a) \[T_e = \frac{P_e}{4R} = \frac{(0.01) \times 10^{-9.5}}{(1.38 \times 10^{-23})(75 \times 10^4)} = 305.5 K \]

b) \[F_e = 1 + (L-1) \frac{T_e}{T_0} = 1 + (1.413 - 1) \frac{300}{290} = 1.43, \quad F_a = 1 + \frac{T_e}{T_0} = 1.62 = 2.1 dB \]

c) \[F_c = F_e + \frac{F_a - 1}{G_m} = 1.43 + \frac{1.62 - 1}{1.413} = 2.30 = 3.6 dB \]
\[T_c = (F_c - 1) T_0 = (2.30 - 1)(290) = 378 K \]

d) \[N_c = \frac{1}{k (T_e + T_c)} B G_e = \left(1.38 \times 10^{-23} \right) (378 + 305.5)(75 \times 10^4) \left(\frac{15.9}{1.413} \right) \]
\[= 7.9 \times 10^{-12} W = 7.9 \times 10^{-9} mW = -81.0 dBm \]
From (10.23) the noise figure of the cascade is \(F = IL + 1.5 \text{dB} \)

\[
F_{\text{Cas}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_2 G_3} = 1.41 + (1.41)(1.58 - 1) + \frac{1.41}{10} (1.58 - 1)
\]

\[= 2.31 = 3.64 \text{dB}
\]

Also, \(P_{\text{in}} = -90 \text{dBm} \), then \(P_{\text{out}} = -90 \text{dBm} -1.5 \text{dB} + 10 \text{dB} + 20 \text{dB} = -61.5 \text{dBm} \)

The noise power output is then,

\[
P_n = G_{\text{cas}} K T_{\text{cas}} B = A (F_{\text{cas}} - 1) T_{\text{B}} G_{\text{cas}}
\]

\[
= (1.38 \times 10^{-23}) (2.31 - 1)(290)(10^8)(10^{28.5/10}) = 3.71 \times 10^{-10} \text{W}
\]

\[= -64.3 \text{ dBm}
\]

Thus,

\[
\frac{S_p}{N_p} = -64.5 + 64.3 = 2.8 \text{ dB}
\]

The best noise figure would be achieved with the arrangement shown below:

\[
G = 20 \text{dB} \quad F = 2 \text{dB} \quad G = 10 \text{dB} \quad F = 2 \text{dB} \quad IL = 1.5 \text{dB} \quad BW = 100 \text{MHz}
\]

Then,

\[
F_{\text{Cas}} = 1.58 + \frac{(1.58 - 1)}{10} + \frac{(1.41 - 1)}{1000} = 1.586 = 2.0 \text{ dB}
\]

(In practice, however, the initial filter may serve to prevent overload of the amplifier, and may not be allowed to be moved.)
a) **Resistive Divider**

When the input noise power at port 1 is kTB, and the divider is at temperature T, the system is in thermodynamic equilibrium. Thus, the output noise power at port 2 must be kTB. We can also express this as due to the attenuated input noise power and noise power added by the network (ref. at input). Thus,

$$\begin{align*}
P_2^- &= kTB = \frac{kTB}{4} + \frac{N_{added}}{4} \\
\therefore N_{added} &= 3kTB
\end{align*}$$

The equivalent noise temperature is then,

$$T_e = \frac{N_{added}}{kT} = 3T$$

And the noise figure is,

$$F = 1 + \frac{T_e}{T_0} = 1 + \frac{3T}{T_0}$$

At room temperature, $T = T_0$, so $F = 4 = 6\,\text{dB}$. (this result checks with that obtained using the available gain method)
In this case, if the input noise power is kTB, and the system is in thermodynamic equilibrium, the net output power at port 2 is $\frac{3}{2}kTB$, because of the mismatch of the output ports ($\frac{1}{4}$ of output power is reflected). Then we have,

$$P_2^- = \frac{3}{2}kTB = \frac{kTB}{2} + \frac{\text{Nadded}}{2}$$

(Nadded ref at input)

Thus:

$$\text{Nadded} = \frac{3}{2}kTB$$

$$\frac{T_e}{R_B} = \frac{\text{Nadded}}{R_B} = \frac{1}{2}$$

$$F = 1 + \frac{T_e}{T_0} = 1 + \frac{1}{2T_0}$$

If $T = T_0$, $F = \frac{3}{2} = 1.76$ dB.

(Result verified with HP-5855, calculations using available gain, and direct measurement)
c) QUADRATURE HYBRID

Using the same thermodynamic arguments as above, the output noise power is \(kTB \) (outputs are matched). Thus,

\[
P_z = \frac{kTB}{2} + \frac{N_{added}}{2}
\]

\[
N_{added} = kTB
\]

\[
T_e = \frac{N_{added}}{kT} = T
\]

\[
F = 1 + \frac{T_e}{T_o} = 1 + \frac{F}{T_o}
\]

If \(T = T_o \), we have \(F = 2 \) = 3 dB

10.8 From (10.33), \(T_e = \frac{(L-1)(L+1|\Gamma_s|^2)}{L\left(1-|\Gamma_s|^2\right)} \cdot T \)

Let \(x^2 = |\Gamma_s|^2 \); \(C = (L-1)T/L \). Then \(T_e = C \frac{L+x^2}{1-x^2} \)

\[
\frac{dT_e}{dx} = C \frac{(1-x^2)(2x) + (2x)(L+x^2)}{(1-x^2)^2} = \frac{2x(1+x)}{(1-x^2)^2} = 0
\]

Thus \(x = 0 \), so \(|\Gamma_s| = 0 \) minimizes \(T_e \)
\[S_\pm = \frac{v_2}{2} \]
\[v_1^A = \frac{v_2}{\sqrt{2L}} \]
\[v_1^B = -j \frac{v_2}{\sqrt{2L}} \]
\[v_2^A = \frac{v_2}{\sqrt{2L}} \]
\[v_2^B = -j \frac{v_2}{\sqrt{2L}} \]
\[v_0 = -j \frac{v_2^A}{\sqrt{2L}} + \frac{v_2^B}{\sqrt{2L}} = -j \frac{v_2}{\sqrt{2L}} \]
\[S_0 = \frac{v_0^2}{2L} = \frac{\sqrt{2L}}{2L} = \frac{G_S s_0}{L} \]
\[N_1^A = N_1^B = kT_0 B \]
\[N_2^A = N_2^B = \frac{kT_0 B G}{1 + f - 1} = kT_0 B F \]
\[N_0 = \frac{N_2^A}{2L} + \frac{N_2^B}{2L} + \frac{N_{\text{added}}}{2L} = \frac{kT_0 B G}{L} F + \frac{kT_0 B}{2L} \cdot \frac{(2L - 2)}{L} \]
\[F_{\text{total}} = \frac{s_i}{s_0} \left[\frac{G F}{L} + \left(1 - \frac{1}{L} \right) \right] = LF + \frac{L}{G} (L - 1) \]

CHECK: If \(L = 1 \), \(F_{\text{total}} = F \)

N_{\text{added}} for hybrid:

\[N_0 = \frac{kT_0 B}{2L} + \frac{kT_0 B}{L} + \frac{N_{\text{added}}}{2L} = kT_0 B \]

\[: \quad N_{\text{added}} = 2kT_0 B (L - 1) \quad \text{(Ref. at input)} \]