Micromachined Coaxial Transmission Lines for Integrated Millimeterwave Communication Antennas

J.R. Reid*, R.T. Webster, and E.D. Marsh

Antenna Technology Branch
Air Force Research Laboratory

*Address: AFRL/SNHA
80 Scott Dr.
Hanscom AFB, MA 01731
Phone: (781) 377-1077
Why 3D Transmission Lines?

Traditional IC processes and micromachining are not three dimensional

Resulting in the use of planar transmission lines such as microstrip and coplanar waveguides
Problems with Planar T-Lines

Microstrip

- Quasi TEM
 - Dispersive
- Fields in air and substrate
 - Line width is proportional to substrate thickness
 - Loss tied to substrate material
 - Cross talk to neighboring lines and devices
- Requires backside metalization
- Ground connection requires a via
- Crossing signal lines is difficult

Coplanar Waveguide

- Quasi TEM
 - Dispersive
- Fields in air and substrate
 - Line width and gap are related to substrate properties
 - Loss tied to substrate material
 - Cross talk to neighboring lines and devices
- Moding is a major design issue
- Crossing signal lines is difficult
3D Micro-fabrication
T-Line Comparison

Recta-Coax

- TEM Transmission line
- Substrate independent
- Fields confined to enclosed region
- Ground and signal available
- Crossovers and bends are readily implemented
Rectangular Coaxial Transmission Lines

Modeled and simulated characteristic impedance for lines that can be realized in EFAB
(All dimensions in micrometers)

<table>
<thead>
<tr>
<th>Line</th>
<th>t (µm)</th>
<th>t_g (µm)</th>
<th>w_g (µm)</th>
<th>w_{50} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>24</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>32</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>122</td>
<td>150</td>
<td>309</td>
</tr>
</tbody>
</table>
Loss Comparison (dB/cm)

50Ω Transmission Lines

<table>
<thead>
<tr>
<th>Line Dimensions (Micrometers)</th>
</tr>
</thead>
</table>

Recta-Coax

<table>
<thead>
<tr>
<th>Line</th>
<th>t</th>
<th>t_g</th>
<th>w_g</th>
<th>w_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC B (Ni)</td>
<td>30</td>
<td>32</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>RC B (Au)</td>
<td>30</td>
<td>32</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>RC B (Cu)</td>
<td>30</td>
<td>32</td>
<td>50</td>
<td>65</td>
</tr>
</tbody>
</table>

Microstrip

<table>
<thead>
<tr>
<th>Line</th>
<th>w</th>
<th>d</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS (Au)</td>
<td>35</td>
<td>50</td>
<td>GaAs</td>
</tr>
</tbody>
</table>

Coplanar Waveguide

<table>
<thead>
<tr>
<th>Line</th>
<th>w</th>
<th>g</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPW (Au)</td>
<td>80</td>
<td>40</td>
<td>Sapphire</td>
</tr>
</tbody>
</table>
Loss Comparison (Quality Factor)

50Ω Transmission Lines

Line Dimensions
(Micrometers)

<table>
<thead>
<tr>
<th>Line</th>
<th>t</th>
<th>t_g</th>
<th>w_g</th>
<th>w_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC C (Ni)</td>
<td>28</td>
<td>122</td>
<td>150</td>
<td>309</td>
</tr>
<tr>
<td>RC C (Au)</td>
<td>28</td>
<td>122</td>
<td>150</td>
<td>309</td>
</tr>
<tr>
<td>RC C (Cu)</td>
<td>28</td>
<td>122</td>
<td>150</td>
<td>309</td>
</tr>
</tbody>
</table>

Recta-Coax

<table>
<thead>
<tr>
<th>Line</th>
<th>w</th>
<th>d</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS (Au)</td>
<td>??</td>
<td>150</td>
<td>Quartz</td>
</tr>
</tbody>
</table>

Microstrip

<table>
<thead>
<tr>
<th>Line</th>
<th>w</th>
<th>g</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPW (Au)</td>
<td>80</td>
<td>40</td>
<td>Sapphire</td>
</tr>
</tbody>
</table>
Fabricated Resonators
Fabricated Resonators

![Graph showing quality factor Q vs. frequency (GHz) for different models and designs.](image)

- **Model - Small Line**
- **Model - Large Line**
- **Simulation - Design #3**
- **Simulation - Design #4**
- **Test - Design #4**

<table>
<thead>
<tr>
<th>Design</th>
<th>Z_0</th>
<th>f_0</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC A (Ni)</td>
<td>50</td>
<td>44</td>
<td>1.60</td>
</tr>
<tr>
<td>RC B (Ni)</td>
<td>50</td>
<td>60</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Lines and Bends

Measured Insertion Loss

1 - 1.2 mm Line
2 - 3.2 mm Lines
2 - 3.2 mm Lines with Bends

Frequency (GHz)

Insertion Loss (dB)
60 GHz Branch Line Coupler

Table I. Design Parameters for the 60 GHz Coupler. All dimensions are in millimeters.

<table>
<thead>
<tr>
<th>Line</th>
<th>t</th>
<th>t_g</th>
<th>w</th>
<th>w_g</th>
<th>Length</th>
<th>$Z_0(\Omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.028</td>
<td>0.024</td>
<td>0.086</td>
<td>0.05</td>
<td>1.26</td>
<td>35.6</td>
</tr>
<tr>
<td>L2</td>
<td>0.028</td>
<td>0.024</td>
<td>0.046</td>
<td>0.05</td>
<td>1.26</td>
<td>51.4</td>
</tr>
</tbody>
</table>
60 GHz Branch Line Coupler

Graph: Frequency Response

- **Frequency (GHz)**: 30.00 to 70.00
- **dB(|S_{ij}|)**: Range from 0.00 to -50.00

- **Ports**: Port 1, Port 2, Port 3, Port 4
- **S Parameters**:
 - S_{11}
 - S_{12}
 - S_{13}
 - S_{14}

- **20% BW** indicated at the frequency range.

Diagram Details:
- Arrows indicating the behavior of S_{12} and S_{13}
- Graph showing the dB values for each S parameter across the frequency range.
Summary

• New micromachining processes enable the realization of enclosed TEM transmission lines

• These Recta Coax Lines offer significant advantages
 – Substrate independent
 – Complex routing, including cross-overs and bends
 – Isolation from surrounding devices
 – 1st Pass success shows potential for dramatically reducing design costs
Microfabrica’s EFAB

Layer Cycle

<table>
<thead>
<tr>
<th>Layer #</th>
<th>Thickness</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

EFAB Process
1. Begin with planar metal surface
2. Deposit a patterned layer
3. Deposit a blanket layer
4. Planarize
5. Repeat 1-4 for the desired number of layers
6. Sacrificially remove one of the two materials