
1

1

Simulators and such…

Mats Brorsson & Mladen Nikitovic
ICT
Dept of Electronic, Computer and
Software Systems (ECS)

2

Outline

• What defines a simulator?
• Why are simulators needed?
• Classifications
• Case studies
• Benchmark suites
• New challenges
• References

3

What defines a simulator?

From Wikipedia: "A simulation is an imitation of some real thing,
state of affairs, or process. The act of simulating something
generally entails representing certain key characteristics or
behaviors of a selected physical or abstract system."

• Simulation gives you the opportunity to model non-existing
components, to collect statistics about its performance etc.

Program
(target)

data
statistics
output

host

4

What about emulation?

Wikipedia:
A software emulator allows computer
programs to run on a platform (computer
architecture and/or operating system) other
than the one for which they were originally
written. Unlike simulation, which only
attempts to reproduce a program's behavior,
emulation attempts to model to various
degrees the state of the device being
emulated.

2

5

Why use simulation?

• Understanding real systems
• Higher degree of observability
• Less dangerous
• Fault injection
• Debugging
• Prototype hardware before expensive

implementations
• Develop software in parallel with hardware

6

Research trends

Performance evaluation methodologies used in a
sampling of papers frm ISCA [K. Skadron]

0

10

20

30

40

50

1973 1985 1993 1997 2001

no
f p

ap
er

s other
mathematical modeling
measurement
simulation

7

Simulator classifications

• Design goals drives optimization towards
any corner in the triangle

Performance

FlexibilityDetail

Performance speeds design cycle

Flexibility maximizes design scope
Detail minimizes risk

8

Simulator categories

• Full-system vs microarchitecture simulators
Full system simulators are slow, but models OS-

overheads and a more “complete picture” of the
results

Architecture simulators are faster, usually more
accurate than full system simulators.

• Functional vs performance simulators
functional sims are faster but less accurate
functional sims are also more flexible
performance allow accurate modeling of more

complex architectures with out-of-order execution

3

9

More simulator categories

• Interpreters vs. instrumented code
Interpreters can support multiple targets, thus are

more flexible
Intstrumented code runs much faster on a host than

using an interpreter, however one must watch out
for probing effects

• Trace-driven vs execution-driven simulators
traces are pre-recorded streams of instructions,

which allows for a deterministic simulation each
time

execution-driven simulations allows exploration of
speculative execution and also side-effects of the
operating system

10

SimpleScalar

• A microarchitectural simulator suite (T. Austin
92’)

www.simplescalar.com

• Development tools
Compilers, assembler, linker & libraries

All source code included

Simulators

Functional and performance simulators

Execution and trace-driven

Trace genarator

P

FD

11

Simplescalar structure

SimpleScalar Program Binary

SS ISA (PISA) POSIX System Calls

Machine Definition Proxy Syscall Handler

Simulator core
BPred

Resource

Cache Loader Regs

Stats

Dlite!

Memory

User programs

Prg/Sim interface

Functional core

Performance core

12

Simplescalar simulator suite

Execution & trace-driven simulators
sim-fast functional simulation

sim-safe sim-fast with error detection

sim-cache functional cache simulator

sim-cheetah cache simulator (multiple
configurations)

sim-outorder performance out-of order execution

Trace generator
sim-eio i/o-tracing & check-pointing

Perform
ance

D
etail

4

13

MASE structure

14

MASE callback interface

15

SimICS

• Commercial Full-system simulator (SICS 92´)
models entire operating system including uni/multi-

processors, caches, networks, and peripherals

• User can attach own modules through
interfaces

• Many targets and hosts supported
Powerpc, Sparc, x86, x86-64, Alpha, ARM, IA32/64,

MIPS
Linux, Windows, Solaris

• Uses images to load system configurations
• Supports checkpointing and tracing
• http://www.simics.net, http://www.virtutech.com

P

FD

16

SimICS Architecture

5

17

Simics’ three modes

• Fast mode: No cache simulation. Just in time
compilation.

• Normal mode: Simple cache simulation.
• Out-of-order mode: MAI (Micro Architecture

Interface). Supports speculative execution,
such as, branch and valute prediction. Cache
simulation etc.

18

Target vs. host

• The target is the simulated system
• The host is the computer that runs Simics
• The different prompts:

target# — the targets prompt: root on target system
host$ — the host prompt: user on the host system

(xterm etc)
simics> — the Simics prompt

19

Simulators summary

• SimpleScalar
Free uniprocessor simulator w tools, can simulate

cache hieriarchy with a cycle-accurate processor
model

• Simics
Commercial full-system uni/multi-processor

simulator, flexible and portable, reasonably fast

• Simics extensions
Multifacet GEMS: http://www.cs.wisc.edu/gems/
Simflex: http://www.ece.cmu.edu/~simflex/

20

Benchmark suites : Spec

Standard Performance Evaluation Corporation

Consists of many categories e.g CPU

Ver. 92, 95, 2000, current version 2006

CINT 2006 Integer benchmarks (12)

CFP 2000 Floating point benchmarks (17)

Base vs Peak depending on optimization level

Input versions

reference

reduced input (CPU 2000, obsolete)

6

21

Benchmark suites : MiBench

• Freely available benchmark suite, resembles
EEMBC, a standardized (non-free) suite
http://www.eecs.umich.edu/mibench/

• Range of 1 billion executed instructions
• Consists of 35 applications from 6 different

areas in embedded computing:
automotive/industrial (sorting)
consumer (image and text compression)
office (document-related operations)
network (routing and encryption/decryption)
security (encryption/decryption)
telecom (encryption/decryption, speech encoding)

22

Benchmark suites : Mediabench

• Purpose is to represent applications common
in embedded multimedia and communication
environments

• Voice compression, image rendering &
compression, encryption/decryption of text,

• Ranges from few millon to a billion executed
instructions, quick to simulate

• Free source code at
http://cares.icsl.ucla.edu/MediaBench/

23

Possible problems

• Can I trust the results that my simulator has
produced?

• How do I verify my results?

24

New challenges: Accuracy

• Absolute accuracy shows how close one is to
the real world whereas relative accuracy
shows how correct a model is between
different configuration settings

• Absolute accuracy is increasingly complex to
achieve due to modeling limitations such as
timing variations due to physical
phenomenons

• Therefore, relative accuracy is more feasable
to achieve today, but harder to verify

7

25

New challenges: Increased
complexity

• Increasingly complex architectures are
modeled e.g multiprocessor systems with
complex networks, operating system
behavior, running multiple processes/threads
and so on..

• With current simulation speed one would wait
years for a simulation session to finish

• Several ideas to reduce simulation time
Reduce binary size

Vary simulator accuracy during a session

Fast forward between sections of code

26

New challenges: Workload variability

• A workload consists of multiple processes or
threads executed at various instants of time

• Running one workload scenario will not give
you an accurate result due to variations in
I/O response, OS services and schedulers

[E. Larson]

27

New challenges: Workload variability

• One need to run a workload scenario multiple
times to increase confidence in results

28

References

• Addressing workload variability in architectural
simulations,
E. Larson et al., IEEE Computer, 2001.

• Challenges in Computer Architecture Evaluation,
K. Skadron et al., IEEE Computer, 2003.

• Simulating a 2M commercial server on a 2K PC,
A. R. Alameldeen et al., IEEE Computer, 2003.

• SimpleScalar: An infrastructure for computer System
modeling,
T. Austin et al, IEEE Computer, 2002.

• MASE: A novel infrastructure for detailed
microarchitectural modeling
E. Larson et al., Int. Symp. on Performance Analysis of

Systems and Software, 2001.

8

29

References

• Asim: A performance model framework
J. Emer et al., IEEE Computer 2002.

• Simics: A full system simulation platform
P. S. Magnusson, IEEE Computer 2002.

• RSIM: Simulating shared-memory
multiprocessors with ILP processors
C. J. Hughes, IEEE Computer, 2002.

• Picking statistically valid and early simulation
points
E. Perelman, Intl. Conf. On Parallel Architectures and

Compilation Techniques (PACT), 2003.

