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Abstract shut down wakg up
Dynamic power management saves power by shutting doming T
down idle devices. Several management algorithms : S
have been proposed and demonstrated effective in cer-  time A A seeptime A
before shutdown  shutdown delay wakeup celay

tain applications. We quantitatively compare the power
saving and performance impact of these algorithms on Figure 1: State Transitions
hard disks of a desktop and a notebook computers. This

paper has three contributions. First, we build a frame-

work in Windows NT to implement power managers

running realistic workloads and directly interacting with

users. Second, we define performance degradation thal, ,otebook computers. Hard disks are of particular
reflects user perception. Finally, we compare power sav-interest for power management due to three reasons.
ing a_nd performance of existing algorithms and analyze First, hard disks may consume up to 20% of total en-
the difference. ergy in a computer [7]. Recent studies find that hard
disks will remain major power consumers in the near
1. Introduction future [10] [12]. Second, hard disks have large p_erfor_-
mance and power overhead because of mechanical in-
ertia. Spinning down or up disk plates takes several
seconds, equivalent to hundreds of millions of instruc-

proach to reduce power consumption without signifi- i . d ¢ Einallv. hard disk i
cantly degrading performance [2]. DPM shuts down Ions In modern computers. Finatly, hard disks are nof
always needed when computers are running if the physi-

devices when they are not being used and wakes them I tai Il the inf . ded: f
up when necessary. When a device is not used, it js €& memory contains all the information needed, for ex-

called idle; otherwise, it is callecdbusy DPM algo- ample, caching may avoid unnecessary spin-ups [5].

rithms observe request patterns and predict the length
of idle periods. Idle periods can be defined in differ-
ent ways [8]. In this paper, we consider an idle period
as “time with no requests waiting for service”. The de-
vice is in aworkingstate when it can serve requests with
higher power consumptior?,, (Table 1 summaries all
symbols.). The device ®eepingwhen it consumes less
power, P, (Ps < P,), and cannot serve requests. Shut-
ting down and waking up a device usually cause perfor-
mance degradation and require extra energy. Therefore
DPM algorithms shut down a device only when an idle
period is long enough to justify performance degrada-
tion and state-transition energy.

Dynamic power managemef@PM) is an effective ap-

Our study has three major contributions: a framework

to implement power managers (PM), definition of user-

perceived performance, and quantitative comparison of

algorithms. In the past, DPM algorithms were eval-

uated mainly by simulation. In contrast, we build a

framework for comparing DPM algorithms running re-

alistic workloads on a commercial operating system,

Windows NT, and directly interacting with users. Con-

sequently, users can perceive performance degradation

while power is saved. Although some algorithms sup-

port multiple sleeping states, we use only one sleeping
This paper compares DPM algorithms for controlling state in the implementation as a common denominator
the power states of hard disk drives on a desktop andfor fair comparison.
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2. Foundation for Algorithm Comparison

2.1. ldlePeriods

Figure 1 shawvs requestsand the power statesof a de-
vice. An idle period(T;q:.[]) occursbetweertwo peri-
odswith requestsalsocalledbusy periods. The device
is shutdown afterit entersT;q. [¢]; it doesnot enterthe
sleepingstateimmediatelydueto shutdavn delay (7).
SomeDPM algorithmsdo notshutdown adeviceimme-
diatelyafteranidle periodstarts;insteadthey wait until
they are confidentthat ;4. [¢] is long enoughto save
power. This waiting time is called “time before shut-
down” (1ys). Later, whenrequestsarrive, the device is
wokenup andentersheworking stateafterwakeupde-
lay (T%,.)- Theenegy consumediuring the shutdavn
andwakeupdelayaredenotedas Fq and E,., .

2.2. Break-Even Time

As we explained earlier in order to compensatehe
shutdavn and wakeup overhead,a device hasto stay
in the sleepingstatelong enough. We call this mini-
mum durationthe minimumsleepingtime (7,,5). Since
Esd+Ewu+Ps'Tms = Pw : (Tms+Tsd+Twu)i wecan
find T,,,s in Equationl. The minimumlengthof anidle
periodto save enegy is the break-ezentimefor idle pe-
riod (Tye). It includestheshutdavn andwakeupdelayin
additionto 75,5, S07%e = Tins+1sa+ T A Shutdavn
commandsavespoweronly if Tigie[i] > Tos + The-

Esd + Ewu - Pw . (Tsd + Twu)

Tms =
P, — P

1)

Esd+Ewu_Ps'(Tsd+Twu)
Pw_Ps

The = ()

2.3. Performance Metrics

DPM tradesoff betweernpower andperformance Sev-
eralwayswereproposedo quantify performancesuch
astotal or averagewaiting time; however, total or aver-
agewaiting time canbe misleading. Using thesemet-
rics, a systemthat causes total of 50 secondof wait-
ing in five hoursis betterthan onethat causes0 sec-
ondsof waiting in five hours. However, if the former
requiresa userto wait for 40 secondsn a one-minute
period while the latter requiresat most 10 secondsn
oneminute,mostusershink the secondsystemhasbet-
ter performance Traditionaltotal waiting time doesnot
reflectthisdiscrepang. Studiesn psychologyshow that
waitingtime canaffect userbehaior [18]. In this paper
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| Symbol | Meaning |
Tsa shutdavn delay
T wakeupdelay
The break-eentime for anidle period
Tons minimumsleepingiime to saze enegy
Tos time beforeshutdavn
Tss averagetime in sleepingstate
Tare|i] | currentidle period,
candidatdor shutdavn
tiaie?] | predictedvalueof T4 i]
Thusyl?] | busyperiodbeforeT; . [¢]
Wgli] startingtime of awaiting period
Wgli endingtime of awaiting period
T timeoutvalue
E.q enegy to shutdown
Eyy enegy to wake up
Py powerin sleepingstate
P, power in working state
Ngq numberof shutdavns
Nyd numberof wrongshutdavns

Tablel: SymbolsandMeanings

d
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Figure2: Waiting dueto Pover Management

we usetwo objective performancemetrics: long wait-
ing or repetitve waiting “within shorttime intervals” to
reflectthe perceptiorof performancelegradation.

Figure 2 gives an exampleof four waiting periods. A
waiting period (W) startsat Wg andendsat Wg. Our
first performancametricis thelargesttotal waiting time
in a durationof lengthd called W,. It is obtainedby
finding the sumof waiting time in a sliding window of
sized. A window may containmultiple waiting periods,
suchasW 3] andW 4] in thethird window; a window
canalsocontainpartof a waiting period,suchas W3]
by thesecondvindow. In general W, canbecalculated
by Equation3.

(Weli] -Wsli) @)

>

4 suchthat
Ws [1,] >t
Wgli|<t+d

W4 = max
i

This equationfinds all waiting periodsinsidea window
of sized and calculatesthe sum of theseperiods. By
adjustingt, the startingpoint of a window, it thenfinds
thewindow that containsthe longesttotal waiting time.



If awaiting periodis partially covered we consideronly
the part within the window; for simplicity, equation3
doesnotincludepartially coveredwaiting periods.

The secondberformancemetricis thelongestshutdavn
sequencén which thetime betweenwo adjacenshut-
downsis lessthanathresholdth. Thismetricsmeasures
thenumberof consecutre waiting periodsthatareclose
andcauselelayrepetitively. It is thelargestm for which
thereis asequencdV[i], W[i + 1],... W[i + m] such
thatthefollowing conditionshold:

Wslk +1] ~Wglk] < th
Wg [Z] —Wg [’L — 1] > th (4)
Wsli+m+1] —Wgli+m] > th

wherek € [i,i+m — 1]

3. Algorithmsand Parameter Selection

We comparealgorithmsoriginally designedor various
applications,such as X-seners and hard disks; these
algorithmsare listed in Table 2. They assumediffer-
ent characteristicof applications. For example, Ty
andT,,., arefairly smallfor X-sener but large for hard
disks due to mechanicinertia. We comparethemin
the sameervironmentand study the deviations from
their originally intendedapplications. In this section,
we briefly explain thesealgorithm and the parameters
recommendedy their authors.

TIMEOUT: Timeout algorithms are simple and
widely used;they assumehatif a deviceis idle longer
than 7, it will remainidle for a long time (T;g. >

T = Tige > 7 + The) With up to 95% confidence
level [8]. Timeoutalgorithmswait for = before shut-
down, soTps = 7. Microsoft Windows Control Panel
allows usersto setr assmall as60 seconds.We usea
filter device driver[14] andcanchooseary T value;we

usethirty secondsaindtwo minutesin this study

The first adaptve timeout (ATO1) algorithm adjustsr

by consideringthe value of T‘”Ti[“” [6]. Whenthe
ratio is small, 7 increaseswhen the ratio is large, T

decreases. We start with 30 secondsfor 7 and use
(m, Bm, p) = (1.5,0.5,0.1) becausethey produced
betterresults. Golding suggestaipdatingr asymmet-
rically: increasingr by one secondor decreasingy
half [8] (ATO2). In our experimentsfor [8], 7 is lim-

ited to 1 to 120 seconds. Another approachadjustsr

accordingto Tyysy[i] [13] (ATO3). If Thysy(?] is small,
7 decreasesf Ty,qy[t] iS large, T increasesWe usel20
secondgor theinitial valueof r with 1 Hz samplingand
2 seconddor the adjustmenfactor

22

10000

OB
< 10009 >
Q .
z o
8 100 v
5 :
=== T
s opE ¢ be
2 %A .......
1 R : o2 ‘
0 10 20 30 40 50 60

busy period (sec)

Figure3: Tpysy[t] VS. Tiae[i] Of two differentusersin
our experiments.

| Algorithm | Features | Applications |
[6] (ATO1) | adaptvetimeout harddisk
[8] (ATO2) | adaptietimeout harddisk
[13] (ATO3) | adaptvetimeout harddisk
[17] (LS) L-shape X-sener
[9] (EA) exponentialaverage telnet
[15] (DM) discrete-timeMarkov harddisk
[3] (SW) sliding windows harddisk
[16] (CM) continuougime Markov | real-timeinputs
[20] (SM) time-index semi-Marlov | harddisk
[11] (CA) competitive spin-block
[4] (LT) learningtree harddisk

Table2: DPM Algorithms Compared

L-SHAPE: If ashortbusy periodis frequentlyfol-

lowedby along idle period,their scatterplot will form

an“L-shape” (LS) asshawvn in Figure 3. If a busy pe-
riod is shortenough the following idle periodis likely
to be |0ng (Tidle[i] Z Tbe = Tbusy ['L] S Tthreshold)-

Consequentlywhenrequestpatternsform an L-shape,
the device shouldbe shutdown after a short busy pe-
riod [17].

EXPONENTIAL AVERAGE:. HwangandWu use
the predictedandthe actuallengthsof the previousidle

periodto predictthelengthof thecurrentidle period[9].

They useexponentialaverage(EA) for predicting; 4.

by tidie [Z] =a- Tidle[i — 1] + (1 — a) . tidle[i — 1], which
is equivalentto

tiaie[]] = (1 — @) M tiare[0] + D a1 — a)* Tiae[i — K]

wheret;q.[#] is the predictionof T;g.[7]. It is anaver
ageof previousidle periodswith exponentialweights.If
tidie[t] > The, the device is shutdown. This algorithm
limits t;41¢[#] suchthatit cannotexceede - t;qc[i — 1]
wherec is a constantgreaterthanone. We use0.5 for
a and2 for ¢; weignoreall T;4.[i — 1] < 0.1 second



sothatt;q. arenotaffectedby shortidle periods. This
is anon-linefiltering becaus&;g. [ — 1] is known be-
fore computingt;q.[¢]. We use0.1 secondso that our
implementatiorhasonly negligible differencefrom the
original algorithm.

STOCHASTIC MODEL: Paver managementan
be solvedasanoptimizationproblemwhendevicesand
requestsare modeledas stochastiqprocessesThis ap-
proachformulatespower managemendasa constrained
optimizationproblem:;it providestheflexibility to trade
off betweenpower and performance. For example,
power managementan be modeledas a discrete-time
Markov decisionprocesgDM) [15]. Thealgorithmas-
sumesstationarygeometricdistribution of requestar-
rivals. It is extendedto handlenon-stationaryequests
in [3]. Non-stationarityis capturedoy sliding windows
(SW); the algorithminterpolategre-optimizedook-up
tablesfor shutdavn decisions. The shutdavn decision
is evaluatedeachperiod,evenwhenthe deviceis in the
sleepingstate thuscausingcomputationoverhead.For
example for al0W processqrSW couldwasteasmuch
as1800J of enegy during a 30-minuteidle periodjust
dueto reevaluatingshutdavn decisions.

By modelingadevice asa continuous-timéviarkov pro-

cess,PM can changepower statesupon event occur

rences,suchas “requestqueueempty” events,instead
of at discretetime intervals[16] (CM). Statetransitions
are assumedo follow exponentialdistributions. This

approachmakesadecisionassoonascertaineventshap-
pen. Our measurementshowv no significantpower sav-

ing sincethealgorithmtendsto shutdown too soon thus
incurringlarge wakeupcostsandsometimesven miss-
ing shuttingdown onlongidle periods.

Bothdiscreteandcontinuous-timepproachemodelre-
guestarrivalsandthepower statetransitionsusingmem-
orylessdistributions,which is not accuraten real situ-
ations. Semi-Marlov approach[19] modelstransition
times betweenpower stateswith uniform distributions.
As the requestarrivals are bettermodeledusing Pareto
distribution, the semi-Marlov approachis further gen-
eralizedwith time-indexedsemi-Marlov modelsin [20]

(SM). Optimalpower saving basednthismodelreeval-
uatesghedecisiongduringidle periodsuntil eitheranre-
guesibccursorthedeviceis shutdown. Whenthedevice
is sleepingno decisionevaluationis neededTherefore,
this algorithmhaslow computatioroverheacandshows
thelargestpower saving in our study

COMPETITIVE ALGORITHM: A “c-competitive”
on-linealgorithm(CA) canfind a solutionwith costless
than ¢ timesthe costgeneratedy an optimal off-line
algorithm. It canbe proven that 2-competitve power
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saving is achievableif = = Tj. [11]. In otherwords,this
algorithmconsumest mosttwice the minimum power
consumedy anoff-line PM.

LEARNING TREE:. Adaptive learningtrees(LT)

transformsequencesf idle periodsinto discreteevents
andstoretheminto treenodes[4]. This algorithmpre-

dictsidle periodsusingfinite-statemachinessimilar to

branchpredictionusedin microprocessorandselectsa

pathwhich resemblepreviousidle periods. At the be-

ginning of anidle period, it determinesan appropriate
sleepingstate;this algorithmis capableof controlling

multiple sleepingstates.

4. Experiment Results

4.1. Experiment Environment

We useanervironmentbuilt specificallyfor implement-
ing andevaluatingDPM algorithms[14]. It consistsof
two ACPI-compliant1] computers.Thefirst is a Pen-
tium Il desktopcomputerwith anIBM DTTA 350640
harddisk; the otheris a Pentiumll notebookcomputer
with aFujitsuMHF 2043AT harddisk. Botharerunning
a betaversionof Microsoft Windows NT V5. We im-
plementedilter driversfor eachalgorithmto controlthe
power statesof the hard disks, to recorddisk accesses
andto analyzethe performanceampactand the power
managemendverheadf eachalgorithm. Table3 showvs
the parametersf the disks. 73 is 17.6and5.43second
for thelBM andFujitsudisksrespectiely.

4.2. PM Overhead and Power Consumption

Werecordedlisk accessefor two userspnedeveloping

C programsand the other making presentatiorslides.

Thesetracesinclude disk accesse$rom userrequests
and operatingsystemactvities. Then the tracesare

replayedtaking approximatelyl1 hoursfor eachalgo-

rithm. We find that all algorithmsspendlessthan 1%

of computatiortime on power managershence power

managemenpaysoff whenit is ableto effectively re-

duce power consumption. Thesealgorithmsare com-

paredby five figures:

e Pawerconsumptior(P), unit: Watt.

Model | P, P, Tea | Fsa | Twu | Fuw
Watt | Watt | sec J sec J

IBM 0.75| 3.48| 0.51| 1.08| 6.97 | 525

Fujitsu | 0.13 | 0.95| 0.67 | 0.36| 1.61| 4.39

Table3: Disk Parameters



Algorithm P [ Neg | Nua | Tss | Ths
desktop
off-line 1.64| 164 0| 166 0
SM 1.92| 156 25| 147 | 18.2
CA 1.94| 160 15| 142 | 17.6
sSw 1.97| 168 26| 134 | 18.7
=30 2.05| 147 18 | 142 | 30.0
LT 2.07| 379| 232| 62 5.7
ATO3 2.09| 147 26| 138 | 29.9
ATO1 219 141 37| 135| 27.6
ATO2 2.22| 595| 430| 41 4.1
=120 | 252| 55 3| 238 120.0
DM 2.60| 105 39| 130 | 48.9
EA 299| 595| 503| 30 7.6
always-on | 3.48 - - - -
notebook

off-line | 0.33| 250 0| 118 0
SM 0.40| 326 76| 81 8.0
SW 0.43| 191 28 | 127 | 134
CA 0.44| 323 64| 79 5.4
LT 0.46 | 437 | 217| 56 6.1
ATO1 0.47 | 273 73| 88| 124
EA 0.50| 623 | 427 | 37 3.0
=30 0.51| 139 7| 157 | 30.0
ATO3 0.52| 196 48 | 109 | 24.5
DM 0.62| 173 54| 102 | 35.2
ATO2 0.64| 881 | 644 | 19 2.3
=120 | 0.67| 55 0| 255| 120.0
always-on| 0.95 - - - -

Table4: Algorithm Comparison

Numberof shutdavns (Nyy).

Numberof wrongshutdavns(N,,¢) thathave sleep-
ing time shorterthanT’,,; andactuallywasteenegy.
Averagetimein sleepingstate(7’s;), unit; second
Averagetime beforeshutdavn (73;), unit: second

Table4 ordersthe algorithmsby powerconsumptionin
thistable,smallervaluesarebetterexcept?ys. Thefirst
row containsthe minimum power consumptionwith-
out performancedegradation; it is generatedoff-line
with full knowledgeaboutfuturerequestsThelastrow
shaws the power consumptionf no power management
is applied. This table shavs that SM, CA andSW can
save nearly 50% of power on both platforms. Even
thoughthey have closepower consumptioron the mo-
bile disk, they differ significantlyin performance.CA
and SM have morethantwice wrong shutdavns (V,,4)
comparedwith SW. For algorithmswith similar power
consumption,performanceis an important factor for
evaluation.Thetotal waiting time is approximatelypro-
portionalto thetotal numberof shutdavns(N,g). Users
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may noticesubstantiallydifferentperformancealegrada-
tion evenfor two algorithmsthat have similar valuesof

Ngq if somewrong shutdavnsoccurrepetitively within

ashorttimeinterval.

4.3. Performance Measurement

Figure4 (next page)draws the worstwaiting time (W)
for d betweenone to ten minutes. It shows that, in
the worst case,CA requiresusersto wait for 98 sec-
ondsin a 10-minutedurationon the desktopharddisk.
The bottomof thefigureis thewaiting time by percent-
age. Whenthe window size increaseghe percentage
of waiting time decreasefor all algorithms. Whenthe
window sizeis small, suchas one minute, somealgo-
rithms may requireusersto wait for morethan50% of
thetime. This demonstratethe importanceto measure
theworst-caseerformancdor smalld. Traditionalper
formancemetricusingthetotal waitingtime cannotpro-
vide enoughinformation for determininguserpercep-
tion of performancealegradation.This figurehasseveral
“jumps” asd increasedecausdhe worst-casewaiting
time may changefrom onewindow to another Figure4
alsoshaws thatthe waiting time is considerablyshorter
onthemobile harddisk. Figure5 plotsthelongestshut-
down sequencén which thetime betweertwo adjacent
shutdavnsis shorterthanathreshold.In thisfigure, the
X-axisisthethresholdvalueandtheY-axisis thelengths
of sequences.The arrov indicatesthat EA hasa se-
guenceof 27 waiting periodswith lessthanoneminute
betweentwo shutdavns. Usersperceve delaysevery
minuteor evenmorefrequentlyfor 27 times.
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5. Discussion

5.1. Correlation of Adjacent Busy and Idle Periods

LS usesthe length of the previous busy periodto pre-
dict the length of the currentidle period by “L-shape”
approximation Figure3 shavs two traceswe collected;
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thedashline enclosesnostrequestsnto anL shape.If
we consideronly idle periodslongerthan 10 seconds
andredraw thedistribution in Figure6, we find this ap-
proximationrequiresrefinement.Onelong idle period
(197 secondspointedby the arrow) follows along busy
period; L-shapealgorithmwill keepa harddiskin the
working stateduring this period. Furthermorea large
groupof shortidle periodsfollow shortbusyperiodsen-
closedby thecircle. L-shapeapproximatioris not suffi-
cientto determinghelengthof anidle period.
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Figure6: Tyysy[¢] VS. Tiaie[¢] (Zoomedin)

5.2. State Transition Time

Table 3 lists the averageof T4 and T, . Most algo-
rithms treatthem as constantsfor simulation;in real-
ity, they are not constants.Figure 7 shows significant
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variationof T,,,,. For the desktopharddisk, the aver-
ageof T, is 6.97 secondsandthe standarddeviation
is 0.65 secondor 9.25%. For the mobile disk, T, is
evenmorewidely distributed;it is inappropriatdo usea
singlevaluefor 7°,.,. Markov modelsin DM areinexact
approximationdecaus®ur experimentsshow that7y,,,
is notexponentiallydistributed.
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Figure7: T, (ms)for Mobile (top) andDesktopDisks
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5.3. Successive Wrong Shutdowns after aLong 7.

EA assumeshatalongidle periodis followedby other
long idle periodsanda shortidle periodis followed by
othershortidle periods.Whenalongidle periodis fol-



lowed by shortidle periods,however, the performance

deteriorateconsiderablyandgeneratesong sequences

in Figure5. Consideran example,a userleavesthe of-
fice andcreatesanidle periodsof onehour Whenthe
userreturns theharddiskwill beshutdown repetitively
and made unusableduring the first minute. In order
to remedythis problem, a desirablealgorithm should
changeits prediction sooneronce successie wrong
shutdavns happen. We do not use predictive wakeup
becausdt consume®96% more enegy on the mobile
disk without significantperformancemprovement.

5.4. Algorithm Ordering and Device Parameters

Comparedto the desktophard disk, 754 + T3, and
E.q + E.. are70% and91% lesson the mobile hard
disk. As aresult,DPM algorithmscanbe moreaggres-
siveto shutdown themobilediskin orderto save enegy
sincethe penaltyis considerablyless. The orderingon
thedesktopcomputeiin Table4 is similarto theordering
onthenoteboolkcomputerexceptEA whereit consumes
lesspower than mostotheralgorithms. This algorithm
was originally designedor X-sener andtelnet,which
have small shutdavn andwakeupoverheadbecausao
mechanicdevice is involved. This exampleshaows the
importanceto tune an algorithmfor its intendedappli-
cation.

6. Conclusions

We built aframewnork to comparegpowermanagemerdl-
gorithms. To our knowledge,this is thefirst time DPM
algorithmsare comparedwhile runningrealistic work-
loadsandinteractingwith users.Our experienceshovs
that waiting in a short durationand consecutie wait-
ing, insteadof total waiting time, directly affect user
perceptionof performance. We quantitatvely define
performancametricsthat reflect userexperience. Our
studyconcentratesn comparingpower managemerdl-
gorithmsfor controlthe power statesof computerhard
disksanddiscussesereralkey issuesn designingDPM
algorithms.
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