

ECE655 Project
 Calculate the reliability of a serial/parallel and non-

serial/parallel system

WU, BO (998-01-0144)
Email: bwu@ecs.umass.edu

1. Interface of the project

There are 4 independent windows: (1) Input Window, (2) Run Button, (3)
Output Window and (4) additional function buttons to calculate the reliability
of the system.

 Calculate the reliability of a serial/parallel or non-serial/parallel system

Output Message / Result:

Samples: (if result exists)
 Rcombo1 = 1

Figure 1. The GUI of the project

2. System Input

Users can input system configuration information from Input Window.
The following parameters should be specified by users:

(1) The number of total nodes in system.
(The node is defined to be the connection point of modules. The index
of nodes starts from 1)

(2) The number of total modules in system.

(The index of modules starts from A)
(3) The node pairs between which each module is located. (From input

node to output node)
(4) Input node of the entire system.
(5) Output node of the entire system.

A

C

B

Combo2 Combo1

1 2 3

Figure 2. An example of a serial/parallel system

For example, there are totally 3 nodes and 3 modules in this system. The input
node of this system is node #1 and the output node is node #3.

 The input description of this system is:

 Description Meaning

 NodesNum = 3 // 3 nodes in this system [1�3]
 ModulesNum = 3 // 3 modules in this system [A�C]
 A = (1,2) // A is located between node 1 and node 2
 // and direction is from 1 to 2
 B = (2,3) // B is located between node 2 and node 3
 // and direction is from 2 to 3
 C = (2,3) // C is located between Node 2 and node 3
 // and direction is from 2 to 3
 InputNode = 1 // Node 1 is the input of this system
 OutputNode = 3 // Node 3 is the output of this system

3. System Output

After input the description of system, the user can click the RUN button to
calculate the general expression for the reliability of the system.

(a) If there are some errors in the description, warning/error messages will
be given in Output window.
For example, there is an error in line 3 with the following description
because node 4 is invalid.

 NodesNum = 3
 ModulesNum = 3
 A = (1,4)
 B = (2,3)

 C = (2,3)
 InputNode = 1
 OutputNode = 3

(b) If all descriptions are right, then the result will be printed in Output

window.

For the above example, the result will be:
Rcombo1 = (1 � (1� (Rb))*(1�(Rc)))
Rsystem = (Ra)*(Rcombo1)

The first line means that Reliability of the combo system consisting of
Module B and C is (1-(1-Rb)(1-Rc)) because Module B and C are
parallel modules.
The second line is the final solution for the system reliability because
Module A and Combo_1 are serial.

4. Other function modules for the system

(a) Check-Input-File-Module
Input: Configuration file
Output: Check whether the syntax of the configuration file is correct or
not.

(b) Calculate-Reliability-Value-Module
Input: the values of reliability for each module
Output: the value of reliability for the entire system

(c) Calculate-Reliability-Expression-Module
Input: the failure rate of each module
Output: the expression of reliability as a function of failure rates for the
entire system

5. Data Structures

(a) NodeStruct
Struct NodeStruct {
 Short int nodeTag; // Node tag = 1,2,�;
 Short int nodeOrder; // Node order
}
Notes:

Each node has different value of nodeTag.
Each module is located between the corresponding node pair

{from, to}. One is the input node and the other is the output node. In
order to describe the input-output relationship, we need nodeOrder to

construct the flow direction of the entire system topology. For any
module, nodeOrder of the input node should be less than that of the
output node. The nodeOrder of system input node is 1.

For example:

In Figure 2, the nodeOrder of node 1, node 2, node 3 equal 1, 2,
3 respectively.

In Figure 3, the nodeOrder from node 1 to node 7 will be 1, 2, 4,
6, 7, 3, and 5 respectively. That means:

Node 1 ------ > Order 1
Node 2 ------ > Order 2
Node 6 ------ > Order 3
Node 3 ------ > Order 4
Node 7 ------ > Order 5
Node 4 ------ > Order 6
Node 5 ------ > Order 7

A B
D

C

E F

H
1

2 3

4 5

6
G

7

Figure 3. A complex serial/parallel system

(b) ModuleStruct
Struct ModuleStruct {
 Struct NodeStruct in; // input node
 Struct NodeStruct out; // output node
 String moduleName; // module name = A, B, �
 // or Combo1, Combo2, �
 String rel_expression; // brief expression for reliability
 String rel_full_expression // full expression for reliability
 Double rel_value; // value for reliability
 Short int workMode; // 0 � offline
 // 1 � online
 String notes; // some information for the module
}

Notes:
(1) Each Module has its input node and output node.
(2) Each Module has its own module name.

For example: In Figure 2, Module A�s name is �A�, module B�s
name is �B� and module C�s name is �C�.

(3) The brief expression of reliability for Module A is (Ra).
The brief expression of reliability for Module B is (Rb).
The brief expression of reliability for Module C is (Rc).

(4) The rel_value is the numerical value of reliability of the module.

(c) SystemStruct

Struct SystemStruct {
 Short int totalNodes;
 Short int totalModules;
 Short int inputNode;
 Short int outputNode;
 Struct ModuleStruct modules[];
}
Notes:
We can get all these information from input configure file.

(d) PathinfoStruct
 This structure is used store the information of the paths from system in
to system out.
 struct PathinfoStruct
 {
 int path[][]; // the paths from system in to system out
 int pathlen[]; // the lengths of the paths
 int descendorder[] // The index of paths in descending order
 // according to the lengths of the paths
 }

(e) Structures for expression of the system reliability

1) Struct TermStruct
 {
 short int type = 0; // The type of this term 1: number such as 1,
 // 2.5.. , ; 2: poly like 2*Ra

5*Rc
 int coeff = 0; // if type==1, coeff will be the term's value,
 // or it will be the coefficient of this term.
 int mod[]; // the modules� index involved in this term;
 int modpow[]; // the power of each multiple in this term;
 int nmod = 0; // the number of modules involved in this term
 }

 For example, the term 3*Ra

5*Rc*Rd
6 will be stored as

 Term{
 type = 2;
 coeff = 3;
 mod[] = { ia,ic,id };
 modpow = {5, 1, 6};
 nmod = 3;
 }

2) Struct PolynStruct
 {
 TermStruct term[]; // the terms of this expression
 int nterm[]; // the number of terms in this expression

 int ptrstart; // the pointer to the first term in term[];
 int ptrend; // the pointer to the last term in term[]
 }

6. Algorithms

(a) Algorithm for assigning the values of nodeOrder
It is very easy to assign the values of nodeOrder to guarantee our
requirements that for each module the input node�s nodeOrder must be
less than the output node�s nodeOrder.
We can use Topological Sorting algorithm for Directed Acyclic Graph.
For this purpose, we represent the nodes as vertices set V, and the node
pairs for each module as edges set E, then G = (V, E) is a unweighted
directed acyclic graph. So we can easily assign the value of nodeOrder
to each node from input to output according to topological sorting.

(b) Algorithm for get the expression of the system reliability

 As indicated in notes pp23

 ()pathisystem RR −Π−≤ 11 (7.20)
 So, the algorithm here find the paths first then iterates on each path to
obtain the expression on the right-hand side of (7.20) for this system.
Finally derive the exact reliability expression by replacing every
occurrence of Ri

j by Ri .

By the algorithm described above, although this program is designed
to solve the problem of non-serial/parallel system, it can be used for
the serial/parallel system too. This is justified by the included
examples on my webpage.

