aggressive interconnect resources in order to
connect large numbers of processors.

We also see how results for the old models compare with
the present one. The presence of an L2 cache as expected has

8 [A~ Nonblocki ng cache
& o Blocking cache

— Oldmodel gLZ)
%% Old model (noL2)

Processing Power

ol ‘ ‘

2 4 6
Number of Processors

©

Figure 6: Processing Power of 2-Way Superscalar-Based
Systems

1orm A— A Nonblocki ng cache ‘ 4
3—— a1 Nonblocking cache, 50% load merges 4
L &—— o Blocking Cache 4
0.8 u
s o]
S 06F B
B]
5 1]
8 04 =
o - 4
0.2 _
0.0[. | |]

2 4 6 8

Number of Processors

Figure 7: Effect of Merging on Reduction of Bus Utilization
(2-Way Superscalar)

a large impact on the processing power obtained. The pres-
ence of a 2-way superscalar processor and hardware buffers
has an even greater impact, almost doubling the perfor-
mance of the old model with an L2 cache. Thus, we see that
the new architectural parameters we have incorporated into
the model have a tremendous impact on the performance
results obtained.

4.3 Nonblocking Caches

The impact of incorporating processors with nonblocking
caches on multiprocessor performance is now examined. The
nonblocking cache organization operates under an enhanced
hit under miss scheme in which the processor can continue
until a second fetch is required or the merge capability is
exhausted. The latter can occur due to limited hardware
resources allocated for merges for example, or a workload in
which load misses are spatially “scattered” and not clus-
tered into recently referenced cache blocks. We initially
compare two organizations: one with a blocking cache and
another with a nonblocking cache with percentoiap = 0.85
and Pioad_merge = 0.0. As shown in Figure 6, a significant
performance improvement is obtained with a nonblocking
cache, but the cost is an increase in bus utilization (Fig-
ure 7). Intuitively, we would expect that a high degree of
merges would reduce the increase in bus utilization, since the
amount of Dcache load misses would be reduced. However,
as seen in Figure 7, this is not the case. The explanation
for this is that the presence of a nonblocking cache reduces
the latency of each processor, and therefore increases it pro-

Parameter | Value
PLl_ir_miss 0.05
PLl_dl_miss 0.20
PL2_i7'_miss 0.02
PL2_dl_miss 0.10
PLQ_ds_miss 0.12

Table 1: Miss Rates for 4-Way Superscalar-Based System

L2 Nonblocking cache, 80% [0ad miss merges
r 35—~ Nonblocking cache, 50% load miss merges
i A—— a Nonblocking cache
10 o % Blocking cache
[= Old model ELZ)
s s % %Oldmodel (noL2)
; -
g
§’ 6
& aF
2 ; -
O L Il L L]
2 8

6
Number of Processors

Figure 8: Processing Power of 4-Way Superscalar-Based
Systems

cessing rate, and consequently, the rate at which all misses
occur. This increased processing rate is the dominant effect
in the increase in bus utilization, while the lesser effect (the
increase in the number of Dcache load misses) is the effect
improved by merging. Thus, in this example, the impact of
merging on bus utilization is small, as is its impact on pro-
cessing power (only about a 1% improvement). The latter is
due to the fact that with a large L2 cache providing a high
hit rate, almost all of the miss latency is hidden by allowing
a single outstanding miss, and not much more improvement
can be gained by merging.

For more aggressive superscalar designs which generate
higher cache miss rates and whose performance is more de-
pendent on latency reduction, merging may be more ben-
eficial. For example, the recently announced Alpha 21164
microprocessor[15], a 4-way superscalar design, provides ag-
gressive support for merging through its 6-entry Miss Ad-
dress File. We examine the effect of nonblocking caches by
comparing four 4-way superscalar-based multiprocessor con-
figurations based around the following cache organizations:
a blocking cache, a nonblocking cache with no merging, a
nonblocking cache with 50% merging, and a nonblocking
cache with 80% merging. In order to reflect the impact
of a higher degree of superscalar execution on cache miss
rates (due to higher bandwidth requirements that cause it
to sweep through the cache at a higher rate), we use de-
graded cache miss rates as shown in Table 1. As Figure
8 shows, the performance of the 4-way superscalar-based
multiprocessor improves greatly with the addition of a non-
blocking cache and a high degree of merging. Whereas
with a 2-way superscalar-based multiprocessor a 50% merg-
ing rate offered little additional performance benefit over a
nonblocking cache without merging, the 4-way superscalar
system shows a significant (about 20%) improvement in per-
formance with 50% merges, and an additional smaller, but

1orm A— A Nonblocki ng cache ‘ 4
3——aNonblocking cache, 50% load merges 4
L x—— s Nonblocking cache, 80% load merges

0.8 &—— o Blocking Cache
s o]
S 06 B
B]
35 L]
S 04 i
o - 4
0.2 -
0.0[. | |]

2 4 6
Number of Processors

©

Figure 9: Bus Utilization of 4-Way Superscalar-Based Sys-
tems

still noteworthy (about 8%) improvement when the merg-
ing rate increases to 80%. Thus, the results we were able
to obtain using the model appear to validate the decision
to support aggressive merging on the Alpha 21164%. Bus
utilization (Figure 9) is also reduced by merging (about 6-
7% from no merging to 50% merging), but even so, the bus
utilization increase from a blocking cache to any of the non-
blocking configurations is dramatic, around 35-40%. This as
mentioned previously, is largely due to the simple fact that
the processor is executing at a faster rate, and generating
misses at a higher rate as well. We note that the bus utiliza-
tion values for the 4-way superscalar-based multiprocessor
are much greater than those for the 2-way superscalar-based
system (Figure 7). Thus, these examples illustrate how the
degree of superscalar execution has a very large impact on
the design of the memory system and interconnect in a mul-
tiprocessor system.

Note once again on these figures, the difference between
results for the old models and the present one. The 4-way su-
perscalar processor with a nonblocking cache and 80% merg-
ing has a processing power that is five times that for the old
model with an L2 cache.

4.4 Write Buffers

The presence of a write buffer helps to hide the latency
of writes, allowing read misses to proceed ahead of them.
Choosing a size for the write buffer is a tradeoff between
minimizing the percentage of time the buffer is full when a
write occurs and the stall time in emptying the buffer when
it is full. To illustrate this tradeoff, we compare the perfor-
mance of three systems: one without a write buffer, one with
a 4-entry buffer which is full on a write 20% of the time, and
one with 8 entries that is full 10% of the time. We make sev-
eral observations based on the results obtained in Figure 10.
First of all, the performance improvement when employing
a write buffer is smaller than that of other parameters we
have studied so far, but still significant (about 11%). Sec-
ondly, we see that the 4-entry buffer performs slightly better
than the 8-entry buffer due to the latter’s higher penalty for
emptying. We note however, that we assumed that the 8-
entry buffer would be full half as much as the 4-entry buffer.
This assumption is highly dependent on workload character-
istics, processor architecture, and the L2 cache’s emptying

3With an L3 cache (optional on the 21164), latencies would be
reduced and the need for merging would perhaps be less.

8T o 4enhy buffer, 20%full]
A—— »8entry buffer, 10% full

[o—— o Nowrite buffer 7

r — Oldmodel ELZ) R

6L % %Old model (noL2) |

% I |
24 > |
L]
g |]
T |]
1

0 [| | |]

2 6 8

Number of Processors

Figure 10: Processing Power of Various Write Buffer Con-
figurations

8T - +Nonblocking caches with 50% load merges]
O +Bufferstcache interference
[A +Hardware concurrency 7
r New base model E
6l — Oldmodel (L2) =
_ *——xOldmodel (noL2) |
24
L
Q
g L
T |
2
07 | | |
2 6 8

Number of Processors

Figure 11: Impact of Combinations of Effects on Processing
Power

algorithm. Thirdly, the impact of a write buffer stays rela-
tively constant as the number of processors is varied. This
is due to the fact that in the model, while stall time calcula-
tions are varied with write buffer organization, transaction
times, which are calculated using conventional MVA tech-
niques, do not. Thus, in our model, the write buffer does
not reduce traffic (the writes are simply delayed), only stall
time. This is a limitation of MVA techniques as will be
explained in Section 5.

Victim buffers can be studied in a similar manner, but
the performance improvement obtained is smaller than that
from write buffers due to the fact that they lie further down
the cache hierarchy. Their impact would be greater for a
single level of cache hierarchy, and the model allows this
organization to be studied as well.

4.5 Combined Effects

Figure 11 shows how combinations of the previously stud-
ied effects can impact performance. In addition, we include
the effects of cache interference. The curve labeled “New
base model” represents a 2-way superscalar model with no
hardware concurrency, no write or victim buffers, cache in-
terference ignored, and blocking caches. Each successive
curve progressively adds new features to the previous curve.
We make two observations from this figure:

e Using large amounts of hardware concurrency and non-
blocking caches have the greatest impact on perfor-
mance;

e Effects which alone have a smaller performance effect
(such as write and victim buffers) can add together to
produce a much more significant impact.

5 Limitations of the Model

The model, although very flexible, is not without limita-
tions, as we rely on several assumptions which we discuss in
this section.

A fundamental assumption of the superscalar aspects of
the model is that the cache data path widths scale as the de-
gree of superscalar execution is increased. For instance, an
n-way superscalar implementation will fetch half the amount
of instructions from the Icache each CPIF as a 2n-way super-
scalar processor. This necessitates the increase in datapath
width to meet the increased bandwidth. Thus, the impact
of increased superscalar degree is primarily reflected in in-
creased cache miss and buffer emptying rates, as the pro-
cessor is able to sweep through these structures at a higher
rate.

Because MVA modeling relies on average values to com-
pute performance, certain effects are difficult to represent
using this method. We assume that remote cache interfer-
ence cannot be hidden through the existence of invalidate re-
quest queueing for example. (In systems employing a cache
hierarchy, L1 cache invalidate requests can be queued and,
in most cases, the emptying of the queue is delayed until
the cache idles due to a miss.) Similarly, by calculating
transaction and waiting times due to writes using conven-
tional MVA techniques, we assume that the presence of a
write buffer between the L1 and L2 caches only serves to
reduce write latency and not to reduce L2 cache contention
(through emptying the buffer during idle periods). A similar
assumption holds for displacement buffers.

We have found in our modeling of nonblocking caches
that when an L2 cache is present, the average analysis used
in MVA modeling affects the amount of performance benefit
received from allowing multiple outstanding misses. An L2
cache (with a reasonably low miss rate) reduces the average
stall time of a Dcache load miss. This combined with a uni-
form distribution of these misses limits the benefits obtained
from aggressive nonblocking schemes which allow many out-
standing misses to be serviced simultaneously. This limita-
tion arises because there is little overlap to hide, and allow-
ing one outstanding cache miss serves to hide almost all of
it. In real machines, misses may be “clustered” and there-
fore greater benefit received from allowing many misses to
be outstanding. It is a subject of further investigation to
more throughly investigate this aspect of the model.

6 Conclusions

An approximate Mean Value Analysis model which incor-
porates the features of modern multiprocessor systems has
been developed. The model is extremely detailed and in-
cludes the effects of superscalar microprocessors and latency
reduction techniques and has been used to study a wide va-
riety of design tradeoffs. We have demonstrated how the
model expands on earlier developed models, and how this
effects the performance results obtained.

Using the model, we have examined the impact of using
superscalar processors and nonblocking caches in multipro-
cessor systems. The model has been used to determine the

impact of the degree of superscalar performance on the scal-
ability of multiprocessor systems. We have demonstrated
how contrary to intuition, a high degree of merging of out-
standing misses in a nonblocking cache has little impact on
bus utilization and explained the reasons for this result. We
have also shown how the model can be used to study the
way buffering, interference, and other effects can affect sys-
tem performance and scalability.

Currently, we are expanding the model to include write-
back L1 caches in a cache hierarchy, and other snooping tag
structures. The incorporation of a third level (or an arbi-
trarily high level) of caching is another possibility for future
expansion and research.

References

[1] D.H. Albonesi and I. Koren, “Tradeoffs in the Design
of Single Chip Multiprocessors,” 2nd International Con-
ference on Parallel Architectures and Compilation Tech-
niques (PACT94), pp. 25-34, 1994.

[2] B.R. Allison and C. van Ingen, “Technical Description
of the DEC 7000 and DEC 10000 AXP Family,” Digital
Technical Journal, Vol. 4, No. 4, pp. 100-110, 1992.

[3] D. Alpert and D. Avnon, “Architecture of the Pentium
Microprocessor,” IEEE Micro, pp. 11-21, June 1993.

[4] T. Asprey, et al, “Performance Features of the PA7100
Microprocessor,” IEEE Micro, pp. 22-35, June 1993.

[6] M. Chiang and G.S. Sohi, “Experience with Mean Value
Analysis Models for Evaluating Shared Bus, Through-
put-Oriented Multiprocessors,” SIGMETRICS’91, pp.
90-100, May 1991.

[6] M. Chiang and G.S. Sohi, “Evaluating Design Choices
for Shared Bus Multiprocessors in a Throughput-
Oriented Environment,” IEEE Transactions on Comput-
ers, pp- 297-317, March 1992.

[7] P.K. Dubey, G.B. Adams III, and M.J. Flynn, “Instruc-
tion Window Size Trade-Offs and Characterization of
Program Parallelism,” IEEE Transactions on Comput-
ers, pp. 431-442, April 1994.

[8] K.I. Farkas and N.P. Jouppi, “Complexity /Performance
Tradeoffs with Non-Blocking Loads,” 21st International
Symposium on Computer Architecture, pp. 211-222,
April 1994.

[9] J.R. Goodman and P.J. Woest, “The Wisconsin Multi-
cube: A New Large-Scale Cache-Coherent Multiproces-
sor,” 15th International Symposium on Computer Archi-
tecture, pp. 422-431, June 1988.

[10] R. Jog, P.L. Vitale, and J.R. Callister, “Performance
Evaluation of a Commercial Cache-Coherent Shared
Memory Multiprocessor,” SIGMETRICS’90, pp, 173-
182, May 1990.

[11] E. McLellan, “The Alpha AXP Architecture and 21064
Processor,” IEEE Micro, pp. 36-47, June 1993.

[12] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C.
Sevcik, Quantative System Performance, Computer
Analysis Using Queuing Network Models, Prentice Hall,
Englewood Cliffs, N.J., 1991.

[13] D. Lenoski, et al, “The DASH Prototype: Implemen-
tation and Performance,” 19th International Symposium
on Computer Architecture, pp. 92-103, May 1992.

[14] S.T. Leutenegger and M.K. Vernon, “A Mean-Value
Performance Analysis of a New Multiprocessor Archi-
tecture,” SIGMETRICS’88, pp, 167-176, May 1988.

[15] P. Rubinfeld, “An Overview of the 21164 Alpha AXP
Microprocessor,” Hot Chips VI, August 1994.

[16] R.L. Sites, “Alpha AXP Architecture,” Digital Techni-
cal Journal, Vol. 4, No. 4, pp. 19-34, 1992.

[17] G. Sohi and M. Franklin, “High-Bandwidth Data Mem-
ory Systems for Superscalar Processors,” 4th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 53-61, April
1991.

[18] C.P. Thacker, D.G. Conroy, and L.C. Stewart, “The
Alpha Demonstration Unit: A High-performance Multi-
processor for Software and Chip Development,” Digital
Technical Journal, Vol. 4, No. 4, pp. 51-65, 1992.

[19] J. Torrellas, J. Hennessy, and T. Weil, “Analysis of
Critical Architectural and Program Parameters in a Hi-
erarchical Shared-Memory Multiprocessor,” SIGMET-
RICS’90, pp. 163-172, May 1990.

[20] M.K. Vernon, E.D. Lazowska, and J. Zahorjan, “An
Accurate and Efficient Performance Analysis Technique
for Multiprocessor Snooping Cache Consistency Proto-
cols,” 15th International Symposium on Computer Ar-
chitecture, pp. 308-315, June 1988.

[21] M.K. Vernon, R. Jog, and G.S. Sohi, “Performance
Analysis of Hierarchical Cache-Consistent Multiproces-
sors,” Performance Evaluation, Vol. 9, pp, 287-302,
1989.

Parameter Description Value
CPIproc CPI with no memory overhead 0.7
Nifeten # of instructions fetched each CPIF 2.0
NbDuaccess # of Dcache accesses each CPIF 0.7

Table 4: Default Values for Processor Parameters

Parameter Description Value
Pri_ir_miss Prob of L1 Icache miss 0.03
Pri_ai_miss Prob of L1 Dcache load miss 0.13
Pro_ir_miss Prob of L2 cache instruction miss 0.01
Pro_di_miss Prob of L2 cache data load miss 0.05

Pro_ds_miss Prob of L2 cache data store miss 0.08

Pro_ir_victim | Prob L2 instr miss causes wrback 0.20

Pro_di_victim | Prob L2 load miss causes wrback 0.25

Pro_ds_vietim | Prob L2 store miss causes wrback 0.25

Nuwbuf # of write buffer entries 4
Nuyait_wbuf | 7 entries retired before new write 3
P ruii_wbuf Prob full wr buffer on data store 0.01

Nuybus # of victim buffer entries 2
Nuwait_vbuyf # entries retired before new write 1
Pruti_vbuf Prob full victim buffer on wrback 0.01

Table 5: Default Values for Cache Hierarchy Parameters

Parameter Description Value
Nyroc # of processors x (variable)
Noem # of main memory modules 2x
Tars # of cycles for arbitration 2

Parameter Description Value
Pioad Prob instruction is a Load 0.25
Pstore Prob instruction is a Store 0.10

Pro_write_shared | Prob Store hit to shared data | 0.05

Prob Store hit to private data | 0.01

PLQ_write_private

Table 6: Default Values for Bus Parameters

Table 2: Default Values for Local Cache Workload Parame- Parameter Description Cycles
ters Tstaii_ir Icache miss stall time 45
Tstati_dl Dcache load miss stall time 45
Tstali_ds Dcache store miss stall time 45
Tstali_diwb Dcache load miss wrback ack time 6
Parameter Description Value Totall_dswb Dcache store miss wrback ack time 6
Prirem_di_nit Prob L1 data invalidate hit 0.02 Ttrans_ir Icache miss trans time 47
Prorem_di_hit Prob L2 data invalidate hit 0.01 Ttrans_dl Dcache load miss trans time 47
ProRem_du_hit Prob L2 data update hit 0.02 Tirans_ds Dcache store miss trans time 47
Prorem_dpriv_hit | Prob L2 data mod hit (lead) | 0.01 Tirans_irwb Icache miss wrback trans time 42
Prorem_dmod_hit | Prob L2 data mod hit (store) | 0.03 Tirans_diws | Dcache load miss wrback trans time 42
Tirans_dswb | Dcache store miss wrback trans time 42

Table 3: Default Values for Remote Cache Workload Pa-
rameters

Table 7: Default Values for Memory Stall/Transaction Time
Parameters

