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 Abstract simulator TLSim [41], takes the specification and imple-
We present the formal verification of an Intel XScale pro-
cessor model. The XScale is a superpipelined RISC pro-
cessor with 7-stage integer, 8-stage memory, and
variable-latency multiply-and-accumulate execution
pipelines. The processor uses scoreboarding to track data
dependencies, and implements both precise and impre-
cise exceptions. Such set of features has not been mod-
eled, and formally verified previously. The formal
verification was done with an automatic tool flow that
consists of the term-level symbolic simulator TLSim, the
decision procedure EVC, and an efficient SAT-checker.

1. Introduction
In striving to increase the performance of embedded pro-
cessors like the Intel XScale [7][16], designers adapt
mechanisms that were previously used only in out-of-
order superscalar processors. The Intel XScale is a super-
pipelined RISC microprocessor compliant with ARM
Version 5TE ISA [4]. It has applications from handheld
internet devices to enterprise internet infrastructure prod-
ucts. Some examples of its applications are HP’s iPAQ
pocket PC H3900 series [3], handheld devices from
Fujitsu, Toshiba and Casio Computer [28], Dell Axim X5
handheld [8], and Intergrity RTOS that uses the Intel
XScale to deliver high reliability [17]. Other processors
like the MIPS32 4Kp [10], and the Motorola M•CORE
[24] are similar to the 5-stage DLX pipeline. However
the XScale is superpipelined with 7-stage integer, 8-stage
memory, and variable latency memory-and-accumulate
(MAC) pipelines. Also, it has features such as register
scoreboarding, out-of-order execution and completion,
and imprecise exceptions, which make it more complex
for formal verification.

We check the safety property of pipelined XScale
variants with increasing complexity, using Burch and
Dill’s flushing technique [6] as a way to automatically
compute the abstraction function. A term-level symbolic

mentation processors, and a simulation-command file
that indicates how to simulate the specification and
implementation, and produces a formula in the logic of
Equality with Uninterpreted Functions and Memories
(EUFM) [6]. The decision procedure EVC (Equality
Validity Checker) [41], converts the EUFM formula to a
propositional formula, which is then evaluated by a Bool-
ean satisfiability procedure [40][42] such as Chaff [26] or
BerkMin [11]. The tool flow, consisting of TLSim, EVC,
and an efficient SAT-checker has been used both in indus-
try—Lahiri et al. [21] applied the tool flow at Motorola,
detecting 3 bugs, and corner cases that were not imple-
mented in a model of the M•CORE processor—and in
academia to teach the principles of pipelined, speculative,
and superscalar execution [43].

The control logic for detecting, and dealing with data
hazards is one of the critical timing paths. With increase
in issue width, pipeline depth, and a need to optimize the
design for performance, the logic for detecting hazards
becomes more complex, and difficult to fit within the
stringent timing constraints. Therefore, in state-of -the-art
processors such as the Itanium [30], alternate techniques
to handle data hazards becomes necessary. The Itanium
processor, which has a 6-wide front end, 9-wide execu-
tion engine, and 10 stage deep pipeline, uses a stall-based
scoreboard control strategy to overcome the complexity
of the control logic, and satisfy timing requirements.
Since the Intel XScale is superpipelined, it faces similar
considerations for detecting hazards, and therefore it uses
a scoreboard to handle data hazards occurring in the main
execution, parallel memory, and MAC pipelines. 

2. Background
We prove the safety property of an implementation that
can issue up to k instructions per clock cycle—if the
implementation makes one step of regular operation,
starting from an arbitrary initial state QImpl, then the new
implementation state Q′ Impl corresponds to the state of
the specification after 0, or 1, ... , or k steps when starting
from state Q0

Spec that corresponds to the initial imple-
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mentation state QImpl. By flushing the implementation
[5][6]—feeding it with bubbles (control signals that
would not modify the architectural state) until all par-
tially executed instructions are completed—we map an
implementation state to an equivalent specification state.
Before flushing, the implementation makes one step,
which we term as the one cycle of regular operation.

The implementation and specification processors are
described in the high-level hardware description lan-
guage AbsHDL [41]. The language has constructs for
basic logic gates such as and, or, not, mux, and equal-
ity comparators. It also has constructs for memories,
latches, and for abstracting functional units. It differs
from other HDLs such as Verilog and VHDL in that the
bit-width of word-level values, and the implementation of
memories and combinational functions are not specified. 

The syntax of EUFM consists of terms and formulas.
A term can be a variable, an Uninterpreted Function (UF)
applied to a list of arguments, or an ITE operator that
selects between two terms based on a formula, such that
ITE(formula, term1, term2) evaluates to term1 if formula
is true, and to term2 if formula is false. Terms are used to
abstract data of arbitrary length, and they do not satisfy
any particular property other than the property of equality
(i.e., two terms can be compared for equality), which is
required when defining the logic for forwarding or load
interlock, etc. A formula can be a propositional variable,
an Uninterpreted Predicate (UP) applied to a list of argu-
ment terms, or an ITE operator, which selects between
two formulas based on a controlling formula. Formulas
can be negated, and connected by Boolean connectives. 

Combinational functional units are abstracted using
Uninterpreted Functions (UFs), and Uninterpreted Predi-
cates (UPs)—black boxes that only satisfy the property of
functional consistency, i.e., if the inputs of two applica-
tions of an UF are equal, then their outputs are equal. The
difference between an UF, and an UP is that the former is
a term, and the latter a formula. 

The syntax for terms is extended to model memories
using interpreted functions read and write. Function read
takes a term for the memory state, and address as input,
and returns the data corresponding to the address. Func-
tion write takes the memory state, address, and data as
input to return the new memory state. Functions read, and
write satisfy the forwarding property of memory seman-
tics—that the read operation returns the data most
recently written to an equal address, or otherwise the ini-
tial state of the memory for that address. The efficiency
of EVC is due to the property of Positive Equality [41],
stating that the truth of an EUFM formula under a maxi-
mally diverse interpretation of the term variables that
appear only in positive (not negated) equality compari-
sons implies the validity of the formula under any inter-
pretation of those term variables.

3. XScale Architecture
The Intel XScale core has superpipelined RISC architec-
ture with 7-stage integer, 8-stage memory, and variable
latency multiply-and-accumulate (MAC) pipelines. Fig-
ure 1 shows the pipeline organization of the XScale. 

To allow for aggressive clocking of the processor, the
instruction fetch is divided into two stages—F1 and F2.
One instruction is delivered each cycle to the instruction
decode stage ID, if the two fetch stages are not stalled.
The Branch Target Buffer (BTB) is in F1, and predicts
the direction and target of branch instructions. Once the
branch reaches the ALU in EX1, the target address of the
branch is computed. If that target address is different
from the predicted target address, the pipeline is flushed,
and execution continues at the actual target address. The
ID stage is responsible for general instruction decoding
such as extracting the opcode, operand addresses, source
and destination identifiers, and control bits. 

The RF (Register File/Shifter) stage is used to read,
and write to the register file unit (RFU). It provides
source data to the execute stage (EX) for ALU opera-
tions, to MAC for multiply operations, and to the mem-
ory pipeline for load/store instructions. The register
identifiers from ID specify, which registers are accessed
in the register file unit. If there is a pending update to a
register that is accessed, and the result of the update is not
yet available, the RFU stalls the pipeline. The RFU keeps
track of pending updates to the register file using a score-
board. The ARM architecture specifies one of the oper-
ands for an ALU instruction as the shift operand. A 32-bit
shift can be performed on that operand by the shifter in
RF, before it is used as input to the ALU. 

ALU operations and address calculations for load/
store instructions are performed in EX1. Conditional
instruction execution is determined in EX1. Every
instruction has an associated condition that is compared
with the architecture flags. The flags are part of the pro-
gram status register (PSR), and are updated by the previ-
ous instruction. An instruction, whose qualifying
predicate is false, is cancelled, and is not allowed to
update the architectural state. The direction and target of
a branch operation are also determined in EX1. In case of
a misprediction, instructions in all previous stages are
squashed, and the PC is updated with the correct target
address. A branch misprediction results in a 4-cycle pen-
alty. The EX2 stage contains the PSR, which is updated
by instructions in the main execution pipeline.

The memory pipeline consists of two pipestages
MEM1 and MEM2, and handles load/store instructions.
Memory operation (load and store) begins in MEM1 after
the effective address for a load/store has been calculated
in EX1. The MAC unit executes multiply and multiply-
and-accumulate instructions. The latency of instructions
in the MAC unit depends on the size of the input oper-
ands, and the instruction can take between 2 and 5 cycles.
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Figure 1. XScale pipeline organization.
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Instructions are issued in-order, but as the 3 special-
ized execution pipelines have different execution laten-
cies, instructions may complete out-of-order, provided
that no data dependencies exist. Register scoreboarding is
used to track data dependencies, and stall the pipeline in
the RF pipestage. 

4. Base Processor Model
4.1 Main Execution Pipeline
We started by modeling the Main Execution Pipeline
(MEP), capable of executing only ALU instructions, and
then extended this model with other abstract instruction
types, and architecture features as presented in Sections 4
and 5. Conditional instruction execution, pipeline haz-
ards, branch prediction, and instruction memory and
ALU exceptions are key features of the MEP that are dis-
cussed in this Section.

 Conditional instruction execution is implemented as
in [39], using the term Cond, obtained from the instruc-
tion decoder, and the UP, Cond_Evaluate that evaluates
the instruction condition. The flags, used to determine
conditions, are abstracted in the program status register
(PSR). The PSR is modeled as a latch, and is part of the
architectural state. Its contents is read in EX1, and
updated in EX2. The PSR is modeled as a read-after-
write latch so as to allow the instruction in EX2 to update
latch before its contents is read in EX1. 

Handling read-after-write (RAW) hazards in the MEP
requires both data forwarding to EX1, and stalling in RF.
Two levels of forwarding from EX2 and WB1, to EX1
are used, and priority is given to results from EX2. The
result of an instruction in EX1 is not available until it has
reached EX2. Therefore, an instruction in RF that
requires a shift operation, and depends on the instruction
in EX1 has to be stalled in RF. The main execution pipe-
line does not exhibit write-after-write (WAW) or write-

after-read (WAR) hazards, as all writes to the register file
are in-order, and happen in WB1.

 The branch predictor is modeled with a Finite State
Machine (FSM), as done in [38]. On each clock cycle,
this FSM produces an arbitrary term for the predicted tar-
get, and an arbitrary formula for the predicted direction,
thus abstracting any implementation of a branch predic-
tor. The XScale uses a Branch Target Buffer (BTB),
which is abstracted as described above with a latch that
holds an arbitrary state; UP, PredictTakenBranch, whose
output gives the prediction for the branch direction; and
UF, PredictedTarget, whose output is the target of the
branch. Both PredictTakenBranch, and PredictedTarget
take the present state of the FSM latch as input. Since the
state of the latch is arbitrary, so are the predictions. What
is verified is that, if the prediction is not correct then the
implementation has a mechanism to correct the mispre-
diction. The specification does not include a branch pre-
dictor, as it is used only to enhance the performance of
the implementation processor.

Precise exceptions are modeled in the style of [38].
For every functional unit that can generate an exception,
an UF is introduced with the same inputs as the func-
tional unit, and output that is a formula indicating if an
exception is raised. An exception status register that is
part of the user visible state, is used for every type of
exception. Also, an ExceptionPC latch is used to hold the
PC of the excepting instruction. Since instructions in the
different specialized pipelines have different execution
latencies, it is possible that instructions complete out of
order. A valid instruction in MAC2 or EX2 could have
updated the architectural state before an older load
instruction raises a data memory exception in WB2. As
instructions may complete out of order before data mem-
ory exceptions are detected, data memory exceptions may
be imprecise. ALU and instruction memory exceptions
are raised before any younger instruction in program
3



order updates architectural state. Therefore, ALU and
instruction memory exceptions are precise.

4.2 Memory Pipeline
Loads and stores are routed to the parallel memory pipe-
line after the data memory address is calculated in EX1.
Data memory access consists of 3 stages: MEM1,
MEM2, and WB2 (write back). In our model, all memory
access operations are completed within two cycles in
MEM1 and MEM2. Note that the latency of a load
instruction that completes in WB2 is 8 cycles, and the
latency of a ALU instruction that completes in WB1 is 7
cycles. An ALU instruction that follows a load in pro-
gram order could complete in the same cycle as the load.
The structural hazard due to simultaneous writes from
both WB1, and WB2 is overcome by using two write
ports. Instructions in WB1 are more recent in program
order, and are therefore given priority over instructions in
WB2, when writing to the register file. Results from
loads are available only in WB2, from where they are for-
warded to EX1.

 An instruction that performs both branch, and load
operations is possible, as there is no restriction on the
specification that prevents more than one instruction type
from occurring together. But this would lead to an invalid
instruction exception in the actual processor. We term this
as instruction overlapping. Such properties of the imple-
mentation can be exploited to prune its state space using
invariant constraints. Non-overlapping instruction con-
straints are used to eliminate from consideration the pro-
cessor behavior due to overlapping instructions.

A simple example of a non-overlapping constraint that
excludes an instruction from being both a branch, and a
store is shown. Let the control bits is_Branch and
MemWrite indicate a branch and a store, respectively.
Then, the constraint that an instruction cannot be both a
branch and a store can be defined in the syntax of
AbsHDL as:

constraint_Branch_or_Store = 
  (or (not is_Branch) (not MemWrite))

The signal constraint_Branch_or_Store is
used in the simulation-command file to impose the con-
straint, but is not used as part of the processor control
logic. Constraints to exclude ALU, load, store, and
branch instructions from occurring together are imposed
on all stages of the pipeline in the first, and only cycle of
regular operation of the implementation. These con-
straints are checked for invariance, i.e., the implementa-
tion processor will satisfy them after 1 clock cycle of
regular operation. Constraints imposed in F1 on the out-
puts of the instruction memory are not checked for invari-
ance, once those constraints are assumed to be properties
of the program.

Instructions are routed to the integer or memory pipe-

line from EX1. Since we have imposed constraints on the
implementation to eliminate overlapping instruction
types from occurring, it is not possible for EX2 and
MEM1 to both have a valid instructions in the same
cycle. Similarly, both WB1 and MEM2 cannot have valid
instructions in the same cycle. This property of the pipe-
line is exploited using exclusivity constraints, which
impose the restriction that the a pair of parallel stages
cannot both have a valid instruction in the same cycle. 

In case of data dependencies, the dependent instruc-
tion is stalled in the RF stage. Depending on whether the
pipeline is stalled or not, there is variability in how
instructions flow through the pipeline. Controlled flush-
ing [5] is used to schedule the pipeline so that this vari-
ability is removed only when flushing the pipeline in
order to compute an abstraction function, resulting in a
simpler EUFM correctness formula.

To implement controlled flushing, a new control input
force_stall is introduced. During the one cycle of regular
operation of the implementation, force_stall is set to
false. An instruction in RF could be dependent on
instructions in EX1, MEM1, and MEM2. The worst case
stalling of 3 cycles occurs when an instruction I1 in RF is
dependent on instruction I2 in EX1, in that case I1 will
not be issued to EX1 until the result of I2 is available
from WB2. During flushing, instructions in F1, F2, ID,
and RF are stalled for 3 cycles by setting force_stall to
true, and allowed to advance in the fourth cycle by set-
ting force_stall to false. The same pattern of stalling is
used for the new instruction in RF. This pattern is
repeated until pipeline stages F1, F2, ID, and RF do not
have valid instructions. The implementation is simulated
for another 4 cycles to allow the pipeline to be flushed
completely. To check that the pipeline is fully flushed,
i.e., there are no pending updates to the architecture state
after flushing, a signal is_flushed is defined as the AND
of the negations of all control bits of all pipeline latches.
If is_flushed is valid at the end of the flushing sequence,
then the pipeline is completely flushed.

4.3 PC Logic
The XScale ISA specifies that ALU and load instructions
are allowed to update the PC as it is part of the register
file. We modeled this in two alternate ways. The register
address of the PC is abstracted with a term variable, and
the destination address of a ALU or a load instruction,
and the PC address are checked for equality. Alterna-
tively, an uninterpreted predicate with the destination
address of the instruction as the only input is used to indi-
cate if the instruction writes to the PC. In both of the
above cases, the instruction is not allowed to update the
register file.

Writes to the PC are detected in EX1. Since an opera-
tion that modifies the PC behaves like a branch, instruc-
tions in stages F1, F2, ID, and RF are squashed. ALU
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Figure 2. Implementation of the variable latency (2 to 5 cycles) MAC pipeline.
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instructions that update the PC are treated as branch
instructions, and complete in EX1. The result of a load is
not available until the WB2 stage. Loads that write to the
PC are detected in the EX1 stage, and all instructions in
previous pipeline latches are squashed. Every new
instruction that is fetched is also squashed until the load
advances to WB2 when it can update the PC. 

5. Modeling the Multiply-and-Accumulate 
Unit, Scoreboarding, and Imprecise Excep-
tions
5.1 Multiply and Accumulate Unit 
The variable instruction execution latency of the multi-
ply-and-accumulate unit (MAC) makes it complex to for-
mally verify. Control flushing and invariant constraints
are used to simplify the correctness formula, and reduce
the time taken by the tool flow.

Multiply instructions are routed to the multiply-and-
accumulate (MAC) pipeline from RF—consisting of six
pipeline stages namely MAC1, MAC2, MAC3, MAC4,
MAC5, and WB3. Figure 2 shows the implementation of
the MAC pipeline with variable latency. The UF, MAC
takes the opcode and operand as input, and produces a
result. The variability in the number of execution cycles
required by the MAC is abstracted using two UPs,
OpSize0 and OpSize1 that take the opcode and operands
as input. For example, if the both UPs are false, then it
could mean a 3 cycles execution latency. The two bits
indicating the size of the operands are used to generate 4
signals, wb_mac3, wb_mac4, wb_mac5, and wb_wb3 that
determine whether the multiply instruction will writeback
in MAC3, MAC4, MAC5 or WB3, respectively. Note
that for an instruction, only one of the 4 signals is true,
and all the other signals are false. These signals are used
to set or reset RegWrite (the control signal that indicates a

write to the register file) in MAC3, MAC4, MAC5, or
WB3. 

Controlled flushing is modified for the implementa-
tion with the MAC pipeline. The worst case stalling
occurs when an instruction I1 in RF depends on instruc-
tion I2 in MAC1, in that case I1 is stalled in RF for a
maximum of 5 cycles for the result of I2 to become avail-
able from WB3. During controlled flushing, the instruc-
tion in RF is force-stalled for 5 cycles instead of the
previous 3 cycles before it is allowed to advance. This
pattern is repeated until there are no valid instructions in
F1, F2, ID, and RF. The implementation is simulated for
another 6 cycles to complete the flushing, as a valid
instruction in MAC1 could take 6 cycles to complete.

The constraints for non-overlapping instruction types
are extended to include multiply instructions. Exclusivity
constraints are imposed on the groups of parallel stages
including EX1-MAC1, EX2-MEM1-MAC2, WB1-
MEM2-MAC3, and WB2-MAC4, i.e., only one of the
stages in a parallel group is allowed to have a valid
instruction in any given cycle. 

5.2 Register Scoreboarding
The Intel XScale uses a register scoreboard to detect reg-
ister dependencies between instructions, and simplify the
control logic for handling pipeline hazards. In order to
hide the scoreboard from the specification, we had to ini-
tialize the scoreboard to reflect the current state of the
implementation.

The scoreboard stalls the pipeline in RF for both read-
after-write (RAW), and write-after-write (WAW) hazards.
Write-after-write hazards are present as instructions may
complete out of order in the MAC pipeline with respect
to instructions in the parallel memory pipeline. 

The register scoreboard is implemented as a memory
element. All registers in the register file have a corre-
sponding one bit entry in the Scoreboard. If the bit-entry
5



Figure 3. Control logic for scoreboard update from WB1.
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is true, then an update is pending to the register corre-
sponding to that entry. Figure 3 shows the control logic
for updating the scoreboard from WB1. If an instruction
completes in WB1, then it resets the entry in the score-
board corresponding to the destination address of that
instruction, provided no previous stage has a pending
update to the same destination register. If an update is
pending to any of the source registers of the instruction in
RF, the pending update causes a read-after-write hazard.
Similarly, a pending update to the destination register of
the instruction in RF if an update is pending to the desti-
nation register, it indicates a write- after-write hazard. In
any of the above cases, the pipeline is stalled up to, and
including the RF pipestage. 

 Since the Scoreboard is used to simplify the control-
logic for detecting data hazards, it is only part of the
implementation, and not used in the specification proces-
sor. The scoreboard has to be initialized with pending
updates from all stages in the pipeline after the RF stage.
A new primary input Initialize is introduced in the imple-
mentation, and is used as the enable for all write ports to
the scoreboard used for initialization. Initialize is trig-
gered before the first implementation cycle. During regu-
lar operation, the scoreboard entries are set from EX1 and
MAC1, and released from MAC3, MAC4, MAC5,WB2,
and WB3 if write back occurs from that stage. The score-
board has to be initialized from all stages after RF.

5.3 Imprecise Exceptions
Some data memory exceptions in the XScale are impre-
cise due to out of order execution. To formally verify the
processor with imprecise exceptions, we modify the
safety property by identifying the conditions that lead to
imprecise exceptions, and use these conditions as a don’t
care set of the EUFM correctness formula.

We modeled three types of exceptions—instruction
memory exceptions, ALU exceptions, and data memory
exceptions. ALU and instruction memory exceptions are
precise as they are detected before any younger instruc-
tion (that are more recent in program order), update the
architectural state. Data memory exceptions can be both
precise and imprecise. An exception is precise when there
have been no out-of-order updates to the architectural
state before the exception is detected; otherwise, the
exception is considered imprecise. Younger instructions
would not have been executed if a load raises an excep-
tion in a non-pipelined specification. However, in the
XScale, those younger instructions may complete before
the older load, if the younger instructions are completed
in the main execution pipeline, or the first 2 stages of the
MAC pipeline. Since these updates would not have
occurred in the specification, where instructions are exe-
cuted and completed sequentially, the architectural state
that was updated out-of-order, now contains corrupted
data. It is possible that the corrupted data has been used
before the data memory exception handler is invoked.
Therefore, all imprecise data memory exceptions are
treated to be unrecoverable [16]. When a data memory
exception is imprecise, a flag that is part of the fault sta-
tus register (FSR) is set.

In order to formally verify imprecise exceptions, we
propose a modified correctness criterion. The original
correctness criterion checks the safety property. Since the
implementation processor state is corrupted in case of an
imprecise exception, the condition that an imprecise
exception has occurred is used as a don’t-care set, indi-
cating when we do not care about the safety property. 

When an imprecise exception occurs, the PC is
updated to the address corresponding to the imprecise
exception handler (IPH), and the FSR is cleared by the
exception handler routine. We model the FSR as a latch,
6



Table 1: Statistics for the Boolean correctness formulas, and the formal verification time. The SAT 
checker BerkMin62 was used for the experiments.

Processor
Boolean Variables

CNF 
Variables

CNF 
Clauses

Formal Verification Time [sec]

eij Control Total TLSim EVC BerkMin Total

XS-7 450 102 552 4,347 39,459 0.11 1 3 4

XS-7-8 566 151 717 7,216 73,179 0.15 3 9 12

XS-7-8-SB 565 155 720 7,253 73,306 0.22 3 11 14

XS-7-8-SB-PC1 1,666 210 1,876 16,386 214,163 0.18 7 21 28

XS-7-8-SB-PC2 1,667 216 1,883 19,215 244,916 0.26 8 32 40

XS-7-8-SB-PC1-MC 2,082 280 2,362 23,369 396,711 0.34 17 92 109

XS-7-8-SB-PC2-MC 2,078 291 2,369 26,651 435,140 0.38 17 127 144

XS-7-8-SB-PC1-MC-IMP 2,386 272 2,658 36,266 573,252 0.46 23 162 185

XS-7-8-SB-PC2-MC-IMP 2,384 281 2,665  40,369 616,368 0.47 22 244 266
IsImpreciseException, that is initialized to false, and set
when an imprecise exception occurs. The input to the
latch is the OR of the previous state of the latch, and the
condition that an imprecise exception is raised in the cur-
rent cycle. The latch is updated only during the imple-
mentation side of the correctness criterion. All
instructions are squashed after an imprecise exception is
raised. The earliest that an imprecise exception can occur
is in the one cycle of regular operation of the implemen-
tation. Even in that case, the new instruction, if fetched,
will be squashed. Effectively, if an imprecise exception
occurs, it is the last executed instruction during flushing,
and the PC is updated to the address of the imprecise
exception handler (IPH). We define the safety property
for the implementation with imprecise exceptions in the
framework for microprocessor correctness provided by
Aagaard et al. [1][2]:

∀ qi, q′i  ∈  Qi . ∀ qs ∈ Qs . ∃  q′s  ∈ Qs . 

[Ni(qi, q′i )  ∧  ℜ( qi, qs) ∧ ¬ isImprecise(q′i )   ⇒ 
       ∃ j ≤ w . Nj

s(qs, q′s )  ∧  ℜ( q′i , q′s ) ]     ∧   
[Ni(qi, q′i )  ∧  ℜ( qi, qs) ∧ isImprecise(q′i )      ⇒  
        equal_PC_IPH(q′i )]
where, Qs and Qi are the set of possible specification and
implementation states, respectively. Ns and Ni are next
state relations for the specification and implementation,
respectively. Nj

s(qs, q′s )  is a predicate that returns true if
q′s  is reachable from qs in exactly j steps of Ns, and
returns false otherwise.  ℜ( qi, qs) is a relation that

returns true if the specification state, qs, and the state
obtained after flushing the implementation state qi are
equal. w is the issue width of the implementation. isIm-
precise() and equal_PC_IPH() are user-provided predi-
cates that take an implementation state as argument; the
former is true if its argument implementation state is
imprecise, and returns false if the argument implemen-
tation state is precise; the latter is true if the PC of the
argument implementation state is equal to the IPH, and
is false otherwise. 

6. Results
We started with the basic abstract processor model of the
7-stage main execution pipeline: XS-7, which can exe-
cute 5 basic abstract instruction types—register-register,
register-immediate, conditional and unconditional
branch, and return-from-exception. The model included
features such as branch prediction, predicated execution,
ALU, and instruction memory exceptions, as well as
shifter, and ALU in different stages. The above model
was extended to implement: 1) parallel memory pipeline
with abstract load and store instructions, designated with
“-8”, where 8 represents the total latency of memory
instructions; 2) register scoreboarding, marked by “-SB”;
3) logic to model the PC as part of the register file—
marked with "-PC1" when the PC was abstracted with a
term variable, and with "-PC2" when an UP was used to
decide whether an instruction writes to the PC; 4) multi-
ply-and-accumulate pipeline with abstract multiply-and-
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accumulate instructions, which can take between 2 to 5
cycles, designated by “-MC”; 5) imprecise exceptions “-
IMP”, using the modified correctness criterion. 

Controlled flushing [5]—a technique used to schedule
the pipeline, so that the variability of instruction flow in
the pipeline due to stalls is eliminated leading to a sim-
pler correctness formula—was employed for all designs.
Table 1 presents the results. "Control" Boolean variables
are those that represent the initial state of bit-level signals
in the pipeline latches, or were introduced when eliminat-
ing uninterpreted predicates. The eij Boolean variables
encode g-equations (syntactically distinct g-term vari-
ables), with some of those variables added in order to
enforce the property of transitivity of equality. We used
both SAT-checkers Chaff and BerkMin, and found that
BerkMin was faster by a factor of 2 for all benchmarks.
As seen in table the time taken by BerkMin ranges from 3
seconds for XS-7 up to 244 seconds for the most complex
model with all features, including imprecise exceptions,
XS-7-8-SB-PC2-MC-IMP. The memory requirement var-
ies between 29 MB and 141 MB. TLSim requires less
than 1 MB of memory, and less than a second for all
steps. EVC takes between 1 second and 22 seconds of
CPU time, and uses between 29 MB and 148 MB of
memory. The total CPU time required by the tool flow is
between 4 seconds and 344 seconds.

Constraints imposed on the initial state of the pipeline
latches need to be checked for invariance, i.e., they
should be satisfied after the one cycle of regular opera-
tion of the implementation. We imposed constraints on all
benchmarks except XS-7. To check for invariance, Chaff
takes less than 0.03 seconds, the time taken by EVC
ranges between 0.13 seconds and 0.19 seconds, and
TLSim takes less than 0.1 seconds for all benchmarks.
The memory requirement for TLSim, EVC, and Chaff is
less than 1 MB. A maximum of 540 CNF variables, 2025
CNF clauses, 77 eij variables, and 177 total Boolean vari-
ables were required. 

6.1 Bug Report
We find the following three bugs to be the most interest-
ing from those we made:

Bug 1. Adding the parallel memory pipeline required tak-
ing into consideration corner cases for overlapping
instructions. For example, an instruction might perform
both a store and a load instruction. The bug was cleared
by defining non-overlapping instruction (checks that an
instruction does not perform more than one type of func-
tion), and exclusivity constraints (ensures that pipeline
stages that are parallel do not both contain valid instruc-
tions). For a more detailed explanation of constraints
refer to Section 5.2.

Bug 2. The scoreboard is not part of the specification,
and therefore its initial state is abstract, and does not
reflect the current state of the processor. This was cleared

by initializing the scoreboard to reflect the instruction
flow in the pipeline with updates from all pipeline stages
after RF. Other entries in the scoreboard that have not
been updated are set to false.

Bug 3. A data memory exception should be suppressed if
the instruction causing the data memory exception was
previously squashed. When an instruction becomes
invalid due to a false value of the qualifying predicate
(determined in EX1) was not used to squash the data
memory exception. The value of the predicate condition
of the instruction was propagated to WB2, where it was
used to suppress the data memory exception in case the
predicate condition was false. A similar bug is described
in [39], where the Current Frame Marker register (CFM)
is updated speculatively in the Register-Files-Access
stage by the instruction packet in that stage. However, if
the instruction packet is squashed in a later pipeline
stage, the original CFM value should be restored. 

7. Related Work
Previous work on verifying processors has been done pri-
marily on pipelines similar to the five stage pipelined
DLX. Some of these efforts include features such as pre-
cise exceptions, and external interrupts, but no work has
been done previously in processors with scoreboarding or
imprecise exceptions.

Patankar et al. [27] verified a processor that is a hybrid
between ARM7, and StrongARM, with features such as
predicated execution, and multi-cycle instructions. They
used Symbolic Trajectory Evaluation (STE) to verify that
the implementation circuit fulfills the ISA that is defined
as a set of abstract assertions. However their method
required a lot of manual intervention to formally verify
only one instruction.

This paper is a case study that is based on the work by
Velev and Bryant [37], who developed EVC [41], and
used it to formally verify 7 different configurations of
dual-issue superscalar DLX processors. They extended
this work further in [38] to model features such as func-
tional units, and memories with arbitrary multicycle
latencies, branch prediction, and precise exceptions in the
context of single-issue and dual-issue DLX models.
Lahiri et al. [21] used the same tool flow, and abstraction
techniques at Motorola to check the correctness of the
M•CORE processor with instruction prefetching, multi-
cycle functional units of fixed latency, precise excep-
tions, and branch prediction.

Mishra and Dutt [25] used SVC [31] to check the cor-
rect flow of instructions in a pipelined DLX with multi-
cycle functional units and exceptions. Their method does
not guarantee completeness of the correctness proof, and
is only applicable to processors with in-order execution,
and in-order completion.
8



Sawada and Hunt [29] used the ACL2 theorem prover
[19] to verify an out-of-order superscalar microprocessor
with precise exceptions, external interrupts, and specula-
tive execution by comparing the state transitions of pipe-
lined, and non-pipelined machines in the presence of
external interrupts. Tahar and Kumar [35] proved the cor-
rectness of a pipelined DLX with exceptions using the
theorem prover HOL [12]. They wrote scripts to generate
the verification conditions for the absence of hazards, but
had to manually define conditions to verify the data for-
warding and exceptions.

Huggins and Van Campenhout [15] used Abstract
State Machines to prove the correctness of refinement
steps that transform a non-pipelined ARM processor into
a pipelined implementation. However, they had to manu-
ally define a large number of lemmas to prove the
absence of hazards after each refinement step. Hosabettu
et al. [13][15] spent 1 month of manual work to formally
verify a plain DLX by using manually defined comple-
tion functions to compute the abstraction function.

Previous work in handling out-of-order execution
with respect to loads has been done by Kroft [20], where
he uses a Miss Status Handler Register (MSHR) to keep
track of the outstanding memory requests. If an instruc-
tion attempts to use the destination register of a load
before the load is completed, that instruction is blocked
in the decode stage.

We use conditions to modify the correctness criterion
to verify the implementation processor with imprecise
exceptions. Such a modification is necessary as imprecise
exceptions are not a property of the specification. Srivas
and Miller [32][33] have defined similar preconditions to
prove the correctness of the AAMP5 processor with the
PVS theorem prover. These preconditions were required
to handle the consequences of hiding the stack cache
from the macro level.

Su et al. [34] use syntactic manipulation of formulas
in first-order logic to automatically generate invariants.
Isles et al. [18] extended their earlier work on the Integer
Combinational Sequential concurrency model in order to
automatically compute invariants for the reachable states
of a pipelined implementation. Tiwari et al. in [36] have
described a process for inductive invariant generation,
and strengthening based on computing under-approxima-
tions, and over-approximations of the reachable state set.
These methods derive a large number of invariant con-
straints that are too restrictive and detailed. In contrast we
define constraints that are sufficient for the formal verifi-
cation to go though, with each constraint representing
conditions that are either local to one stage (non-overlap-
ping constraints) or involve control bits from parallel
stages (exclusivity constraints). 

Marinescu and Rinard [22][23] present an algorithm
for automatic pipelining of sequential circuits, and allow
speculative update of the architectural state. The algo-

rithm ensures that the old values of speculatively updated
state elements are carried along the pipeline, and are
restored in case of wrong speculation. If correctly imple-
mented, this method could have prevented bug 3 (see
Section 6.1), and a similar bug in [39].

8. Conclusion
We formally verified a model of the Intel XScale super-
pipelined RISC processor where the main execution,
enhanced memory, and MAC pipelines, have different
latencies. Features such as the Register Scoreboarding
(that was formally verified for the first time), precise and
imprecise exceptions, branch prediction, and predicated
instruction execution were implemented. The most com-
plex model was formally verified in 344 seconds. We
proposed a method to formally verify imprecise excep-
tions.
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