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Abstract 
Victim caching was proposed by Jouppi [4] as an 

approach to improve the miss rate of direct-mapped 
caches. This approach augments the direct-mapped 
main cache with a srnall fully-associate cache, called 
victim cache, that stores cache blocks evicted from the 
main cache as a result of replacements. We propose 
and evaluate an improvement of this scheme, called 
selective victim caching. In this scheme, incoming 
blocks into the first-level cache are placed selectively 
in the main cache or the victim cache by the use of a 
prediction scheme based on their past history of use. 
In addition, interchanges of blocks between the main 
cache and the victim cache are also performed selec- 
tively. We show that the scheme results in significant 
improvements in miss rate as well as the number of 
interchanges between the two caches, for both small 
and large caches (4 Kbytes ~ 128 Kbytes). For ex- 
ample, simulations with four instruction traces from 
the SPEC Release 1 programs showed an average im- 
provement of approximately 20 percent in miss rate 
over simple victim caching for a 16K cache with a 
block size of 32 bytes; the number of blocks inter- 
changed between the main and victim caches reduced 
by approximately 74 percent. Implementation of the 
scheme in an on-chip processor cache is described. 

1 Introduction 
The last decade has seen an increasing gap between 

processor speed and the speed of the underlying mem- 
ory hierarchy. This is the result of two contributing 
factors: (i) processor cycle time has been decreasing 
at a faster rate than memory access time, and (ii) 
design techniques such as pipelining and superscalar 
processing, common among modern RISC processors, 
have caused a dramatic reduction in the average num- 
ber of cycles per instruction (CPI). These two fac- 
tors together have resulted in a rapid increase in the 
cache-miss penalty in terms of the number of wasted 
instruction cycles. Influence of the memory hierarchy 
performance, of cache memory in particular, on pro- 
gram execution is therefore considerably stronger now 
than it was some time ago [7]. This trend is likely to  
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continue with the new generation of processors such 
as the DEC Alpha, Intel Pentium, etc. Realizing the 
performance potential of these processors requires in- 
novations in the cache memory subsystem. 

Most of the current-generation single-chip micro- 
processors employ on-chip L1 (first-level) caches to 
provide fast access to instructions and data. The de- 
sign of these on-chips caches involves a fundamental 
tradeoff between miss-rate and access time [3, 61. A 
direct-mapped cache results in the lowest access time, 
but often suffers from high miss rates due to conflicts 
among memory references. Set-associative caches im- 
prove the miss rate at the expense of increasing the 
access time. Hill argued that direct-mapped caches 
often afford better performance in terms of effective 
memory-access time over set-associative caches [3]. In 
addition, as the processor cycle-time shrinks, single- 
cycle access to the cache can often be provided only 
by a direct-mapped configuration. Indeed, both the 
instruction and data caches in the DEC Alpha 21064 
chip are implemented as direct-mapped to satisfy the 
5 ns processor-cycle time [I]. 

The conflicts among memory references in a direct- 
mapped cache often result in significant increases 
in miss rate over set-associative caches, particularly 
when the cache size is small. This motivated re- 
searchers to investigate techniques to reduce conflict- 
misses in a direct-mapped cache without affecting its 
hit time (cache access time) [4, 51. One such method, 
known as victim caching, was proposed by Jouppi [4]. 
In this approach, the main direct-mapped cache is 
augmented with a small fully-associative cache that 
is used to store the “victims” of replacements from 
the main cache. That is, upon every replacement, the 
block being discarded from the main cache is added to 
the victim cache, where it replaces the least recently 
used block. During each reference to the main cache, 
the victim cache is searched in parallel. In the event 
of a miss in the main cache that hits in the victim 
cache, the access is satisfied from the victim cache; a 
replacement is then effected by interchanging the cor- 
responding blocks in the two caches. 

Victim caching improves the effective memory ac- 
cess time by reducing the miss rate as seen by the 
second level of the memory hierarchy. This reduction 
in miss rate can be considerable for small caches [4]. 
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Figure 1: Memory hierarchy for the selective victim 
caching scheme. 

As the size of the main cache is increased, however, the 
improvement decreases as a result of the small size of 
the victim cache. In addition, the time needed to ex- 
change blocks between the main cache and the victim 
cache can offset some of the performance gain from 
the lower miss ratio. 

In this paper, we propose and evaluate an improve- 
ment of victim caching, which we call selective victim 
caching. In this method, incoming blocks to the L1 
cache are placed selectively either in the main cache 
or the victim cache using a prediction scheme based on 
their past history of use. Blocks that are less likely to 
be accessed in the future are placed in the victim cache 
instead of the main cache. Similarly, when a miss is 
serviced by the victim cache, the prediction algorithm 
is again applied to determine if an interchange of the 
conflicting memory items is required. Results from 
simulations show significant improvements in miss ra- 
tios for several traces; in addition, the method reduces 
the number of interchanges of blocks between the main 
cache and victim cache considerably, thus reducing the 
overhead introduced by them. 

In our scheme, the decision to place an incoming 
block in the main cache or the victim cache is made 
with the aid of state information associated with cache 
blocks. These state bits provide information on the 
history of the block the last time it was in the main 
cache. This idea was first proposed by McFarling, 
who used the history information to  exclude certain 
blocks from a direct-mapped cache, reducing cyclic re- 
placements involving the same block [5]. This scheme, 
called dynamic exclusion, reduces conflict misses in 
many cases. Its main drawback, however, is that a 
wrong prediction results in an access to the next level 
of the memory hierarchy, offsetting some of the per- 
formance gain. In addition, the scheme is less effec- 
tive with the large block sizes typical of current mi- 
croprocessors. Selective victim caching, on the other 
hand, not only sustains but in some cases improves 
the miss ratios with increasing block size. Further- 
more, the penalty of a wrong prediction in most cases 
is limited to an access to the victim cache, which takes 
at most one extra cycle. Finally, the effectiveness of 
the dynamic exclusion scheme is primarily limited to 
cases involving conflicts between two memory items, 
while selective victim caching can reduce the penalty 
for conflicts between more items, provided that the 
total space required does not exceed the available size 
of the victim cache. 

The rest of this paper is organized as follows: Sec- 
tion 2 introduces and describes the selective victim 
caching idea. Section 3 presents a performance eval- 
uation of the scheme by means of trace-driven sim- 
ulations of four programs from the SPEC Release 1 
benchmark suite. Section 4 discusses implementation 
alternatives for the scheme and describes an imple- 
mentation for an on-chip cache where all state infor- 
mation is maintained within the CPU chip. Finally, 
some concluding remarks are given in Section 5. 

2 Selective Victim Caching 
In this section, we present the basic architecture 

of the memory hierarchy for application of selective 
victim caching and describe the algorithms involved. 
For simplicity, we describe the scheme as applied to 
an instruction cache. Extension of the scheme to data 
caches is straightforward. 

The memory hierarchy is illustrated in Figure 1. 
The first-level (Ll)  cache consists of a direct-mapped 
main cache and a small fully-associative victim cache. 
A line buffer is included so that sequential accesses to 
words in the same cache block (line) do not result in 
more than one access to the cache, thus preventing re- 
peated updates of state bits in cache. Upon the first 
access to a cache line, the entire line is brought into 
the line buffer in parallel with the execution in the 
CPU; subsequent accesses to  words in the same line 
are satisfied from the line buffer and cause no update 
of state bits in cache. This allows the prediction al- 
gorithm to account for sequential references to words 
within a cache line as a single access to the cache line. 
Lines are replaced in the victim cache according to the 
LRU (least recently used) algorithm. The next lower 
level of the memory hierarchy can be an L2 cache or 
the main memory. 

On every memory access, the line buffer, main 
cache, and the victim cache are searched in parallel. 
If the line is found in the line buffer, the instruction 
is fetched from there and no other action is necessary. 
Otherwise, three different cases must be considered: 

1. Hit in main cache: If the word is found in the 
direct-mapped cache, it is delivered to the CPU 
and the entire line containing the accessed word 
is brought into the line buffer. This is no dif- 
ferent than in the case of a simple direct-mapped 
cache. The only additional operation is a possible 
update of the state bits in cache used by the pre- 
diction scheme. We shall explain the function of 
the state bits later when we describe the predic- 
tion algorithm. The update can be performed in 
parallel with the fetch operation and introduces 
no additional delay. 

2. Miss in main cache, hit in victim cache: In this 
case, the word is fetched from the victim cache 
into the line buffer and forwarded to the CPU. 
At the same time, the prediction algorithm is in- 
voked to determine if the accessed block in vic- 
tim cache is more likely to be accessed in the fu- 
ture than the block in main cache it is conflicting 
with. If the prediction algorithm decides that the 
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block in the victim cache is more likely to be ref- 
erenced again than the conflicting block in the 
main cache, an interchange is performed between 
the two blocks; no such interchange is performed 
otherwise. In both cases the block in the vic- 
tim cache is marked as the most recently used. 
In addition, the state bits used by the prediction 
algorithm are updated to reflect the history of ac- 
cesses, as will be described later. 

3. Miss in both main and victim caches: If the word 
is not found both in the main cache and the victim 
cache, it must be fetched from the next level of the 
hierarchy. This means that either the correspond- 
ing line in the direct-mapped cache is empty, or 
the new line conflicts with another line already 
stored there. In the first case, the new line is 
brought into the main cache and the victim cache 
is not affected. In the second case, however, the 
prediction algorithm must be applied to deter- 
mine which of the two conflicting lines is more 
likely to  be referenced in the future. If the in- 
coming line is found to  have a higher probability 
than the conflicting line in the main cache, the 
latter is moved to the victim cache and the new 
line takes its place in the main cache; otherwise, 
the incoming line is directed to  the victim cache. 
Again, the state bits used by the prediction algo- 
rithm are updated, as will be described later. 

The differences of our scheme from simple victim 
caching are in cases 2 and 3 above. In case 2, the 
conflicting blocks in the main cache and the victim 
cache are always exchanged in simple victim caching, 
whereas our scheme performs the interchanges selec- 
tively. Similarly, in case 3, the simple victim caching 
scheme always places incoming blocks in the main 
cache, whereas our scheme places them selectively in 
the main cache or the victim cache. 

Having described the cache configuration, we can 
now describe the prediction algorithm employed. The 
prediction algorithm is invoked whenever the current 
access conflicts with a line stored in the main cache; 
the goal of the algorithm is to determine which of the 
two conflicting lines is more likely to be accessed in the 
future. The line with a higher probability of access in 
the future is placed in the main cache, and the other 
is placed in the victim cache. Thus, if the line in the 
victim cache is replaced in the future because of the 
small capacity of the victim cache, the impact would 
be less severe than the opposite choice. This is the 
basic idea behind our scheme. 

The prediction algorithm is based on the dynamic 
exclusion algorithm proposed by McFarling [5]. The 
algorithm uses two state bits associated with every 
cache line, called the hit bit and the sticky bit. The 
hit bit is logically associated with a L1-cache block as 
it resides in L2-cache or main memory. A hit bit of 
1 indicates that at least one hit to the corresponding 
block occurred while the block was in L1-cache the last 
time. A zero hit-bit indicates that the corresponding 
block was never accessed while it was in L1-cache the 
last time (and therefore less likely to be accessed more 

Case 1: Access to line /?, hit in main cache; 

(update hit and sticky bits) 
hit[/?] c 1; sticky[@] t 1. 

Case 2: Access to line 0, hit in victim cache; 

Let a be the conflicting line in main cache; 
if sticky[a] = 0 

interchange a and p; 
sticky[/?] + 1; hit(@] + 1; 

else 
if hit[/?] = 0 then sticky[a] c 0 
else 

interchange a and p; 
sticky[@] c 1; hit[@] c 0; 

end if 
end if 

Case 3: Access to line @, 
miss in both main and victim; 

Let a be the conflicting line in main cache; 
if sticky[a] = 0 

move a to victim cache; 
transfer /3 to main cache; 
sticky[P] c 1; hit[@] + 1; 

else 
if hit[@] = 0 then 

transfer @ to victim cache; 
sticky[a] c 0 

else 
move a to victim cache; 
transfer /3 to main cache; 
sticky[fl] c 1; hit[@] c 0; 

end if 
end if 

~~ ~ 

Figure 2: The selective victim caching algorithm. 

than once when the line is transferred to L1 cache 
the next time). In an ideal implementation, the hit 
bits are maintained in L2-cache or main memory and 
brought into L1-cache along with the corresponding 
block. When a block is removed from the L1-cache, 
the state of the corresponding hit-bit must then be up- 
dated in the L2-cache or main memory. We will later 
show an implementation in Section 4 that avoids such 
updates by maintaining the hit bits within the CPU 
chip; in this description of the prediction algorithm, 
however, we assume that the hit bits are associated 
with the La-cache or main memory. 

A sticky bit is associated with each block in the 
main cache of the L1 cache system. Its purpose is to 
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prevent thrashing by providing some inertia to a cache 
block. When a block, say a,  is brought into the main 
direct-mapped cache, its sticky bit is set to 1. Every 
subsequent hit to the block a also refreshes the sticky 
bit to 1. On a reference to a conflicting block, say p, 
if the prediction algorithm decides not to replace a in 
the main cache, the sticky bit is now reset to zero. If a 
subsequent access conflicts with the block a while its 
sticky bit is zero, the block is replaced from the main 
cache. 

The complete selective victim-caching algorithm is 
outlined in Figure 2. Three separate cases are consid- 
ered: In the first case, a hit in the main cache simply 
sets the hit and sticky bits, if they are not already 
set. In the second case, the accessed block, say p, is 
in the victim cache. This implies a conflict between 
p and a block in the main cache, say cy. In this case, 
the prediction algorithm is applied to determine if an 
interchange is to be performed. If the sticky bit of cy is 
zero, implying that the line was not accessed since the 
previous conflict involving a,  the new line ,O is given 
priority over cy, causing an interchange. Likewise, if 
the hit bit of the line p is set, it is given higher prior- 
ity over Q, and the lines are interchanged. If the sticky 
bit of a is 1 and the hit bit of p is zero, the access is 
satisfied from the victim cache and no interchange is 
performed. The sticky bit of a is reset to zero in this 
case so that a subsequent conflict involving a without 
an intervening reference to it would result in a being 
moved out of the main cache. 

Finally, case 3 of the algorithm presents the se- 
quence of actions when an access misses in both the 
main and the victim caches. The sequence is similar 
to that of case 2, except that the destination of the in- 
coming line is chosen as either the main cache or the 
victim cache. In the case of the former, the conflicting 
line in the main cache is moved to the victim cache 
before it is replaced. 

Note that the penalty for a misprediction in this 
scheme is limited to an access to the victim cache and 
a possible interchange, assuming that the victim cache 
is large enough to  hold the conflicting line between 
accesses. 

The operation of the selective victim-caching algo- 
rithm can be illustrated with an example instruction 
reference sequence (cy"Py)" involving three conflict- 
ing lines a,  p, and y. The notation repre- 
sents an execution sequence composed of two nested 
loops - the inner loop consisting of m references to 
the line a,  followed by accesses to p and y in the outer 
loop. The first access brings Q into the main cache 
and both its hit and sticky bits are set by at most two 
references to it. When p is referenced, its hit bit is 
initially zero. Therefore it does not replace a in the 
direct-mapped cache and is stored in the victim cache 
instead. The conflict, however, causes the sticky bit of 
Q to be reset to  zero. When y is referenced, its hit bit 
is zero, but the sticky bit of a is also zero. Hence, y 
replaces Q in the main cache. The line cy is now trans- 
ferred to the victim cache and its hit bit remains 1 
because of the previous references. In the next cycle 
when cy is referenced again, it is moved back to the 
main cache because of its hit bit remaining set. Thus, 

Trace bource Instruction 
program language references 
gcc C 100 M 
li C 100 M 
spice2g6 FORTRAN 100 M 
doduc FORTRAN 100M 

Data 
references 
21,428,034 
23,664,933 
25,509,619 
32,403,178 

Table 1: Benchmark programs used in the simulations. 

if the victim cache is large enough to  fit both a and 
/3 or ,O and y, only three references will be serviced 
by the second level cache. The total number of in- 
terchanges will be no more than 2n. In the case of 
a simple prediction scheme without the victim cache 
the total number of misses would be 2n, as the scheme 
can handle only conflicts between two lines. A simple 
victim cache with no prediction would be able to re- 
duce the number of misses to the second level cache 
to 3, but would require a total of 3n interchanges dur- 
ing the execution of the outer loop. This brings out 
the advantage of selective victim caching over other 
schemes in dealing with conflicts involving more than 
two cache lines. 

3 Performance Evaluation 
To evaluate the effectiveness of the selective vic- 

tim caching idea, we performed extensive simulations 
using memory-access traces of several programs from 
the SPEC Release 1 benchmark suite. Because of con- 
straints on the length of the paper, results from only 
four of the benchmarks are presented here. Results 
from other benchmarks can be founcl in [8]. 

Simulations were performed separately for instruc- 
tion and data caches. In all cases, the size of the 
victim cache was fixed at 8 lines. The size of the 
direct-mapped main cache was varied from 2 Kbytes 
to 128 Kbytes. The line-size of the L1 cache system 
was chosen as 32 bytes for most simulations. However, 
we also studied the effect of varying the line size by 
performing a set of simulation runs for line sizes from 
4 bytes to 64 bytes, keeping the size of the main cache 
fixed at 16 Kbytes. 

A direct-mapped L2 cache with 8 times the capacity 
of the L1 main cache was employed in the simulations. 
The line size of the L2 cache was set equal to that 
of the L1 cache. The hit bits used by the prediction 
algorithm were stored in the L2 cache, but not in main 
memory. When a new line was brought into the L2 
cache from main memory, its hit bit was initialized to 
zero. The hit bit was copied along with a line from L2 
cache to L1, and the updated bit copied back to L2 
upon replacement of the line in L1. To maintain the 
inclusion property in the case of data caches, lines in 
the L1 cache were invalidated when they were replaced 
in the L2 cache. 
3.1 Program traces 

To generate the memory-access traces needed, four 
programs from the SPEC Release 1 benchmark suite 
were traced on a SUN-4 workstation using the qp t  
trace-profiler program [4]. Table 1 lists the programs 

415 



Figure 3: Miss ratio (%I) for a direct-mapped instruction cache, a pure victim cache, and a selective victim cache 
configuration for different cache sizes with respect to four instruction traces (Line size = 32 bytes, size of victim 
cache = 8 lines). 

li  

ulw Si= @*I uu SI- @*e.) 

Figure 4: Miss ratio (%) for a direct-mapped instruction cache, a pure victim cache, and a selective victim cache 
configuration for different line sizes with respect to four instruction traces (Cache size = 16 Kbytes, size of victim 
cache = 8 lines). 
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used, along with their trace lengths. Two of the pro- 
grams are written in C and two in FORTRAN. Since 
long traces are required to accurately simulate the be- 
havior of large caches [9], we generated traces with 
approximately 100 million instruction references from 
each program. The number of data references in each 
trace is in the range of 20-30 million. We modified 
the Dinero I11 simulation package [2] to simulate our 
cache configurations. 

3.2 Instruction cache simulations 
In this section we present results from simulating 

the selective victim caching scheme in the instruction 
cache using the four program traces in Table 1. The 
results are compared with those for a direct-mapped 
cache and a simple victim cache configuration. 

The cache miss-ratios for a direct-mapped cache a 
simple victim cache configuration and the selective 
victim cache are shown in Figure 3 as a function of 
the cache size. Note that the program trace of li was 
small enough to fit completely in a 64 Kbyte cache 
and generated no conflict misses beyond a cache size 
of 32 Kbytes. Only qcc has a miss rate of more than 
1 percent in a direct-mapped cache of size 32 Kbytes. 

The improvement in performance obtained by both 
pure victim caching and selective victim caching over 
a direct-mapped cache varies among the traces, de- 
pending on the size of their working sets and the fre- 
quency of the access conflicts the prediction scheme 
could eliminate. For benchmarks with small working 
sets and low miss ratios like li, the improvement for 
both schemes is high for cache sizes up to  32 Kbytes. 
For li, the reduction in miss ratio obtained by both 
schemes is as high as 95 percent for a 32K cache. 
In this case, the working set of the trace was found 
to be 794 lines (25,408 bytes). The instruction ref- 
erences produced a total of 16,243 conflict misses in 
the 32K direct-mapped cache; these were completely 
eliminated by the victim cache. As the cache size was 
increased beyond 32 Kbytes, however, the miss rate 
was dominated by the compulsory misses, and the im- 
provement due to victim caching fell rapidly. 

For benchmarks with relatively large working sets 
and high miss ratios like gcc, spice2q6 and doduc, the 
reduction in miss ratio for the selective victim cache 
compared to  the pure victim cache is as high as 35 per- 
cent for spice2q6, 30 percent for doduc, and 14 percent 
for qcc. For spice2q6 with a 64K cache, the selec- 
tive victim cache improves the miss ratio by as much 
as 40 percent, whereas pure victim caching gives al- 
most no improvement. Even for small programs, selec- 
tive victim caching provides a significant improvement 
compared to the pure victim cache when the cache is 
not large enough to fit the entire program. 

Figure 4 shows the miss ratios as a function of the 
line size for all the different cache configurations. The 
size of the main cache is 16 Kbytes and the size of 
the victim cache is 8 lines. For most traces the reduc- 
tion in miss ratio increases with the line size. This 
is contrary to  the behavior of the dynamic exclusion 
scheme [5], where the miss rates increased with in- 
creasing line size. Thus, selective victim caching does 
not suffer from one of the main problems of prediction 

schemes. This outcome is the result of maintaining the 
same size for the victim cache in terms of the number 
of lines as the line size is increased, thus causing an 
increase in its effective capacity. This increase in ca- 
pacity more than compensates for any degradation in 
the success rate of the prediction scheme with increas- 
ing line size. This does not, however, increase the 
complexity of the implementation of the victim cache, 
since its associativity remains the same. In most of the 
traces the improvement of the selective victim cache 
over the pure victim cache is almost steady irrespec- 
tive of the line size. In the case of the small programs 
like li, a different behavior is observed because the 
compulsory misses dominate the miss ratio. 

An overhead introduced by the victim caching is 
the time needed to interchange cache lines between 
the main cache and the victim cache. In the case of 
pure victim caching, an interchange is performed on 
every hit to the victim cache. One of the goals of se- 
lective victim caching is to reduce the number of these 
interchanges, which have an influence on the effective 
memory access time. A simple expression for the ef- 
fective memory access time with victim caching can be 
derived as follows: Let T be the total number of ref- 
erences, v the number of main-cache misses that are 
serviced by the victim cache, and m the number of 
misses from the entire L1-cache system. Furthermore, 
let p ,  be the penalty for accessing the victim cache (in 
the event of a miss in the main cache), pz the penalty 
for accessing the next level of the hierarchy, and p;  the 
penalty for an interchange. If i is the number of inter- 
changes performed, the average memory access time 
is given by 

The penalty for a hit in the victim cache with care- 
ful implementation may be one cycle. In the case of 
pure victim caching the number of interchanges i is 
identical to the number of hits to the victim cache v; 
for selective victim caching, however, i can be much 
less than U. 

Figure 5 presents the number of interchanges for 
both pure victim caching and selective victim caching 
for the same four instruction traces presented in Fig- 
ure 3. The improvement was more than 40 percent for 
most of the traces and cache sizes, and over 90 percent 
in several cases. When the line-size is large, depending 
on the implementation, the interchange operation may 
need several clock cycles. Therefore, the reduction in 
the number of interchanges can reduce the overhead 
of victim caching considerably. Thus, by improving 
both the miss ratio and the number of interchanges, 
selective victim caching can significantly improve the 
performance of the first-level cache system. 
3.3 Data cache simulations 

We also applied the selective victim-caching scheme 
to a first-level data cache. The same four traces in Ta- 
ble l were used to evaluate the scheme. The same pre- 
diction scheme and memory hierarchy were used in the 
simulations. The write policy implemented was write- 
back with write-allocate. To maintain the multilevel 
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inclusion property, lines in L1 cache were invalidated 
when they were replaced in the L2 cache. 

Figure 6 shows the miss ratios for data caches for 
a direct-mapped cache, a pure victim cache and a 
selective victim cache configuration as a function of 
the cache size. Selective victim caching produced sig- 
nificant improvements in performance for two of the 
traces - spice2g6, and doduc. For li, the reduction in 
miss ratio is already high with pure victim caching (as 
high as 95 percent for large caches), and our scheme 
did not produce any additional improvement in per- 
formance. In fact, for li the relative performance im- 
provement of the both the victim cache and the se- 
lective victim caching was found to  increase with the 
cache size. The reason is the large number of con- 
flict misses produced by the trace in a direct-mapped 
cache, which were reduced significantly by the victim 
cache. Both the pure victim caching and the selective 
victim caching schemes were successful in removing a 
large percentage of these misses. 

As can be seen from Figure 6 ,  the selective victim 
caching actually degraded the performance in several 
cases in comparison to  the pure victim cache. The 
reason for this behavior is apparent from the nature 
of the programs used. Programs that employ static 
allocation of data  and regular data  structures, such as 
spice2g6, showed significant improvements as a result 
of the use of the prediction algorithm. Both spice2g6 
and doduc are FORTRAN programs that use regular 
data structures and static allocation. The main data 
structures in both programs are arrays. The predic- 
tion algorithm is able to  resolve a large number of 
conflicts in these cases without an access to  the sec- 
ond level. In the case of programs that use dynamic 
memory allocation and extensive use of pointers, how- 
ever, the conflicts were much harder to  resolve by the 
prediction algorithm. Examples are gcc and li. Both 
gcc and li are C programs with extensive use of lists 
and hash tables. The conflicts in these programs were 
much less regular and difficult to  predict. 

The improvement in the number of.interchanges of 
cache lines between the main cache and the victim 
cache was also smaller for the data traces as com- 
pared to  the instruction traces. For example, for an 
8 K cache with a line size of 32 bytes, the reduction 
in interchanges varied from approximately 32 percent 
for doduc to  almost no improvement for spice2g6. De- 
tailed results can be found in [8]. 

4 Implementation 
The selective victim caching scheme requires two 

state bits to  keep track of the history of a cache line 
- the sticky bit and the hit bit. In this section, we 
discuss how this state information can be maintained 
within the memory hierarchy. 

The sticky bit is logically associated with a line in 
the main cache. It is therefore natural to  store it in 
the direct-mapped cache as part of each line. The 
hit bit, on the other hand, is logically associated with 
each line in the main memory. Thus, in a perfect 
implementation, the hit bits must be stored in the 
main memory. This approach is impractical in most 
cases. Therefore, we must resort to  an approximate 

implementation. 
If the memory hierarchy includes a second-level 

cache, it is quite feasible to  store the hit bits alongside 
the lines in L2 cache, as suggested by McFarling 51. 
When a line is brought into the L1 cache from L2, 
a local copy of the hit bit is stored along with the 
line in L1 cache. This eliminates the need to  access 
the L2 cache every time the hit bit is updated by the 
prediction algorithm. When the line is replaced from 
L1 cache, the corresponding hit bit is copied into L2. 
This is the scheme used in our simulations in section 3. 

A problem with this scheme is that multiple items 
in main memory are forced to  share the same hit bit 
in L2 cache. Thus, when a line is replaced from L2 
cache, all its state information is lost, reducing the 
effectiveness of the prediction scheme. Each time a 
line is brought into L2 cache from main memory, its 
hit bit must be set to  an initial value. For a specific 
access sequence different initial values may produce 
different results. With large LZcaches, however, the 
impact of this problem may be small. 

A second problem that arises from maintaining the 
hit bits in L2 cache is the overhead of copy-back when- 
ever replacements occur in the L1 cache. This over- 
head may be small in a data  cache, because copy-backs 
of dirty lines must be performed in any case. In the 
case of an instruction cache, however, the overhead is 
significant. 

A third approach is to maintain the hit bits within 
the CPU itself, alongside the L1 cache. Since the size 
of this state storage must be kept small, some kind of 
hashing must be employed to  share the hit bits among 
the cache lines. We now describe such an approach 
and evaluate its performance. 

In our approach, an array of hit bits called the hit 
array is maintained as part of the L1 cache system. 
Each memory line is mapped to  one of the bits of 
these array. The length of the hit array is inevitably 
smaller than the maximum number of lines that can be 
addressed. Hence, more than one line will be mapped 
to the same hit bit, causing some randomization to  be 
introduced in the prediction process. Although this 
can potentially degrade the performance of selective 
victim caching, results from our simulation showed al- 
most no such degradation even with a small hit array. 

The actual implementation of the L1 cache system 
with hit array is shown in Figure 7. The line buffer is 
not shown. A sticky bit is maintained with each line in 
the main cache. No state bits are needed in the victim 
cache. The hit bits are kept in the hit array, addressed 
by a part of the memory address as shown in Figure 7. 
The size of the hit array is chosen as a multiple of the 
number of lines in the main cache. That  is, 

Size of hit array = Number of lines in main cachex H ,  

where H determines the degree of sharing of the hit 
bits among the blocks in main memory. We assume 
that H is a power of two, H = 2h. Then, the hit array 
can be addressed by the block address concatenated 
with the least significant h bits from the tag part of 
the address, as shown in Figure 7. A larger H implies 
less interference among conflicting lines for hit bits. 
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Figure 5. Number of word interchanges for a pure victim cache and a selective victim cache configuration as a 
function of the cachr sizp with respect to four instruction traces (Line size = 32 bytes, size of victim cache = 8 
lines) 

Figure 6: Miss ratio (%) for a direct-mapped cache, a pure victim cache, and a selective victim cache configuration 
for different cache sizes with respect to four data traces (Line size = 32 bytes, size of victim cache = 8 lines). 
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Figure 7: Implementation of the hit-array scheme. 

If H is chosen identical to  the ratio of the size of the 
L2 cache to the size of the L1 main cache, then the 
effect is similar to maintaining the hit bits in L2 cache, 
except that copying of bits between the two levels is 
avoided. 

To evaluate the effect of sharing of hit bits resulting 
from a small hit array, we implemented the scheme in 
our cache simulator and ran simulations for the cases 
considered in section 3. We chose H as 4. With the 
ratio of L2 to L1 cache size of 8, this corresponds to 
one hit bit shared by two lines in L2 cache. When a 
new line is brought into the L1 cache, the current state 
of the hit bit selected by its address in the hit array 
is used as its hit bit, although this bit may represent 
the state of a different line in memory at that time. 
Simulation results with the hit-array implementation 
are shown in Figures 8 and 9. The plots in Figure 8 
are for the instruction cache. Note that the effect of 
sharing of bits in the hit array is barely noticeable in 
the plots. The total storage required for the hit array 
is also modest - 256 bytes for a 16K cache with 32- 
byte lines. 

Figure 9 shows the same comparison for a data 
cache. For the hit-array scheme, no L2 cache was 
simulated. This actually led to an improvement in 
performance as a result of the elimination of invali- 
dations from the L2 cache to L1. Such invalidations 
are caused by the need to satisfy the inclusion prop- 
erty. The hit-array allows the selective victim caching 
scheme to be implemented without an L2-cache, thus 
improving the effectiveness of the prediction scheme 
slightly. Clearly, the effect of invalidations on the pre- 
diction scheme can also be reduced by designing the 
L2-cache as set-associative. 

5 Conclusions 
In this paper we presented a method for improv- 

ing the performance of victim caching. The method 
selectively places data in the main cache or the vic- 
tim cache based on a prediction algorithm that deter- 
mines how likely they are to be accessed in the future. 
Results from simulations of four programs from the 
SPEC Release 1 benchmark suite showed significant 
improvements when the scheme was applied to a first- 
level instruction cache. For a cache size of 16 Kbytes, 

selective victim caching produced an average improve- 
ment in miss rate of approximately 20 percent over 
pure victim caching. The improvement was smaller 
when the idea was applied to  a data  cache, averag- 
ing only 4 percent over pure victim caching; for some 
of the traces, however, the improvement was much 
higher. 

For both instruction and data caches, the number 
of interchanges of blocks between the main cache and 
the victim cache decreased considerably as a result of 
selective victim caching. The average reduction for 
the four traces was approximately 74 percent for a 
16K instruction cache. 

Because both the miss rate and the number of inter- 
changes affect the average access time of the memory 
hierarchy, reducing either significantly can potentially 
lead to  considerable improvements in the memory- 
access performance. Future work includes techniques 
to improve the effectiveness of the prediction algo- 
rithm for data accesses. 
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Figure 8: Miss ratio (%) for a selective victim cache configuration with a second-level cache and the hit-array 
implementation with respect to four instruction traces (Line size = 3 2  bytes! size of vict,irri cache = 8 lines. 
H = 4) .  
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Figure 9: Miss ratio (%) for a selective victim cache configuration with a second-level cache and thc hit-array 
implementation with respect to four data traces (Line size = 32 bytes, size of v ic t im cache = 8 lines, H = 4). 
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