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than a 1. A similar distinction exists between programming mistakes and execution errors. Consider,
for example, a subroutine that is supposed to compute sin(x), but owing to a programming mistake
calculates the absolute value of sin(x) instead. This mistake will result in an execution error only if
that particular subroutine is used and the correct result is negative.

Both faults and errors can spread through the system. For example, if a chip shorts out power to
ground, it may cause nearby chips to fail as well. Errors can spread when the output of one unit is used
as input by other units. To return to our previous examples, the erroneous results of either the faulty
adder or the sin(x) subroutine can be fed into further calculations, thus propagating the error.

To limit such contagion, designers incorporate containment zones into systems. These are barriers
that reduce the chance that a fault or error in one zone will propagate to another. For example, a
fault-containment zone can be created by ensuring that the maximum possible voltage swings in one
zone are insulated from the other zones, and by providing an independent power supply to each zone.
In other words, the designer tries to electrically isolate one zone from another. An error-containment
zone can be created, as we will see in some detail later on, by using redundant units/programs and
voting on their output.

Faults can be classified along multiple dimensions. Some important dimensions are: their duration,
when they were introduced, whether or not there was conscious intent behind their introduction, and
whether they occurred in hardware or in software. Let us look at each of these dimensions in turn.

Duration: Duration is an important classification dimension for hardware faults. These can be classified
into permanent, transient, or intermittent. A permanent fault is just that: it reflects a component going
out of commission permanently. As an example of a permanent fault, think of a burned-out lightbulb.
A transient fault is one that causes a component to malfunction for some time; it goes away after that
time, and the functionality of the component is fully restored. As an example, think of a random noise
interference during a telephone conversation. Another example is a memory cell with contents that are
changed spuriously due to some electromagnetic interference. The cell itself is undamaged: it is just
that its contents are wrong for the time being, and overwriting the memory cell will make the fault go
away. An intermittent fault never quite goes away entirely; it oscillates between being quiescent and
active. When the fault is quiescent, the component functions normally; when the fault is active, the
component malfunctions. An example for an intermittent fault is a loose electrical connection.

When they were introduced: Faults can be introduced in various phases of the system’s lifetime. Faulty
design decisions cause faults to be introduced in the design phase. They can be born during system
implementation (e.g., software development). They can occur during system operation due to hardware
degradation, faulty software updates, or harsh environments (e.g., due to high levels of radiation or
excessive temperatures).

Intent: Faults may be intentional or unintentional. Most software bugs are unintentional faults. For
example, consider the Fortran instruction doi=1.35 when the programmer meant to type do i=1,35.
The programmer was trying to set up a loop; what the system saw was an instruction to assign the value
of 1.35 to the variable doi.

They may be intentional: consciously undertaken design decisions may lead to faults in the system
design. Such faults can be further subclassified into nonmalicious and malicious categories. Nonmal-
icous design faults are introduced with the best of intentions; often because of side-effects (often in
the way that various modules of the system interact) that were not foreseen at design time, or because
the operating environment was imperfectly understood. Malicious faults are introduced with malicious
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intent: for instance, a programmer may deliberately insert a weak point in software that permits unau-
thorized access to some data structure. We also include in this subcategory faults, which may not be
deliberately introduced, but which behave as if they were the product of nefarious intent. For example,
a component may fail in such a way that it “acts as if malicious” and sends differently valued out-
puts to different receivers. Think of an altitude sensor in an airplane that reports a 1000-foot altitude
to one unit, while reporting an 8000-foot altitude to another unit. Malicious faults are also known as
Byzantine faults.

1.2 TYPES OF REDUNDANCY

All of fault tolerance is an exercise in exploiting and managing redundancy. Redundancy is the property
of having more of a resource than is minimally necessary to do the job at hand. As failures happen,
redundancy is exploited to mask or otherwise work around these failures, thus maintaining the desired
level of functionality.

There are four forms of redundancy that we will study: hardware, software, information, and time.
Hardware faults are usually dealt with by using hardware, information, or time redundancy, whereas
software faults (bugs) are mostly protected against by software redundancy.

Hardware redundancy is provided by incorporating extra hardware into the design to either detect
or override the effects of a failed component. For example, instead of having a single processor, we
can use two or three processors, each performing the same function. By having two processors and
comparing their results, we can detect the failure of a single processor; by having three, we can use the
majority output to override the wrong output of a single faulty processor. This is an example of static
hardware redundancy, the main objective of which is the immediate masking of a failure. A different
form of hardware redundancy is dynamic redundancy, where spare components are activated upon the
failure of a currently active component. A combination of static and dynamic redundancy techniques
is also possible, leading to hybrid hardware redundancy.

Hardware redundancy can thus range from a simple duplication to complicated structures that
switch in spare units when active ones become faulty. These forms of hardware redundancy incur high
overheads, and their use is therefore normally reserved for critical systems, where such overheads can
be justified. In particular, substantial amounts of redundancy are required to protect against malicious
faults.

The best-known form of information redundancy is error detection and correction coding. Here,
extra bits (called check bits) are added to the original data bits so that an error in the data bits can be
detected or even corrected. The resulting error-detecting and error-correcting codes are widely used
today in memory units and various storage devices to protect against benign failures. Note that these
error codes (like any other form of information redundancy) may require extra hardware to process the
redundant data (the check bits).

Error-detecting and error-correcting codes are also used to protect data communicated over noisy
channels, which are channels that are subject to many transient failures. These channels can be the
communication links among either widely separated processors (e.g., the Internet) or processors that
form a local network. If the code used for data communication is capable of only detecting the faults
that have occurred (but not correcting them), we can retransmit as necessary, thus employing time
redundancy.
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In addition to transient data communication failures due to noise, local and wide-area networks may
experience permanent link failures. These failures may disconnect one or more existing communication
paths, resulting in a longer communication delay between certain nodes in the network, a lower data
bandwidth between certain node pairs, or even a complete disconnection of certain nodes from the
rest of the network. Redundant communication links (i.e., hardware redundancy) can alleviate these
problems.

Computing nodes can also exploit time redundancy through reexecution of the same program on the
same hardware. As before, time redundancy is effective against transient faults. Because the majority
of hardware faults are transient, it is unlikely that the separate executions (if spaced sufficiently apart)
will experience the same fault. Time redundancy can thus be used to detect transient faults in situations,
where such faults may otherwise go undetected. Time redundancy can also be used when other means
for detecting errors are in place, and the system is capable of recovering from the effects of the fault
and repeating the computation. Compared with the other forms of redundancy, time redundancy has
much lower hardware and software overhead, but incurs a high-performance penalty.

Software redundancy is used mainly against software failures. It is a reasonable guess that every
large piece of software that has ever been produced has contained faults (bugs). Dealing with such
faults can be expensive: one way is to independently produce two or more versions of that software
(preferably by disjoint teams of programmers) in the hope that the different versions will not fail on
the same input. The secondary version(s) can be based on simpler and less accurate algorithms (and,
consequently, less likely to have faults) to be used only upon the failure of the primary software to
produce acceptable results. Just as for hardware redundancy, the multiple versions of the program can
be executed either concurrently (requiring redundant hardware as well) or sequentially (requiring extra
time, i.e., time redundancy) upon a failure detection.

1.3 BASIC MEASURES OF FAULT TOLERANCE

Since fault tolerance is about making machines more dependable, it is important to have proper mea-
sures (yardsticks) by which to gauge such dependability. In this section, we will examine some of these
yardsticks and their application.

A measure is a mathematical abstraction, that expresses some relevant facet of the performance of
its object. By its very nature, a measure only captures some subset of the properties of its object. The
trick in defining a suitable measure is to keep this subset large enough so that behaviors of interest to
the user are captured, and yet not so large that the measure loses focus.

1.3.1 TRADITIONAL MEASURES

We first describe the traditional measures of dependability of a single computer. These metrics have
been around for a long time, and measure very basic attributes of the system. Two of these measures
are reliability and availability.

The conventional definition of reliability, denoted by R(t), is the probability (as a function of the
time t) that the system has been up continuously in the time interval [0, t], conditioned on the event that
it was up at time 0. This measure is suitable for applications, in which even a momentary disruption can
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prove costly. One example is computers that control physical processes such as an aircraft, for which
system-wide computer failure could result in catastrophe.

Closely related to reliability are the mean time to failure, denoted by MTTF, and the mean time
between failures, MTBF. The first is the average time the system operates until a failure occurs, whereas
the second is the average time between two consecutive failures. The difference between the two is due
to the time needed to repair the system following the first failure. Denoting the mean time to repair by
MTIR, we obtain

MTBF = MTITF + MTIR.

Availability, denoted by A(t), is the average fraction of time over the interval [0, t] that the system
is up. This measure is appropriate for applications, in which continuous fault-free operation is not vital,
but where it would be expensive to have the system down for a significant amount of time. An airline
reservation system needs to be highly available, because downtime can put off customers and lose
sales; however, an occasional (very) short-duration failure can be tolerated.

The long-term availability, denoted by A, is defined as

A= lim A(t).

t—o0

A can be interpreted as the probability that the system will be up at some random point in time, and is
meaningful only in systems that include repair of faulty components. The long-term availability can be
calculated from MTTF, MTBF, and MTIR as follows:

MTTF MTTF
MTBF  MTIF+ MTIR’

A=

A related measure, point availability, denoted by A, (t), is the probability that the system is up at
the particular time instant t.

It is possible for a low-reliability system to have high availability: consider a system that fails every
hour on the average, but comes back up after only a second. Such a system has an MTBF of just 1 hour
and, consequently, a low reliability; however, its availability is high: A = 3599/3600 = 0.99972.

These definitions assume, of course, that we have a state, in which the system can be said to be
“up”, and another in which it is not. For simple components, this is a good assumption. For example,
a lightbulb is either good or burned out. A wire is either connected or has a break in it. However, for
even simple systems, such an assumption can be very limiting. For example, consider a processor that
has one of its several hundreds of millions of gates stuck at logic value 0. In other words, the output of
this logic gate is always 0, regardless of the input. Suppose the rest of the processor is functional, and
that this failed logic gate only affects the output of the processor about once in every 25,000 hours of
use. For example, a particular gate in the divide unit when faulty may result in a wrong quotient if the
divisor is within a certain subset of values. Clearly, the processor is not fault-free, but would one define
it as “down”?

The same remarks apply with even greater force to systems that degrade gracefully. By this, we
mean systems with various levels of functionality. Initially, with all of its components operational, the
system is at its highest level of functionality. As these components fail, the system degrades from one
level of functionality to the next. Beyond a certain point, the system is unable to produce anything of
use and fails completely. As with the previous example, the system has multiple “up” states. Is it said
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to fail when it degrades from full to partial functionality? Or when it fails to produce any useful output
at all? Or when its functionality falls below a certain threshold? If the last, what is this threshold, and
how is it determined?

We can therefore see that traditional reliability and availability are very limited in what they can
express. There are obvious extensions to these measures. For example, we may consider the average
computational capacity of a system with n processors. Let c; denote the computational capacity of a
system with 1 operational processors. This can be a simple linear function of the number of processors,

ci =1ic1, or a more complex function of i, depending on the ability of the application to utilize 1 pro-
n

cessors. The average computational capacity of the system at time t can then be defined as Z ciPi(t),
i=1

where P;(t) is the probability that exactly i processors are operational at time t. In contrast, the point

availability of the system at time t will be

Ap(t)= D Pi(t),

where m is the minimum number of processors necessary for proper operation of the system.

1.3.2 NETWORK MEASURES

In addition to the general system measures previously discussed, there are also more specialized mea-
sures, focusing on the network that connects the processors together. The simplest of these are classical
node and line connectivity, which are defined as the minimum number of nodes and lines, respectively,
that have to fail before the network becomes disconnected. This gives a rough indication of how vul-
nerable a network is to disconnection. For example, a network that can be disconnected by the failure
of just one (critically positioned) node is potentially more vulnerable than another that requires at least
four nodes to fail before it becomes disconnected.

Classical connectivity is a very basic measure of network reliability. Like reliability, it distinguishes
between only two network states: connected and disconnected. It says nothing about how the network
degrades as nodes fail before, or after, becoming disconnected. Consider the two networks shown in
Fig. 1.1. Both networks have the same classical node connectivity of 1. However, in a real sense,
network N1 is much more “connected” than N2. The probability that N2 splinters into small pieces is
greater than that for N 1.

To express this type of “connectivity robustness,” we can use additional measures. Two such mea-
sures are the average node-pair distance, and the network diameter (the maximum node-pair distance),
both calculated given the probability of node and/or link failure. Such network measures, together with
the traditional measures listed above, allow us to gauge the dependability of various networked systems
that consist of computing nodes connected through a network of communication links.

1.4 OUTLINE OF THIS BOOK

The next chapter is devoted to hardware fault tolerance. This is the most established topic within
fault-tolerant computing, and many of the basic principles and techniques that have been developed
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Inadequacy of classical connectivity.

for it have been extended to other forms of fault tolerance. Prominent hardware failure mechanisms
are discussed, as well as canonical fault-tolerant redundant structures. The notion of Byzantine, or
malicious, failure is introduced. Techniques to evaluate the reliability and availability of fault-tolerant
systems are introduced here, including the use of Markov models.

Next, several variations of information redundancy are covered, starting with the most widely
used error-detecting and error-correcting codes. Then, other forms of information redundancy are dis-
cussed, including storage redundancy (RAID systems), data replication in distributed systems, and the
algorithm-based fault-tolerance technique that tolerates data errors in array computations using some
error-detecting and error-correcting codes.

Many computing systems nowadays consist of multiple networked processors that are subject to
interconnection link failures, in addition to the already-discussed single node/processor failures. We
therefore present in this book suitable fault tolerance techniques for these networks and analysis meth-
ods to determine which network topologies are more robust. With the number of transistors on a chip
increasing in every hardware generation, networks-on-chip are becoming commonplace. Another re-
cent development is the proliferation of sensor networks. We discuss fault-tolerance techniques for
both of these.

Software mistakes/bugs are, in practice, unavoidable, and consequently, some level of software fault
tolerance is often necessary. This can be as simple as acceptance tests to check the reasonableness of the
results before using them, or as complex as running two or more versions of the software (sequentially
or in parallel). Programs also tend to have their state deteriorate after running for long periods of time
and eventually crash. This situation can be avoided by periodically restarting the program, a process
called rejuvenation. Hypervisor-based systems, where a hardware platform supports multiple virtual
machines, each running its own operating system, have gained popularity; we discuss fault-tolerance
issues associated with these. Finally, there is the issue of modeling software reliability. Unlike hardware
faults, software bugs are very hard to model. Still, a few such models have been developed and several
of them are described.

Hardware fault-tolerance techniques can be quite costly to implement. In applications, in which
a complete and immediate masking of the effect of hardware faults (especially of a transient nature)
is not necessary, checkpointing is an inexpensive alternative. For programs that run for a long time
and for which reexecution upon a failure might be too costly, the program state can be saved (once or
periodically) during the execution. Upon a failure occurrence, the system can roll back the program
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to the most recent checkpoint and resume its execution from that point. Checkpointing is especially
important in exascale computing, where the computing base may consist of thousands of processors
jointly executing programs that take hours, days, or even weeks to execute. Various checkpointing
techniques are presented and analyzed in this book, for both general-purpose computing and real-time
systems.

Cyber-physical systems, which consist of physical plants controlled by computer, have taken off
in recent years. Examples include fly-by-wire aircraft, automobiles, spacecraft, power grids, chemical
reactors, and intelligent highway systems. Such applications are often life-critical and must therefore be
highly reliable. They consist of sensors to assess the state of the plant and the operating environment,
computers to run the control software, and actuators to impose their control outputs on the plant.
Fault-tolerance issues associated with each are discussed in this book.

Next is a chapter consisting of a few case studies, which serve to illustrate the use of many of the
fault-tolerance techniques described previously.

An important part of the design and evaluation process of a fault-tolerant system is to demonstrate
that the system does indeed function at the advertised level of reliability. Often, the designed system
is too complex to develop analytical expressions of its reliability. If a prototype of the system has al-
ready been constructed, then fault-injection experiments can be performed and certain dependability
attributes measured. If, however, as is very common, a prototype does not yet exist, statistical simu-
lation may be the only option. Simulation programs for complex systems must be carefully designed
to produce accurate results without requiring excessive amounts of computation time. We discuss the
principles that should be followed when preparing a simulation program, and show how simulation
results can be analyzed to infer system reliability.

We end the book with two specialized fault-tolerance topics: defect tolerant VLSI (very large-scale
integration) design and fault tolerance in cryptographic devices. The increasing complexity of VLSI
chip design has resulted in a situation, in which manufacturing defects are unavoidable. If nothing
is done to remedy this situation, the expected yield (the fraction of manufactured chips, which are
operational) will be very low. Thus techniques to reduce the sensitivity of VLSI chips to defects have
been developed, some of which are very similar to the hardware redundancy schemes.

For cryptographic devices, the need for fault tolerance is twofold. Not only is it crucial that such
devices (e.g., smart cards) operate in a fault-free manner in whatever environment they are used, but
more importantly, they must stay secure. Fault-injection-based attacks on cryptographic devices have
become the simplest and fastest way to extract the secret key from the device. Thus the incorporation
of fault tolerance can help to keep cryptographic devices secure.

1.5 FURTHER READING

Several textbooks and reference books on the topic of fault tolerance are available. See, for example,
[5-7,10,14,18-20]. Fault tolerance from a software perspective is treated in [3,12,15]. Excellent classi-
fications of the various approaches taken can be found in [2,17]. The major conference in the field is the
Conference on Dependable Systems and Networks (DSN) [4]; this is a successor to the Fault-Tolerant
Computing Symposium (FTCS).

Fault tolerance in specific applications are treated in a number of works; for instance embed-
ded/cyber-physical systems in [1,8], cloud computing [9], and high-performance computing [13].
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The concept of computing being invisible everywhere appeared in [22], in the context of pervasive
computing, i.e., computing which pervades everyday living, without being obtrusive.

The definitions of the basic terms and measures appear in most of the textbooks mentioned above
and in several probability and statistics books. For example, see [21]. Our definitions of fault and error
are slightly different from those used in some of the references. One definition of an error is that it
is that part of the system state that leads to system failure. Strictly interpreted, this only applies to a
system with state, i.e., with memory. We use the more encompassing definition of anything that can be
construed as a manifestation of a fault. This wider interpretation allows purely combinational circuits,
which are stateless, to generate errors.

One measure of dependability that we did not describe in the text is to consider everything from the
perspective of the application. This approach was taken to define the measure known as performability.
The application is used to define “accomplishment levels” L1,L,,---, L. Each of these represents a
level of quality of service delivered by the application. Now, the performance of the computer affects
this quality (if it did not, by definition, it would have nothing to do with the application!). The approach
taken by performability is to link the performance of the computer to the accomplishment level that
this enables. Performability is then a vector, (P(L7),P(L2),---,P(Ly)), where P(L;) is the probability
that the computer functions well enough to permit the application to reach up to accomplishment level
L;. For more on performability, see [11,16].
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CHAPTER

HARDWARE FAULT TOLERANCE

Hardware fault tolerance is the most mature area in fault-tolerant computing. Many hardware fault-
tolerance techniques have been developed and used in practice in critical applications, ranging from
telephone exchanges to space missions. In the past, the main obstacle to a wide use of hardware fault
tolerance was the cost of the extra hardware required. With the continued reduction in the cost of
hardware, this is no longer a significant drawback, and the use of hardware fault-tolerance techniques
is expected to increase. However, other constraints, notably on power consumption, may continue to
restrict the use of massive redundancy in many applications.

The hardware can broadly be divided into a hierarchy of three levels. (One can obviously have
a more detailed division into sublevels, but three levels will do for our purposes.) At the top is the
system level. This is the “face” that the entity presents to the operating environment. An example is
the computer hardware that controls a modern aircraft. At the second level, the system is composed of
multiple modules or components. Examples include individual processor cores, memory modules, and
the I/O subsystem. Obviously, each of these modules will themselves be composed of submodules. At
the bottom of the hierarchy are individual nanometer-sized devices.

This chapter first discusses hardware failure at a high level. Then, we dive to the device level to
explain some major hardware failure mechanisms. After this, we return to the system level to consider
more complex systems consisting of multiple components, describe various resilient structures (which
have been proposed and implemented), and evaluate their reliability and/or availability. Next, we de-
scribe hardware fault-tolerance techniques that have been developed specifically for general-purpose
processors. Finally, we discuss malicious faults, and investigate the amount of redundancy needed for
protecting against these.

2.1 THE RATE OF HARDWARE FAILURE

The failure rate of a hardware component depends on its current age, any voltage or physical shocks
that it has suffered, the ambient temperature, and the technology. The dependence on age is usually
captured by what is known as the bathtub curve (see Fig. 2.1). When components are very young, their
tendency to fail is high. This is due to the chance that some components with manufacturing defects
slipped through manufacturing quality control and were released. As time goes on, these components
are weeded out, and the component spends the bulk of its life showing a fairly constant failure rate
(a precise definition of failure rate is presented a little later, but for now an intuitive understanding is
sufficient). As it becomes very old, aging effects start to take over, and the failure rate rises again.
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