
Selective Victim Caching: A Method to Improve
the Performance of Direct-Mapped Caches

Dimitrios Stiliadis
Anujan Varma

Computer Engineering Department
University of California
Santa Cruz, CA 95064

Abstract
Victim caching was proposed by Jouppi [4] as an

approach to improve the miss rate of direct-mapped
caches. This approach augments the direct-mapped
main cache with a srnall fully-associate cache, called
victim cache, that stores cache blocks evicted from the
main cache as a result of replacements. We propose
and evaluate an improvement of this scheme, called
selective victim caching. In this scheme, incoming
blocks into the first-level cache are placed selectively
in the main cache or the victim cache by the use of a
prediction scheme based on their past history of use.
In addition, interchanges of blocks between the main
cache and the victim cache are also performed selec-
tively. We show that the scheme results in significant
improvements in miss rate as well as the number of
interchanges between the two caches, for both small
and large caches (4 Kbytes ~ 128 Kbytes). For ex-
ample, simulations with four instruction traces from
the SPEC Release 1 programs showed an average im-
provement of approximately 20 percent in miss rate
over simple victim caching for a 16K cache with a
block size of 32 bytes; the number of blocks inter-
changed between the main and victim caches reduced
by approximately 74 percent. Implementation of the
scheme in an on-chip processor cache is described.

1 Introduction
The last decade has seen an increasing gap between

processor speed and the speed of the underlying mem-
ory hierarchy. This is the result of two contributing
factors: (i) processor cycle time has been decreasing
at a faster rate than memory access time, and (ii)
design techniques such as pipelining and superscalar
processing, common among modern RISC processors,
have caused a dramatic reduction in the average num-
ber of cycles per instruction (CPI). These two fac-
tors together have resulted in a rapid increase in the
cache-miss penalty in terms of the number of wasted
instruction cycles. Influence of the memory hierarchy
performance, of cache memory in particular, on pro-
gram execution is therefore considerably stronger now
than it was some time ago [7]. This trend is likely to

This research is supported by NSF Young Investigator
Award MIP-9257103 and NSF Grant No. MIP-9111241.

1060-3425194 $3.00 0 1994 IEEE

continue with the new generation of processors such
as the DEC Alpha, Intel Pentium, etc. Realizing the
performance potential of these processors requires in-
novations in the cache memory subsystem.

Most of the current-generation single-chip micro-
processors employ on-chip L1 (first-level) caches to
provide fast access to instructions and data. The de-
sign of these on-chips caches involves a fundamental
tradeoff between miss-rate and access time [3, 61. A
direct-mapped cache results in the lowest access time,
but often suffers from high miss rates due to conflicts
among memory references. Set-associative caches im-
prove the miss rate at the expense of increasing the
access time. Hill argued that direct-mapped caches
often afford better performance in terms of effective
memory-access time over set-associative caches [3]. In
addition, as the processor cycle-time shrinks, single-
cycle access to the cache can often be provided only
by a direct-mapped configuration. Indeed, both the
instruction and data caches in the DEC Alpha 21064
chip are implemented as direct-mapped to satisfy the
5 ns processor-cycle time [I].

The conflicts among memory references in a direct-
mapped cache often result in significant increases
in miss rate over set-associative caches, particularly
when the cache size is small. This motivated re-
searchers to investigate techniques to reduce conflict-
misses in a direct-mapped cache without affecting its
hit time (cache access time) [4, 51. One such method,
known as victim caching, was proposed by Jouppi [4].
In this approach, the main direct-mapped cache is
augmented with a small fully-associative cache that
is used to store the “victims” of replacements from
the main cache. That is, upon every replacement, the
block being discarded from the main cache is added to
the victim cache, where it replaces the least recently
used block. During each reference to the main cache,
the victim cache is searched in parallel. In the event
of a miss in the main cache that hits in the victim
cache, the access is satisfied from the victim cache; a
replacement is then effected by interchanging the cor-
responding blocks in the two caches.

Victim caching improves the effective memory ac-
cess time by reducing the miss rate as seen by the
second level of the memory hierarchy. This reduction
in miss rate can be considerable for small caches [4].

412 Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

~

CPU

Figure 1: Memory hierarchy for the selective victim
caching scheme.

As the size of the main cache is increased, however, the
improvement decreases as a result of the small size of
the victim cache. In addition, the time needed to ex-
change blocks between the main cache and the victim
cache can offset some of the performance gain from
the lower miss ratio.

In this paper, we propose and evaluate an improve-
ment of victim caching, which we call selective victim
caching. In this method, incoming blocks to the L1
cache are placed selectively either in the main cache
or the victim cache using a prediction scheme based on
their past history of use. Blocks that are less likely to
be accessed in the future are placed in the victim cache
instead of the main cache. Similarly, when a miss is
serviced by the victim cache, the prediction algorithm
is again applied to determine if an interchange of the
conflicting memory items is required. Results from
simulations show significant improvements in miss ra-
tios for several traces; in addition, the method reduces
the number of interchanges of blocks between the main
cache and victim cache considerably, thus reducing the
overhead introduced by them.

In our scheme, the decision to place an incoming
block in the main cache or the victim cache is made
with the aid of state information associated with cache
blocks. These state bits provide information on the
history of the block the last time it was in the main
cache. This idea was first proposed by McFarling,
who used the history information to exclude certain
blocks from a direct-mapped cache, reducing cyclic re-
placements involving the same block [5]. This scheme,
called dynamic exclusion, reduces conflict misses in
many cases. Its main drawback, however, is that a
wrong prediction results in an access to the next level
of the memory hierarchy, offsetting some of the per-
formance gain. In addition, the scheme is less effec-
tive with the large block sizes typical of current mi-
croprocessors. Selective victim caching, on the other
hand, not only sustains but in some cases improves
the miss ratios with increasing block size. Further-
more, the penalty of a wrong prediction in most cases
is limited to an access to the victim cache, which takes
at most one extra cycle. Finally, the effectiveness of
the dynamic exclusion scheme is primarily limited to
cases involving conflicts between two memory items,
while selective victim caching can reduce the penalty
for conflicts between more items, provided that the
total space required does not exceed the available size
of the victim cache.

The rest of this paper is organized as follows: Sec-
tion 2 introduces and describes the selective victim
caching idea. Section 3 presents a performance eval-
uation of the scheme by means of trace-driven sim-
ulations of four programs from the SPEC Release 1
benchmark suite. Section 4 discusses implementation
alternatives for the scheme and describes an imple-
mentation for an on-chip cache where all state infor-
mation is maintained within the CPU chip. Finally,
some concluding remarks are given in Section 5.

2 Selective Victim Caching
In this section, we present the basic architecture

of the memory hierarchy for application of selective
victim caching and describe the algorithms involved.
For simplicity, we describe the scheme as applied to
an instruction cache. Extension of the scheme to data
caches is straightforward.

The memory hierarchy is illustrated in Figure 1.
The first-level (Ll) cache consists of a direct-mapped
main cache and a small fully-associative victim cache.
A line buffer is included so that sequential accesses to
words in the same cache block (line) do not result in
more than one access to the cache, thus preventing re-
peated updates of state bits in cache. Upon the first
access to a cache line, the entire line is brought into
the line buffer in parallel with the execution in the
CPU; subsequent accesses to words in the same line
are satisfied from the line buffer and cause no update
of state bits in cache. This allows the prediction al-
gorithm to account for sequential references to words
within a cache line as a single access to the cache line.
Lines are replaced in the victim cache according to the
LRU (least recently used) algorithm. The next lower
level of the memory hierarchy can be an L2 cache or
the main memory.

On every memory access, the line buffer, main
cache, and the victim cache are searched in parallel.
If the line is found in the line buffer, the instruction
is fetched from there and no other action is necessary.
Otherwise, three different cases must be considered:

1. Hit in main cache: If the word is found in the
direct-mapped cache, it is delivered to the CPU
and the entire line containing the accessed word
is brought into the line buffer. This is no dif-
ferent than in the case of a simple direct-mapped
cache. The only additional operation is a possible
update of the state bits in cache used by the pre-
diction scheme. We shall explain the function of
the state bits later when we describe the predic-
tion algorithm. The update can be performed in
parallel with the fetch operation and introduces
no additional delay.

2. Miss in main cache, hit in victim cache: In this
case, the word is fetched from the victim cache
into the line buffer and forwarded to the CPU.
At the same time, the prediction algorithm is in-
voked to determine if the accessed block in vic-
tim cache is more likely to be accessed in the fu-
ture than the block in main cache it is conflicting
with. If the prediction algorithm decides that the

413

block in the victim cache is more likely to be ref-
erenced again than the conflicting block in the
main cache, an interchange is performed between
the two blocks; no such interchange is performed
otherwise. In both cases the block in the vic-
tim cache is marked as the most recently used.
In addition, the state bits used by the prediction
algorithm are updated to reflect the history of ac-
cesses, as will be described later.

3. Miss in both main and victim caches: If the word
is not found both in the main cache and the victim
cache, it must be fetched from the next level of the
hierarchy. This means that either the correspond-
ing line in the direct-mapped cache is empty, or
the new line conflicts with another line already
stored there. In the first case, the new line is
brought into the main cache and the victim cache
is not affected. In the second case, however, the
prediction algorithm must be applied to deter-
mine which of the two conflicting lines is more
likely to be referenced in the future. If the in-
coming line is found to have a higher probability
than the conflicting line in the main cache, the
latter is moved to the victim cache and the new
line takes its place in the main cache; otherwise,
the incoming line is directed to the victim cache.
Again, the state bits used by the prediction algo-
rithm are updated, as will be described later.

The differences of our scheme from simple victim
caching are in cases 2 and 3 above. In case 2, the
conflicting blocks in the main cache and the victim
cache are always exchanged in simple victim caching,
whereas our scheme performs the interchanges selec-
tively. Similarly, in case 3, the simple victim caching
scheme always places incoming blocks in the main
cache, whereas our scheme places them selectively in
the main cache or the victim cache.

Having described the cache configuration, we can
now describe the prediction algorithm employed. The
prediction algorithm is invoked whenever the current
access conflicts with a line stored in the main cache;
the goal of the algorithm is to determine which of the
two conflicting lines is more likely to be accessed in the
future. The line with a higher probability of access in
the future is placed in the main cache, and the other
is placed in the victim cache. Thus, if the line in the
victim cache is replaced in the future because of the
small capacity of the victim cache, the impact would
be less severe than the opposite choice. This is the
basic idea behind our scheme.

The prediction algorithm is based on the dynamic
exclusion algorithm proposed by McFarling [5]. The
algorithm uses two state bits associated with every
cache line, called the hit bit and the sticky bit. The
hit bit is logically associated with a L1-cache block as
it resides in L2-cache or main memory. A hit bit of
1 indicates that at least one hit to the corresponding
block occurred while the block was in L1-cache the last
time. A zero hit-bit indicates that the corresponding
block was never accessed while it was in L1-cache the
last time (and therefore less likely to be accessed more

Case 1: Access to line /?, hit in main cache;

(update hit and sticky bits)
hit[/?] c 1; sticky[@] t 1.

Case 2: Access to line 0, hit in victim cache;

Let a be the conflicting line in main cache;
if sticky[a] = 0

interchange a and p;
sticky[/?] + 1; hit(@] + 1;

else
if hit[/?] = 0 then sticky[a] c 0
else

interchange a and p;
sticky[@] c 1; hit[@] c 0;

end if
end if

Case 3: Access to line @,
miss in both main and victim;

Let a be the conflicting line in main cache;
if sticky[a] = 0

move a to victim cache;
transfer /3 to main cache;
sticky[P] c 1; hit[@] + 1;

else
if hit[@] = 0 then

transfer @ to victim cache;
sticky[a] c 0

else
move a to victim cache;
transfer /3 to main cache;
sticky[fl] c 1; hit[@] c 0;

end if
end if

~~ ~

Figure 2: The selective victim caching algorithm.

than once when the line is transferred to L1 cache
the next time). In an ideal implementation, the hit
bits are maintained in L2-cache or main memory and
brought into L1-cache along with the corresponding
block. When a block is removed from the L1-cache,
the state of the corresponding hit-bit must then be up-
dated in the L2-cache or main memory. We will later
show an implementation in Section 4 that avoids such
updates by maintaining the hit bits within the CPU
chip; in this description of the prediction algorithm,
however, we assume that the hit bits are associated
with the La-cache or main memory.

A sticky bit is associated with each block in the
main cache of the L1 cache system. Its purpose is to

414

prevent thrashing by providing some inertia to a cache
block. When a block, say a, is brought into the main
direct-mapped cache, its sticky bit is set to 1. Every
subsequent hit to the block a also refreshes the sticky
bit to 1. On a reference to a conflicting block, say p,
if the prediction algorithm decides not to replace a in
the main cache, the sticky bit is now reset to zero. If a
subsequent access conflicts with the block a while its
sticky bit is zero, the block is replaced from the main
cache.

The complete selective victim-caching algorithm is
outlined in Figure 2. Three separate cases are consid-
ered: In the first case, a hit in the main cache simply
sets the hit and sticky bits, if they are not already
set. In the second case, the accessed block, say p, is
in the victim cache. This implies a conflict between
p and a block in the main cache, say cy. In this case,
the prediction algorithm is applied to determine if an
interchange is to be performed. If the sticky bit of cy is
zero, implying that the line was not accessed since the
previous conflict involving a, the new line ,O is given
priority over cy, causing an interchange. Likewise, if
the hit bit of the line p is set, it is given higher prior-
ity over Q, and the lines are interchanged. If the sticky
bit of a is 1 and the hit bit of p is zero, the access is
satisfied from the victim cache and no interchange is
performed. The sticky bit of a is reset to zero in this
case so that a subsequent conflict involving a without
an intervening reference to it would result in a being
moved out of the main cache.

Finally, case 3 of the algorithm presents the se-
quence of actions when an access misses in both the
main and the victim caches. The sequence is similar
to that of case 2, except that the destination of the in-
coming line is chosen as either the main cache or the
victim cache. In the case of the former, the conflicting
line in the main cache is moved to the victim cache
before it is replaced.

Note that the penalty for a misprediction in this
scheme is limited to an access to the victim cache and
a possible interchange, assuming that the victim cache
is large enough to hold the conflicting line between
accesses.

The operation of the selective victim-caching algo-
rithm can be illustrated with an example instruction
reference sequence (cy"Py)" involving three conflict-
ing lines a, p, and y. The notation repre-
sents an execution sequence composed of two nested
loops - the inner loop consisting of m references to
the line a, followed by accesses to p and y in the outer
loop. The first access brings Q into the main cache
and both its hit and sticky bits are set by at most two
references to it. When p is referenced, its hit bit is
initially zero. Therefore it does not replace a in the
direct-mapped cache and is stored in the victim cache
instead. The conflict, however, causes the sticky bit of
Q to be reset to zero. When y is referenced, its hit bit
is zero, but the sticky bit of a is also zero. Hence, y
replaces Q in the main cache. The line cy is now trans-
ferred to the victim cache and its hit bit remains 1
because of the previous references. In the next cycle
when cy is referenced again, it is moved back to the
main cache because of its hit bit remaining set. Thus,

Trace bource Instruction
program language references
gcc C 100 M
li C 100 M
spice2g6 FORTRAN 100 M
doduc FORTRAN 100M

Data
references
21,428,034
23,664,933
25,509,619
32,403,178

Table 1: Benchmark programs used in the simulations.

if the victim cache is large enough to fit both a and
/3 or ,O and y, only three references will be serviced
by the second level cache. The total number of in-
terchanges will be no more than 2n. In the case of
a simple prediction scheme without the victim cache
the total number of misses would be 2n, as the scheme
can handle only conflicts between two lines. A simple
victim cache with no prediction would be able to re-
duce the number of misses to the second level cache
to 3, but would require a total of 3n interchanges dur-
ing the execution of the outer loop. This brings out
the advantage of selective victim caching over other
schemes in dealing with conflicts involving more than
two cache lines.

3 Performance Evaluation
To evaluate the effectiveness of the selective vic-

tim caching idea, we performed extensive simulations
using memory-access traces of several programs from
the SPEC Release 1 benchmark suite. Because of con-
straints on the length of the paper, results from only
four of the benchmarks are presented here. Results
from other benchmarks can be founcl in [8].

Simulations were performed separately for instruc-
tion and data caches. In all cases, the size of the
victim cache was fixed at 8 lines. The size of the
direct-mapped main cache was varied from 2 Kbytes
to 128 Kbytes. The line-size of the L1 cache system
was chosen as 32 bytes for most simulations. However,
we also studied the effect of varying the line size by
performing a set of simulation runs for line sizes from
4 bytes to 64 bytes, keeping the size of the main cache
fixed at 16 Kbytes.

A direct-mapped L2 cache with 8 times the capacity
of the L1 main cache was employed in the simulations.
The line size of the L2 cache was set equal to that
of the L1 cache. The hit bits used by the prediction
algorithm were stored in the L2 cache, but not in main
memory. When a new line was brought into the L2
cache from main memory, its hit bit was initialized to
zero. The hit bit was copied along with a line from L2
cache to L1, and the updated bit copied back to L2
upon replacement of the line in L1. To maintain the
inclusion property in the case of data caches, lines in
the L1 cache were invalidated when they were replaced
in the L2 cache.
3.1 Program traces

To generate the memory-access traces needed, four
programs from the SPEC Release 1 benchmark suite
were traced on a SUN-4 workstation using the qp t
trace-profiler program [4]. Table 1 lists the programs

415

Figure 3: Miss ratio (%I) for a direct-mapped instruction cache, a pure victim cache, and a selective victim cache
configuration for different cache sizes with respect to four instruction traces (Line size = 32 bytes, size of victim
cache = 8 lines).

li

ulw Si= @*I uu SI- @*e.)

Figure 4: Miss ratio (%) for a direct-mapped instruction cache, a pure victim cache, and a selective victim cache
configuration for different line sizes with respect to four instruction traces (Cache size = 16 Kbytes, size of victim
cache = 8 lines).

416

used, along with their trace lengths. Two of the pro-
grams are written in C and two in FORTRAN. Since
long traces are required to accurately simulate the be-
havior of large caches [9], we generated traces with
approximately 100 million instruction references from
each program. The number of data references in each
trace is in the range of 20-30 million. We modified
the Dinero I11 simulation package [2] to simulate our
cache configurations.

3.2 Instruction cache simulations
In this section we present results from simulating

the selective victim caching scheme in the instruction
cache using the four program traces in Table 1. The
results are compared with those for a direct-mapped
cache and a simple victim cache configuration.

The cache miss-ratios for a direct-mapped cache a
simple victim cache configuration and the selective
victim cache are shown in Figure 3 as a function of
the cache size. Note that the program trace of li was
small enough to fit completely in a 64 Kbyte cache
and generated no conflict misses beyond a cache size
of 32 Kbytes. Only qcc has a miss rate of more than
1 percent in a direct-mapped cache of size 32 Kbytes.

The improvement in performance obtained by both
pure victim caching and selective victim caching over
a direct-mapped cache varies among the traces, de-
pending on the size of their working sets and the fre-
quency of the access conflicts the prediction scheme
could eliminate. For benchmarks with small working
sets and low miss ratios like li, the improvement for
both schemes is high for cache sizes up to 32 Kbytes.
For li, the reduction in miss ratio obtained by both
schemes is as high as 95 percent for a 32K cache.
In this case, the working set of the trace was found
to be 794 lines (25,408 bytes). The instruction ref-
erences produced a total of 16,243 conflict misses in
the 32K direct-mapped cache; these were completely
eliminated by the victim cache. As the cache size was
increased beyond 32 Kbytes, however, the miss rate
was dominated by the compulsory misses, and the im-
provement due to victim caching fell rapidly.

For benchmarks with relatively large working sets
and high miss ratios like gcc, spice2q6 and doduc, the
reduction in miss ratio for the selective victim cache
compared to the pure victim cache is as high as 35 per-
cent for spice2q6, 30 percent for doduc, and 14 percent
for qcc. For spice2q6 with a 64K cache, the selec-
tive victim cache improves the miss ratio by as much
as 40 percent, whereas pure victim caching gives al-
most no improvement. Even for small programs, selec-
tive victim caching provides a significant improvement
compared to the pure victim cache when the cache is
not large enough to fit the entire program.

Figure 4 shows the miss ratios as a function of the
line size for all the different cache configurations. The
size of the main cache is 16 Kbytes and the size of
the victim cache is 8 lines. For most traces the reduc-
tion in miss ratio increases with the line size. This
is contrary to the behavior of the dynamic exclusion
scheme [5], where the miss rates increased with in-
creasing line size. Thus, selective victim caching does
not suffer from one of the main problems of prediction

schemes. This outcome is the result of maintaining the
same size for the victim cache in terms of the number
of lines as the line size is increased, thus causing an
increase in its effective capacity. This increase in ca-
pacity more than compensates for any degradation in
the success rate of the prediction scheme with increas-
ing line size. This does not, however, increase the
complexity of the implementation of the victim cache,
since its associativity remains the same. In most of the
traces the improvement of the selective victim cache
over the pure victim cache is almost steady irrespec-
tive of the line size. In the case of the small programs
like li, a different behavior is observed because the
compulsory misses dominate the miss ratio.

An overhead introduced by the victim caching is
the time needed to interchange cache lines between
the main cache and the victim cache. In the case of
pure victim caching, an interchange is performed on
every hit to the victim cache. One of the goals of se-
lective victim caching is to reduce the number of these
interchanges, which have an influence on the effective
memory access time. A simple expression for the ef-
fective memory access time with victim caching can be
derived as follows: Let T be the total number of ref-
erences, v the number of main-cache misses that are
serviced by the victim cache, and m the number of
misses from the entire L1-cache system. Furthermore,
let p , be the penalty for accessing the victim cache (in
the event of a miss in the main cache), pz the penalty
for accessing the next level of the hierarchy, and p; the
penalty for an interchange. If i is the number of inter-
changes performed, the average memory access time
is given by

The penalty for a hit in the victim cache with care-
ful implementation may be one cycle. In the case of
pure victim caching the number of interchanges i is
identical to the number of hits to the victim cache v;
for selective victim caching, however, i can be much
less than U.

Figure 5 presents the number of interchanges for
both pure victim caching and selective victim caching
for the same four instruction traces presented in Fig-
ure 3. The improvement was more than 40 percent for
most of the traces and cache sizes, and over 90 percent
in several cases. When the line-size is large, depending
on the implementation, the interchange operation may
need several clock cycles. Therefore, the reduction in
the number of interchanges can reduce the overhead
of victim caching considerably. Thus, by improving
both the miss ratio and the number of interchanges,
selective victim caching can significantly improve the
performance of the first-level cache system.
3.3 Data cache simulations

We also applied the selective victim-caching scheme
to a first-level data cache. The same four traces in Ta-
ble l were used to evaluate the scheme. The same pre-
diction scheme and memory hierarchy were used in the
simulations. The write policy implemented was write-
back with write-allocate. To maintain the multilevel

417

inclusion property, lines in L1 cache were invalidated
when they were replaced in the L2 cache.

Figure 6 shows the miss ratios for data caches for
a direct-mapped cache, a pure victim cache and a
selective victim cache configuration as a function of
the cache size. Selective victim caching produced sig-
nificant improvements in performance for two of the
traces - spice2g6, and doduc. For li, the reduction in
miss ratio is already high with pure victim caching (as
high as 95 percent for large caches), and our scheme
did not produce any additional improvement in per-
formance. In fact, for li the relative performance im-
provement of the both the victim cache and the se-
lective victim caching was found to increase with the
cache size. The reason is the large number of con-
flict misses produced by the trace in a direct-mapped
cache, which were reduced significantly by the victim
cache. Both the pure victim caching and the selective
victim caching schemes were successful in removing a
large percentage of these misses.

As can be seen from Figure 6 , the selective victim
caching actually degraded the performance in several
cases in comparison to the pure victim cache. The
reason for this behavior is apparent from the nature
of the programs used. Programs that employ static
allocation of data and regular data structures, such as
spice2g6, showed significant improvements as a result
of the use of the prediction algorithm. Both spice2g6
and doduc are FORTRAN programs that use regular
data structures and static allocation. The main data
structures in both programs are arrays. The predic-
tion algorithm is able to resolve a large number of
conflicts in these cases without an access to the sec-
ond level. In the case of programs that use dynamic
memory allocation and extensive use of pointers, how-
ever, the conflicts were much harder to resolve by the
prediction algorithm. Examples are gcc and li. Both
gcc and li are C programs with extensive use of lists
and hash tables. The conflicts in these programs were
much less regular and difficult to predict.

The improvement in the number of.interchanges of
cache lines between the main cache and the victim
cache was also smaller for the data traces as com-
pared to the instruction traces. For example, for an
8 K cache with a line size of 32 bytes, the reduction
in interchanges varied from approximately 32 percent
for doduc to almost no improvement for spice2g6. De-
tailed results can be found in [8].

4 Implementation
The selective victim caching scheme requires two

state bits to keep track of the history of a cache line
- the sticky bit and the hit bit. In this section, we
discuss how this state information can be maintained
within the memory hierarchy.

The sticky bit is logically associated with a line in
the main cache. It is therefore natural to store it in
the direct-mapped cache as part of each line. The
hit bit, on the other hand, is logically associated with
each line in the main memory. Thus, in a perfect
implementation, the hit bits must be stored in the
main memory. This approach is impractical in most
cases. Therefore, we must resort to an approximate

implementation.
If the memory hierarchy includes a second-level

cache, it is quite feasible to store the hit bits alongside
the lines in L2 cache, as suggested by McFarling 51.
When a line is brought into the L1 cache from L2,
a local copy of the hit bit is stored along with the
line in L1 cache. This eliminates the need to access
the L2 cache every time the hit bit is updated by the
prediction algorithm. When the line is replaced from
L1 cache, the corresponding hit bit is copied into L2.
This is the scheme used in our simulations in section 3.

A problem with this scheme is that multiple items
in main memory are forced to share the same hit bit
in L2 cache. Thus, when a line is replaced from L2
cache, all its state information is lost, reducing the
effectiveness of the prediction scheme. Each time a
line is brought into L2 cache from main memory, its
hit bit must be set to an initial value. For a specific
access sequence different initial values may produce
different results. With large LZcaches, however, the
impact of this problem may be small.

A second problem that arises from maintaining the
hit bits in L2 cache is the overhead of copy-back when-
ever replacements occur in the L1 cache. This over-
head may be small in a data cache, because copy-backs
of dirty lines must be performed in any case. In the
case of an instruction cache, however, the overhead is
significant.

A third approach is to maintain the hit bits within
the CPU itself, alongside the L1 cache. Since the size
of this state storage must be kept small, some kind of
hashing must be employed to share the hit bits among
the cache lines. We now describe such an approach
and evaluate its performance.

In our approach, an array of hit bits called the hit
array is maintained as part of the L1 cache system.
Each memory line is mapped to one of the bits of
these array. The length of the hit array is inevitably
smaller than the maximum number of lines that can be
addressed. Hence, more than one line will be mapped
to the same hit bit, causing some randomization to be
introduced in the prediction process. Although this
can potentially degrade the performance of selective
victim caching, results from our simulation showed al-
most no such degradation even with a small hit array.

The actual implementation of the L1 cache system
with hit array is shown in Figure 7. The line buffer is
not shown. A sticky bit is maintained with each line in
the main cache. No state bits are needed in the victim
cache. The hit bits are kept in the hit array, addressed
by a part of the memory address as shown in Figure 7.
The size of the hit array is chosen as a multiple of the
number of lines in the main cache. That is,

Size of hit array = Number of lines in main cachex H ,

where H determines the degree of sharing of the hit
bits among the blocks in main memory. We assume
that H is a power of two, H = 2h. Then, the hit array
can be addressed by the block address concatenated
with the least significant h bits from the tag part of
the address, as shown in Figure 7. A larger H implies
less interference among conflicting lines for hit bits.

418

(1-M-I
DUE TO LACK Or' CON TKAST, GRAPHS D D NOT REPRODUCE WELL.

GRAPHS FOLLOW SAME SEQUENCE AS LEGEND

Figure 5. Number of word interchanges for a pure victim cache and a selective victim cache configuration as a
function of the cachr sizp with respect to four instruction traces (Line size = 32 bytes, size of victim cache = 8
lines)

Figure 6: Miss ratio (%) for a direct-mapped cache, a pure victim cache, and a selective victim cache configuration
for different cache sizes with respect to four data traces (Line size = 32 bytes, size of victim cache = 8 lines).

419

Figure 7: Implementation of the hit-array scheme.

If H is chosen identical to the ratio of the size of the
L2 cache to the size of the L1 main cache, then the
effect is similar to maintaining the hit bits in L2 cache,
except that copying of bits between the two levels is
avoided.

To evaluate the effect of sharing of hit bits resulting
from a small hit array, we implemented the scheme in
our cache simulator and ran simulations for the cases
considered in section 3. We chose H as 4. With the
ratio of L2 to L1 cache size of 8, this corresponds to
one hit bit shared by two lines in L2 cache. When a
new line is brought into the L1 cache, the current state
of the hit bit selected by its address in the hit array
is used as its hit bit, although this bit may represent
the state of a different line in memory at that time.
Simulation results with the hit-array implementation
are shown in Figures 8 and 9. The plots in Figure 8
are for the instruction cache. Note that the effect of
sharing of bits in the hit array is barely noticeable in
the plots. The total storage required for the hit array
is also modest - 256 bytes for a 16K cache with 32-
byte lines.

Figure 9 shows the same comparison for a data
cache. For the hit-array scheme, no L2 cache was
simulated. This actually led to an improvement in
performance as a result of the elimination of invali-
dations from the L2 cache to L1. Such invalidations
are caused by the need to satisfy the inclusion prop-
erty. The hit-array allows the selective victim caching
scheme to be implemented without an L2-cache, thus
improving the effectiveness of the prediction scheme
slightly. Clearly, the effect of invalidations on the pre-
diction scheme can also be reduced by designing the
L2-cache as set-associative.

5 Conclusions
In this paper we presented a method for improv-

ing the performance of victim caching. The method
selectively places data in the main cache or the vic-
tim cache based on a prediction algorithm that deter-
mines how likely they are to be accessed in the future.
Results from simulations of four programs from the
SPEC Release 1 benchmark suite showed significant
improvements when the scheme was applied to a first-
level instruction cache. For a cache size of 16 Kbytes,

selective victim caching produced an average improve-
ment in miss rate of approximately 20 percent over
pure victim caching. The improvement was smaller
when the idea was applied to a data cache, averag-
ing only 4 percent over pure victim caching; for some
of the traces, however, the improvement was much
higher.

For both instruction and data caches, the number
of interchanges of blocks between the main cache and
the victim cache decreased considerably as a result of
selective victim caching. The average reduction for
the four traces was approximately 74 percent for a
16K instruction cache.

Because both the miss rate and the number of inter-
changes affect the average access time of the memory
hierarchy, reducing either significantly can potentially
lead to considerable improvements in the memory-
access performance. Future work includes techniques
to improve the effectiveness of the prediction algo-
rithm for data accesses.

References
DECchip 21064-AA Microprocessor Hardware
Reference Manual, Digital Equipment Corpora-
tion, October 1992.

M. D. Hill. Aspects of cache memory and in-
struction buffer Performance, Ph.D. Disserta-
tion, Computer Science Department University
of California, Berkeley, November 1987.

M, D. Hill, “A case for direct-mapped caches,”
IEEE Computer, December 1988, pp. 25-40.

N.P. Jouppi. “Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers,” Proc.
17th Annu. Int ’1. Symp. Computer Architecture,
May 1990, pp. 364-373,

J. R. Larus. “Efficient program tracing,” IEEE
Computer, May 1993, pp. 52-61.

S. McFarling. “Cache replacement with dynamic
exclusion,” Proc. 19th Annu. Int’l. Symp. Com-
puter Architecture, May 1992, pp. 192-200.

S. Przybylski, M. Horowitz, and J. Hennessy,
“Performance tradeoffs in cache design,” Proc.
15th Annu. Int 1. Symp. Computer Architecture,
June 1988, pp. 290-298.

A. J . Smith. “Cache memories,” Computing Sur-
veys, September 1982, pp. 473-530.

D. Stiliadis and A. Varma, “Selective victim
caching: A method to improve the perfor-
mance of direct-mapped caches,” Technical Re-
port UCSC-CRI-93-41, October 1993.

D. W. Wall, A. Borg, and R .E. Kessler, “Gener-
ation and analysis of very long address traces,”
Proc. 17th Annu. Int?. Symp. Computer Archi-
tecture, May 1990, pp. 270-279.

420

11-M-I
DUE TO LACK OF C O ~ ~ ~ T K A ~ r, cxupl i s D I D NOT REPRODUCE WELL.

GRAPHS FOLLOW SAME SEQUENCE AS LEGEND

li

J,

doduc

n 1

Figure 8: Miss ratio (%) for a selective victim cache configuration with a second-level cache and the hit-array
implementation with respect to four instruction traces (Line size = 3 2 bytes! size of vict,irri cache = 8 lines.
H = 4) .

l i

,---

a a 3 I
1 2 1 4 5 8 7

Crhe S i n (Kbilcr)

daduc

Figure 9: Miss ratio (%) for a selective victim cache configuration with a second-level cache and thc hit-array
implementation with respect to four data traces (Line size = 32 bytes, size of v ic t im cache = 8 lines, H = 4).

42 1

