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Abstract— We present a construction algorithm for short block
length irregular low-density parity-check (LDPC) codes. Based
on a novel interpretation of stopping sets in terms of the parity-
check matrix, we present an approximate trellis-based search
algorithm that detects many stopping sets. Growing the parity
check matrix by a combination of random generation and the
trellis-based search, we obtain codes that possess error floors
orders of magnitude below randomly constructed codes and
significantly better than other comparable constructions.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have been the
subject of intense research lately because of their linear decod-
ing complexity and capacity-achieving performance. Irregular
LDPC codes have emerged as strong competitors to turbo-
codes. Constructions of LDPC codes are usually random in
nature. A few algebraic constructions are known but these
are typically for regular codes that lack the capacity-achieving
ability of irregular codes.

Using concentration theorems proved in [1], one can show
that in the limit of infinite block length, the performance of
the code will tend to cluster around the mean value. The
analysis proceeds by showing that for large block length the
local neighborhood of a node is tree-like and hence the belief
propagation is exact. However for short block lengths, the
local neighborhood of the nodes is inevitably non-tree-like and
thus there is considerable variation among codes from a given
degree-distribution ensemble.

Since cycles in the Tanner graph cause the sub-optimality
of belief propagation, one approach [2],[3] has been girth-
conditioning, where one tries to remove as many short cycles
as possible. However such conditioning is not easy to perform
for high-degree variable nodes, in fact the highest degree
considered in [2] was 3.

Di et. al [4] introduced the concept of “stopping sets”,
which cause the iterative decoder to fail when operating
over the BEC. Tian et. al [5] [6] introduced a metric called
ACE (approximate cycle extrinsic message degree (EMD))
and designed codes that reduced small stopping sets. They
found that such codes also had a good error floor performance
over the AWGN channel, beating randomly generated codes
by several orders of magnitude.
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Fig. 1. Tanner graph and Parity Matrix of a (5,2) code

Under belief propagation decoding, the low-degree variable
nodes take longer to converge and have a higher probability of
being in error. Thus, both of the above techniques concentrate
on conditioning the low degree nodes. This work presents a
greedy code construction technique that employs code con-
ditioning on “all the variable nodes” and statistically avoids
stopping sets.

Section II provides a brief overview of stopping sets and
introduces an equivalent definition of stopping sets in terms
of the parity check matrix. Section III outlines the new code
construction algorithm and also explains how it can be used
along with the method of [5] to obtain codes with even better
error floors. It also explains why it is hard (at least for a greedy
construction) to avoid all stopping sets of a given size (we are
unaware of an algorithm that accomplishes this for an arbitrary
degree distribution and block length). Section IV presents a
discussion of the results and explores the possibilities for
future work.

II. THE CODE CONSTRUCTION TECHNIQUE

Fig. 1 shows the Tanner graph and the parity matrix of an
example (5,2) code. The equivalence between the parity check
matrix (H) and the Tanner graph of a code is well known.
Thus, we shall use the terms “variable node” and “column”
interchangeably.

Definition 1: [4] Stopping Set - Graph Perspective
A set S of variable nodes is said to form a stopping set

if all its neighboring check nodes are connected to S at least
twice.
For example, the variable nodes v1, v2 and v3 form a stopping
set in Fig 1. Another way of defining a stopping set in terms of



the parity check matrix, which is more convenient and intuitive
for the presentation of our algorithm, is given below.

Definition 2: Stopping Set - Parity Check Matrix Perspec-
tive

First we define a function that will be used throughout the
paper.

fsc(α) =
∑

i

I(α[i] = 1) (1)

Where α is a column vector and I(x) is the indicator function.
Thus fsc counts the number of 1’s in a column vector, sc in
the subscript denotes “singly-connected”.

Consider a subset S of the columns of the parity check
matrix of size m × n. Let ∆ =

∑
i∈S vi, where the sum is

over the real field (not over GF(2)). The set S forms a stopping
set if fsc(∆) = 0.

For example in Fig. 1 the set of variable nodes v1, v2 and
v3 is such that v1 + v2 + v3 = [2 3 2]T which does not have
a 1 in any component. So, it forms a stopping set.

Observe that all codewords are also stopping sets and the
size of the minimum stopping set in a code is a lower bound
on the minimum distance of the code. It is well known that
the stopping set spectrum of a code completely determines
it’s performance over the BEC [4]. While stopping sets do not
behave in exactly the same manner over the AWGN channel
as over the BEC, variable nodes with poor reliabilities can
be considered similar to erasures and thus removing small
stopping sets should improve the error floor performance of
the code. This provides the main motivation for this work.
This perspective was validated in [5].

III. THE CODE CONSTRUCTION ALGORITHM

Let the parity check matrix of a code of rate R = k
n be

denoted by H of size m×n where m = n− k. Our objective
is two-fold. The code rate needs to be R, requiring H to be
full-rank and the number of small stopping sets needs to be
low. Let H = [Hm|Hk], where Hm is of size m×m and Hk

is of size m×k. The algorithm ensures that Hm is a full rank
matrix. Since low degree nodes are more likely to form small
stopping sets the algorithm proceeds by generating columns
in increasing order of degree. The full description of the
algorithm is given in Fig. 2. The matrix is full-rank since we
continue to generate new vectors at random until we find a full
basis that also passes the Stopping-Set-Check. The Stopping-
Set-Check(Type,v,H ,d) function has four different inputs.

1) Type = (’E’)xhaustive or (’A’)pproximate is an input that
decides whether the algorithm is Exhaustive or Approx-
imate in nature. (we explain in more detail below)

2) v is the new variable node
3) H is the “current” parity check matrix
4) d is the depth parameter (again, more details follow).

A. Stopping-Set-Check - (E)xhaustive Mode

Suppose that Stopping-Set-Check is used in the (E)xhaustive
mode and the depth parameter is set to be d1 (say). The

for (i = 0; i < n; i + +)
begin
Step 1:

Generate vi at random according to deg(vi);
if i < m (i.e., vi is a parity bit)

if vi ∈ SPAN(Hm)
goto Step 1;

else
if Stopping-Set-Check(’A’,vi,H ,d)
Add vi to Hm (i.e., passed both tests)

else
goto Step 1

else
if Stopping-Set-Check(’A’,vi,H ,d)

Add vi to Hk

else
goto Step 1

end

end

Fig. 2. Code Generation Algorithm

algorithm is described by,

Stopping-Set-Check(’E’,v,H ,d)

= 1 If [H|v] is free of stopping sets of size ≤ d1

= 0 otherwise

(2)

[H|v] denotes the new Tanner graph formed by adding
v to H . The algorithm outputs a Tanner graph that is free
of all stopping sets of size ≤ d1 on termination. This is
because on the completion of (j−1)th stage of the algorithm,
the set v0, v1, ..., vj−1 is free of all stopping sets of size
≤ d1. Therefore, any stopping set that is created at stage j,
will involve the new node vj . The nature of the search is
exhaustive, thus vj will be kept only if it passes the test. The
conclusion follows inductively.

Unfortunately we are unaware of any algorithm that can
perform the above task without resorting to a brute force
check of the

∑d1−1
i=1

(
j−1

i

)
possible combinations of variable

nodes that vj can form a stopping set with. Once j is fairly
large, the large complexity quickly renders the code generation
process intractable. Note that we are not claiming that such
an algorithm does not exist. However, we were unable to find
one.

B. Stopping-Set-Check - (A)pproximate Mode

Since it is difficult to eliminate all stopping sets of a certain
size, we resort to good heuristics that eliminate as many
stopping sets as possible. A heuristic that we tested and found
to perform well in practice is presented here.

As in [5], our technique is basically a Viterbi-like search
algorithm for each new variable node that is added to H . The
search extends for up to a specified number of trellis stages,
which depends on the degree of the new node. The trellis
stages are numbered 0 - (d−1). Even/Odd stages correspond to
variable/check nodes respectively. A trellis branch corresponds
to a connection between nodes in the Tanner graph.
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Fig. 3. (a) Example where v2 is being tested (b) Flow of the algorithm on
the trellis (bold lines represent survivor paths)

The algorithm is demonstrated in Fig. 3(b) for the example
shown in Fig. 3(a). A new node (e.g. v2 in Fig. 3) is generated
at random according to it’s degree and in accordance with
the overall degree distribution and a trellis-based search is
performed to detect the stopping sets in which it participates.
Paths/Cycles with repeated nodes are disallowed. Let the
variable node for which we are performing the search be
denoted vroot, the number of trellis stages d1(vroot) and the
current node be denoted vt or ct (depending on whether it
is a variable node or a check node). We need the following
definitions,

• ∆p, the path metric, is an m-dimensional vector con-
taining the sum of the variable nodes (columns) that
participate in the path p.

• βp is the number of singly-connected check nodes in ∆p.
i.e. βp = fsc(∆p).

• βc is the current minimum of the number of singly-
connected nodes in any cycle containing vroot found so
far. It is initialized to ∞.

• γp is the minimum-path-metric threshold to be satisfied
in the trellis search

• γc is the minimum-cycle-metric threshold to be satisfied
in the trellis search

1) Minimum Path Metric (βp) - The search algorithm
maintains a list of the current paths from the root node
to the current trellis stage. The path metric for a given
path p is defined to be,

∆p =
∑

i∈Vp

vi,

where Vp is set of variable nodes participating in p

βp = fsc(∆p)
(3)

The minimum of βp’s over all paths i.e. min∀pβp is also
computed and stored in memory.

2) Minimum Cycle Metric (βc)- At any point in the
search, a merge at a particular node in the trellis in-
dicates the existence of a cycle. Suppose that the cycle
is composed of two paths p1 and p2 that merge at either
a check node ct or a variable node vt. The number of
singly-connected check nodes in the cycle needs to be
counted. This update is handled differently depending
on whether the merge is at a variable node or a check
node.

a) Check Node - Merge Update

βc = min(fsc(∆p1 + ∆p2 − vroot), βc) (4)

The contribution of the root is subtracted so that it
is considered only once.

b) Variable Node - Merge Update

βc = min(fsc(∆p1 + ∆p2 + vt − vroot), βc) (5)

For the variable node update the merge node vt

also needs to be considered since it forms part of
the cycle. Again, the contribution of the root is
subtracted.

The merge update equation computes the number of
singly-connected check nodes in the cycle. As discussed
in Definition 2, if this number is greater than or equal
to 1, then the cycle is not a stopping set.

If at any trellis stage min∀pβp < γp or βc < γc a failure is
declared and the variable node is regenerated.

C. Explanation of the Approximate Search

To be able to perform a Viterbi-like search, the algorithm
needs to decide which particular path to choose as a survivor
at a merge. There are two possibilities.

a. Minimum Cycle/Path Metric Violation
In this situation, at least one set of variable nodes
that violates either the minimum cycle metric (γc) or
the minimum path metric (γp) has been found. So we
declare a failure and regenerate the root node. We do
not need to make a decision about the survivor path.

b. Minimum Cycle/Path Metric Pass
Here a decision is required on which path is more likely
to cause a cycle/path metric violation deeper in the
trellis, otherwise the total number of paths will grow
exponentially with depth.
If the objective is to find all stopping sets below a certain
size, it is not proper to choose one path over the other.
It can happen that a particular path that has a higher
metric at the current stage causes a violation deeper in
the trellis whereas the path with lower metric does not.
However for the sake of reduced complexity the survivor
path is chosen to be the one that has the lower number of
singly-connected nodes at the merge node (i.e. the lower
metric). This is intuitively the right choice since the
path with the lower number of singly-connected nodes
is more likely to form a stopping set later on in the
search. Ties are broken by choosing the path highest in
the lexicographic ordering.
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Fig. 4. (a) v0, v1 and v2 form a stopping set, but they are not connected
by “one” cycle (b) A tree-based descent considering combinations of v2 and
variable nodes (v1, v0) at Level 2 can detect this stopping set.

To see a working example consider Fig. 3 where v0 and v1

exist in the graph and a new node v2 is tested. At the third
trellis stage a cycle is formed that violates the minimum cycle
metric. The bold lines represent the survivor paths of the
Viterbi merge at stage 2. In fact this particular cycle is also a
stopping set.

Of course there are other types of stopping sets that cannot
be detected by this algorithm since they do not form a single
cycle (for an example see Fig.4). One way to get around this
problem would be to perform a tree-based descent from the
root node and consider different sets of variable nodes at all
the even levels and check whether they form a stopping set.
However, in the worst case, this would involve considering all
possible combinations of variable nodes.

The setting of the thresholds γp, γc and the number of trellis
stages d(v) needs to be discussed. Ideally in the “(E)xhaustive”
mode, the setting (γp = 1, γc = 1) would suffice to
rule out all undesirably small stopping sets. However in the
“(A)pproximate” mode, different settings of the thresholds
based on the degree of the variable nodes need to be tried.
Typically we can use large values of d(v) for low degree
variable nodes, since in the initial phase of the code generation
process there are only few nodes in the graph and thus finding
cycles/paths that violate the cycle/path metric threshold is
hard. We mention that this is a weakness of the method that
is discussed in more detail in the next subsection. For the
medium and high-degree nodes the depth parameter d(v) needs
to be reduced since at this stage of the process there are
many nodes in the graph and it becomes progressively more
difficult to satisfy the path/cycle metric criteria. The γp and γc

parameters are also tied to the degrees of the nodes. γp needs
to be small for low degree nodes since they anyway have a
low number of 1’s in their column representation. Medium and
high degree nodes can satisfy a higher threshold.

Note that the complexity of running the Stopping-Set-Check
algorithm is always upper-bounded by (maxv degree(v) −
1) × (maxv d(v)) × (n − 1), because the maximum degree
of a variable node is maxv degree(v), the maximum number
of trellis stages is maxv d(v) and the maximum number of
variable nodes in the graph is n. However one might need to
generate multiple column vectors before one that satisfies the
Stopping-Set-Check is found. Overall the complexity remains
manageable for designing codes of desired block lengths.

D. Improving the Approximate Search

If the “Code Generation Algorithm” uses the Stopping-Set-
Check as discussed above (in the approximate mode) there
are certain problems associated with the low degree nodes. A
wrong survivor path decision at a trellis merge (explained in
Section III-C(b) ), is liable to cause more problems at the low
degree nodes rather than high-degree ones since any stopping
sets that are left undetected will consist only of low degree
nodes. On the other hand, the above algorithm is much more
accurate at the medium-to-high degree nodes once the graph
has been grown to some extent.

Tian et. al [5] proposed a code construction method where
they designed codes that satisfied a metric called the “Approx-
imate Cycle EMD (ACE)”.

Definition 3: Approximate Cycle EMD (ACE)
The ACE of a length 2d cycle is given by

∑
i(di−2), where

di is the degree of the ith variable node in the cycle.
Their construction guarantees that all cycles in the code

of size ≤ 2dACE have an ACE value ≥ η. They found
that the codes designed using this criterion had substantially
lower error floors than randomly constructed codes. The main
drawback of their technique is that it completely ignores high
degree nodes. Once the degree of the new variable node
≥ (η + 2), then it is accepted without performing any tests.
While their motivation was also the removal of small stopping
sets, their metric fails to pick up stopping sets such as those
formed in Fig. 3 (suppose that η = 1), since it ignores the
actual connections of a variable node. As an extreme case
consider two variable nodes of degree d > 2 that share “all”
their constraint nodes. Then all cycles that they participate in
have an ACE value of 2(d − 2). However these two nodes
form a stopping set that would be picked up by the Stopping-
Set-Check algorithm. These kinds of problems are more likely
to occur at high degree nodes.

A joint approach where the ACE algorithm is used on low
degree nodes and the Stopping-Set-Check on high degree nodes
provides substantially improved results as explained in the next
section.

IV. SIMULATIONS AND DISCUSSION

We used our algorithm to construct (603, 301) codes that
have an irregular degree distribution obtained using density
evolution based on the Gaussian Approximation [8]. The
distributions are given by,

λ(x) = 0.2186x + 0.1470x2 + 0.1692x4

+ 0.0136x5 + 0.0517x6 + 0.3999x19

ρ(x) = x8

(6)

We constructed four different classes of codes -
• Random - The codes were chosen completely at random

from the degree distribution ensemble.
• Approx. Cycle EMD - These codes were designed for

the purposes of comparison with Tian et. al. Since the
ACE technique reports significantly better performance
than [2] we chose it as a benchmark. The codes have a
(dACE = 6, η = 3) profile. This means that all cycles
in the code of size ≤ 12 have an ACE value at least 3
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(These parameters were chosen for illustrative purposes
and higher values are also possible. [5])

• Approx. Stopping-Set-Check (SSC) - These were codes
designed using our algorithm described in Section III.
The parameters we chose for the code were only moder-
ately optimized and there is room for more work here.

• Joint - In designing these codes we applied the ACE
algorithm on the low degree nodes and our algorithm on
the high degree nodes as discussed in section III-D. These
codes provide a significant advantage at high SNR.

Since the construction process is inherently random, to provide
a fair comparison, for each class we constructed 5 different
codes. The performance was averaged over the best 4 codes for
all the classes. The results are presented in Fig. 5. As far as Bit-
Error-Rate (BER) goes our results (SSC) are almost identical
to the results of Tian et. al, and are an order of magnitude
better than randomly constructed codes. The joint approach
performs substantially better, having a 0.5 dB gain at a BER
of 10−6. In terms of Word-Error-Rate (WER), the SSC method
is slightly inferior to the method of Tian et. al, at a WER of
10−4 we lose by about 0.3-0.4 dB. However the Joint approach
still remains about 0.5 dB better than Tian et. al. A comparison
of the best codes found for each class is also made in Fig. 6.
The Joint method is still clearly superior while there is hardly
a difference between the SSC and Tian et. al approaches. At a
BER of 10−6 the Joint code is about 3.2 dB from the Shannon
limit which is quite good considering that the code is only of
length 600.

Our approach to the code design problem has been to
remove as many small stopping sets as possible. It is therefore
natural to simulate these codes for the BEC to get an idea
of the amount of stopping set reduction we obtain. These
results are presented in Fig. 7. The WER of the “Joint”
code construction is significantly lower than all the other
constructions. This shows the absence of small stopping sets
in the graph.

V. CONCLUSION

While asymptotic arguments have been made for the ab-
sence of small stopping sets in irregular LDPC code ensembles
in the limit of large block length [7] a constructive technique
that avoids them in actual constructions is needed from a
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practical perspective. This work presents a construction al-
gorithm for the design of irregular LDPC codes at short block
lengths that avoids small stopping sets. The performance of
these codes is an order of magnitude better than randomly
constructed codes. The method has a performance similar
to the codes of Tian et. al [5]. Codes that are constructed
using a combination of the two approaches seem to perform
substantially better.
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