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Abstract

The budding yeast Saccharomyces cerevisiae exhibits autonomous oscillations when grown aerobically in continuous culture with

ethanol as the primary carbon source. A single cell model that includes the sulfate assimilation and ethanol degradation pathways

recently has been developed to study these respiratory oscillations. We utilize an extended version of this single cell model to

construct large cell ensembles for investigation of a proposed synchronization mechanism involving hydrogen sulfide. Ensembles

with as many as 10,000 cells are used to simulate population synchronization and to compute transient number distributions from

asynchronous initial cell states. Random perturbations in intracellular kinetic parameters are introduced to study the

synchronization of single cells with small variations in their unsynchronized oscillation periods. The cell population model is

shown to be consistent with available experimental data and to provide insights into the regulatory mechanisms responsible for the

synchronization of yeast metabolic oscillations.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The budding yeast Saccharomyces cerevisiae exhibits
sustained oscillations when grown in continuous culture
under certain environmental conditions. The oscillations
are autonomous in the sense that external forcing is not
required to establish or maintain the limit cycle
dynamics. Three distinct types of autonomous yeast
oscillations have been reported: glycolytic oscillations
(Aon et al., 1992; Ghosh et al., 1971), respiratory
oscillations (Keulers et al., 1996a, b), and cell cycle
related oscillations (von Meyenburg, 1973; Parulekar
et al., 1986). Improved understanding of the cellular
mechanisms involved could yield important insights into
dynamic regulation of metabolism in yeast cells and in
eukaryotic cells present in higher organisms. Glycolytic
and respiratory oscillations are more amenable to
theoretical analysis because the limit cycle dynamics
e front matter r 2004 Elsevier Ltd. All rights reserved.
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are attributable to cellular metabolism and independent
of cell cycle progression. A number of experimental
(Das and Busse, 1991; Ghosh and Chance, 1964) and
modeling (Bier et al., 2000; Wolf and Heinrich, 2000)
studies have attempted to decipher the metabolic
determinants of glycolytic oscillations. These studies
support the hypothesis that an autocatalytic reaction
involving the glycolytic enzyme phosphofructokinase
causes single cells oscillations. A negative feedback
mechanism in the sulfate assimilation pathway is
thought to be responsible for respiratory oscillations at
the individual cell level (Sohn and Kuriyama, 2001).
Single cell oscillations must be synchronized to be

observable at the population level. A perfectly synchro-
nized population is an idealized concept in which every
cell oscillates with exactly the same phase and ampli-
tude. Actual experiments yield partially synchronized
populations comprised of oscillating cells with narrowly
distributed phases and amplitudes. In addition to
studying the emergent dynamics of coupled cellular
oscillators, synchronized cultures are commonly used to
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investigate cellular metabolism because population
averaged measurements are representative of single
cell behavior (Muller et al., 2003). Population synchro-
nization requires some form of communication
between individual cells. The synchronization mechan-
isms proposed for glycolytic and respiratory osc-
illations both involve an intracellular species produced
by single cells and excreted into the extracellular
environment. Acetaldehyde is believed to be the
synchronizing agent for glycolytic oscillations (Richard
et al., 1996, 1994), while recent experiments implicate
hydrogen sulfide in the synchronization of respiratory
oscillations (Sohn and Kuriyama, 2001; Sohn et al.,
2000).
Theoretical analysis of cellular synchronization moti-

vates the development of dynamic population models
which capture single cell metabolism. Population
balance equation (PBE) models (Fredrickson et al.,
1967; Henson, 2003b; Hjortso and Nielsen, 1995)
commonly used to describe microbial cell population
dynamics are not well suited for the incorporation of
metabolic reaction pathways. While metabolically
structured PBE models can be formulated if the
intracellular reaction stoichiometry and kinetics are
known (Nielsen and Villadsen, 1994), we have shown
that the high dimension of the intracellular state space
renders such PBE models computationally intractable
(Henson et al., 2002). Several investigators have used
small ensembles of single cell models to study the
synchronization of glycolytic oscillations (Bier et al.,
2000; Wolf and Heinrich, 2000; Wolf et al., 2000). Each
of these studies is severely limited by the very small
number of cells included in the ensemble. In particular,
cellular distributions which are readily obtained from
PBE models cannot be reliably computed with ensem-
bles consisting of a few individual cells (Henson et al.,
2002).
Based on previous work for E. coli cultures (Domach

and Shuler, 1984; Kim and Shuler, 1990), we recently
developed a cell population model comprised of 1000
metabolically structured cells to study the synchroniza-
tion of yeast glycolytic oscillations (Henson et al., 2002).
A single cell model and synchronization mechanism
previously developed (Wolf and Heinrich, 2000) were
used in our investigations. Although the cell population
model was comprised of 6000 nonlinear ordinary
differential equations, an efficient numerical solution
strategy was developed by exploiting the approximately
banded structure of the model equations. Random
variations in the initial state and/or intracellular kinetic
parameters of individual cells produced complex syn-
chronization dynamics not adequately captured by small
ensembles. Transient cell number distributions were
computed from ensemble simulation data by discretiza-
tion of the intracellular state. An inherent limitation of
this modeling approach is that achievable resolution of
the population dynamics is limited by the number of
cells included in the ensemble.
The primary goal of this paper is to utilize the cell

ensemble modeling framework to study the synchroni-
zation of yeast respiratory oscillations. A synchroniza-
tion mechanism proposed by experimentalists (Sohn and
Kuriyama, 2001; Sohn et al., 2000) involving hydrogen
sulfide mediated inhibition of the respiratory chain is
evaluated. Theoretical analysis is based on an extended
version of a previously developed single cell model
(Wolf et al., 2001) which is derived by adding hydrogen
sulfide membrane transport and accumulation in the
extracellular environment. A secondary objective is to
demonstrate that the proposed modeling framework is
applicable to more complex cell models and larger
ensembles than those used in our previous study of
glycolytic oscillations (Henson et al., 2002). Ensembles
with as many as 10,000 individual cells are used to
simulate population synchronization and to compute
transient number distributions. Two general scenarios
are considered: (1) synchronization of structurally
identical cells that are initialized to represent varying
degrees of population asynchrony; and (2) synchroniza-
tion of non-identical cells with small random variations
in their intracellular kinetic parameters. Model predic-
tions are qualitatively compared to available experi-
mental data to assess the validity of the hypothesized
synchronization mechanism. A few preliminary simula-
tion results were included in a recent review paper by the
author (Henson, 2004).
2. Previous work on yeast respiratory oscillations

2.1. Experimental studies

Respiratory oscillations are observed when the yeast
S. cerevisiae is grown aerobically in continuous culture
with glucose (Satroutdinov et al., 1992), ethanol
(Keulers et al., 1996b) or acetaldehyde (Keulers and
Kuriyama, 1998) as the primary carbon source. Sus-
tained oscillations have been reported in many extra-
cellular variables including the rates of oxygen uptake,
sulfate uptake and carbon dioxide production and the
concentrations of ethanol, acetate, acetaldehyde and
hydrogen sulfide (Sohn and Kuriyama, 2001; Satroutdi-
nov et al., 1992). Intracellular variables such as pH and
the concentrations of acetate, glutathione, ATP and
NADH also have been shown to exhibit oscillatory
dynamics (Sohn and Kuriyama, 2001; Satroutdinov et
al., 1992). The oscillation period is approximately
40–60min in glucose and ethanol media (Satroutdinov
et al., 1992; Murray et al., 2001).
Sulfate assimilation and ethanol degradation are

essential components of the synchronization mechanism
in ethanol media. The sulfate assimilation pathway
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produces the amino acid cysteine, which inhibits sulfate
assimilation at high concentrations (Sohn and Kuriya-
ma, 2001), and hydrogen sulfide, which inhibits the
respiratory chain (Sohn et al., 2000). Inhibition of
sulfate assimilation metabolism by cysteine has been
proposed to be the primary cause of single cell
oscillations (Sohn and Kuriyama, 2001). This hypothesis
is supported by experiments that showed the oscillation
period was inversely proportional to the extracellular
sulfate concentration and the oscillatory dynamics were
completely eliminated when the original media was
replaced with sulfate-free media (Sohn and Kuriyama,
2001). The ethanol degradation pathway also plays a
critical role as its intermediate O-acetylhomoserine is
a precursor for cysteine synthesis. Oscillations in the
sulfate assimilation pathway are believed to be propa-
gated to the respiratory chain by inhibition of oxidative
phosphorylation by hydrogen sulfide (Sohn et al., 2000).
Experiments in which autonomous oscillations were

eliminated at high gas flow rates suggest that the
synchronizing agent is a volatile species excreted by
individual cells and removed from the gas phase via the
purge stream (Keulers et al., 1996a). Due to its strong
influence on intracellular pH, carbon dioxide was
originally hypothesized to be the synchronizing species
(Keulers et al., 1996a). More recent experiments suggest
that hydrogen sulfide mediates population synchrony
through inhibition of the respiratory chain (Sohn and
Kuriyama, 2001; Sohn et al., 2000). Pulse injections of
ethanol
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crystalline sodium sulfide (which was converted to
hydrogen sulfide in solution) strongly affected the
period of hydrogen sulfide oscillations and their phase
relationship with oxygen oscillations (Sohn et al., 2000).
A dual synchronization mechanism involving both
hydrogen sulfide and acetaldehyde also has been
proposed (Murray et al., 2001). The cessation of
sustained oscillations in these experiments has been
attributed to lack of population synchronization rather
than elimination of single cell oscillations.

2.2. Single cell modeling

The cell population model used in this paper to
investigate the synchronization of yeast respiratory
oscillations is based a previously developed single cell
model (Wolf et al., 2001). Fig. 1 shows the metabolic
network used for derivation of the single cell model. The
following cellular processes considered to be essential
for oscillations in ethanol media were considered: (1)
sulfate update and degradation in the cytosol resulting
in the production of hydrogen sulfide ðH2SÞ and
cysteine; (2) ethanol uptake and degradation in the
cytosol resulting in precursors for cysteine production
and the citrate acid cycle; (3) oxidative phosphorylation
in the mitochondria including the influx/outflux of
oxygen and lumped processes of respiration; (4) the
citrate acid cycle in the mitochondria; and (5) ATP
transport and consuming processes in the cytosol and
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mitochondria. Key regulatory effects included in the
cell model were the inhibition of sulfate uptake by
cysteine and the inhibition of respiration by hydrogen
sulfide. The citrate acid cycle intermediates ðS1;S2Þ as
well as the co-enzymes NADþ=NADH ðN1=N2Þ; cyto-
solic ADP/ATP ðAc;2=Ac;3Þ and mitochondrial ADP/
ATP ðAm;2=Am;3Þ were assumed to be conserved
moieties.
A dynamic cell model consisting of 13 nonlinear

ordinary differential equations was derived by formulat-
ing mass balances for the independent chemical species
in the metabolic network (Wolf et al., 2001). Due to a
lack of experimental data, the kinetic parameters were
chosen heuristically to yield sustained oscillations with a
period of approximately 40 dimensionless time units.
The single cell model was numerically integrated to
investigate the ability of the proposed regulatory
mechanisms to generate autonomous oscillations con-
sistent with experimental observations. The major
conclusions of this theoretical study were: (1) inhibition
of sulfate uptake by cysteine produced strong oscilla-
tions in the intermediates of sulfur metabolism even
in the absence of respiratory inhibition; (2) inhibition
of oxidative phosphorylation by hydrogen sulfide
caused the oscillations to spread throughout the
entire metabolic network; (3) the oscillation period
decreased with increasing sulfate uptake and stati-
onary solutions were obtained when the uptake
was sufficiently low; and (4) while the phase relation-
ships between most variables were captured, the
model incorrectly predicted that the adenine nuc-
leotides ðAc;3;Am;3Þ oscillated 180� out of phase with
oxygen.
3. Cell population model

3.1. Synchronization mechanism

In this paper a cell population model based on a
modified version of the single cell model described above
is developed to investigate the synchronization of yeast
respiratory oscillations. Available experimental data
suggests that hydrogen sulfide mediates population
synchrony by inhibition of the respiratory chain (Sohn
and Kuriyama, 2001; Sohn et al., 2000). This hypothe-
sized mechanism is modeled by including a flux term in
the single cell model that accounts for transport of
hydrogen sulfide across the cell membrane. Unlike the
original model in which hydrogen sulfide was assumed
to be degraded within the cell (Wolf et al., 2001), the
proposed model includes an extracellular hydrogen
sulfide balance with a degradation term. Additional
extracellular balances on sulfate, ethanol and oxygen
are omitted since these species are not directly involved
in the synchronization mechanism. The population
model is comprised of an ensemble of modified single
cell models and the extracellular hydrogen sulfide
balance.
The differential equations describing the ith cell in the

population are:

dCsul;i

dt
¼ v1;i � v2;i; ð1Þ

dCaps;i

dt
¼ v2;i � v3;i; ð2Þ

dCpap;i

dt
¼ v3;i � v4;i; ð3Þ

dCh2s;i

dt
¼ v4;i � v5;i � Ji; ð4Þ

dCcys;i

dt
¼ v5;i � v6;i; ð5Þ

dCeth;i

dt
¼ v13;i � v7;i; ð6Þ

dCaco;i

dt
¼ v7;i � v8;i � v15;i; ð7Þ

dCS1;i

dt
¼ v8;i � v9;i; ð8Þ

dCoxy;i

dt
¼ v10;i � v11A;i � v14;i; ð9Þ

dCA3m;i

dt
¼ v11B;i � v16;i; ð10Þ

dCN2;i

dt
¼ �3v4;i þ 2v7;i þ 4v9;i � v11A;i; ð11Þ

dCA3c;i

dt
¼ �v2;i � v3;i � v12;i þ v16;i; ð12Þ

dCoah;i

dt
¼ �v5;i þ v15;i � v17;i; ð13Þ

where C denotes molar concentration and the following
abbreviations are used: intracellular sulfate (sul), ade-
nylyl sulfate (aps), 3-phosphoadenylyl sulfate (pap),
hydrogen sulfide (h2s), cysteine (cys), intracellular
ethanol (eth), acetyl-CoA (aco), citrate acid cycle
intermediate (S1), intracellular oxygen (oxy), mitochon-
drial ATP (A3m), NADH (N2), cytosolic ATP (A3c)
and O-acetylhomoserine (oah). The uptake rates of
oxygen ðv10Þ and ethanol ðv13Þ are assumed to be
constant. Excess oxygen is returned to the extracellular
environment at a rate v14 that depends linearly on the
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Table 1

Nominal parameter values for the yeast cell population model

Parameter Value Parameter Value

v0 1.6 k2 0.2

k3 0.2 k4 0.2

k5 0.1 k6 0.12

k7 10 k8 10

k9 10 v10 80

k11 10 k12 5

v13 4 k14 10

k15 5 k16 10

k17 1 k18 0.25

n 4 m 4

KA 1 KC 0.1

KH 0.15 a 0.1

Ac 2 Am 2

S 2 N 2

f 0.1 k 2.0
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intracellular oxygen concentration. The reaction rates
v2–v9 and v15–v17 depend linearly on the metabolite(s)
and co-enzyme involved in the corresponding intracel-
lular reactions (Wolf et al., 2001). Individual cell
oscillations are attributable to inhibition of sulfate
uptake by cysteine:

v1;i ¼ v0;i 1þ 1þ
Ccys;i

KC;i

� �ni
� ��1

; ð14Þ

where v0 is the uptake rate in the absence of inhibition.
The reaction rates v11A and v11B for lumped processes of
respiration are derived from a minimal model of
oxidative phosphorylation (Wolf et al., 2001):

v11A;i ¼
k11;iCN2;iCoxy;if 1;iðCh2s;iÞ

aiCN2;i þ Coxy;i
; ð15Þ

v11B;i ¼ 3v11A;i
CA2m;i

KA;i þ CA2m;i
; ð16Þ

where inhibition of the respiratory chain by hydrogen
sulfide is modeled as

f 1;iðCh2s;iÞ ¼ 1þ 1þ
Ch2s;i

KH;i

� �mi
� ��1

: ð17Þ

The transport rate v12 of ATP from the cytosol to the
mitochondria is assumed to depend linearly on the
cytosolic ATP concentration.
The hydrogen sulfide flux J across the cell membrane

is modeled as

Ji ¼ kiðCh2s;i � Ch2s;exÞ; ð18Þ

where Ch2s;ex is the extracellular hydrogen sulfide
concentration and the parameter k is related to the
membrane permeability. A mass balance on extracel-
lular hydrogen sulfide yields

dCh2s;ex

dt
¼

j
M

XM

i¼1

Ji � v18; ð19Þ

where M is the total number of cells and j is the volume
fraction of cells. Rather than model the transport of
hydrogen sulfide from the liquid phase to the gas phase
and its subsequent removal in the purge gas stream, a
simplified description where extracellular hydrogen
sulfide is degraded at a rate v18 is employed. The
degradation rate is assumed to depend linearly on
Ch2s;ex: A similar model for extracellular acetaldehyde
has been utilized in cell population models for yeast
glycolytic oscillations (Wolf and Heinrich, 2000; Henson
et al., 2002).

3.2. Model formulation and numerical solution

Nominal values of the model parameters are shown in
Table 1 where kj denotes the kinetic constant for
reaction rate vj and the total concentrations of the
citrate acid cycle intermediates ðS1;S2Þ; redox equiva-
lents ðN1;N2Þ; cytosolic adenine nucleotides ðAc;2;Ac;3Þ

and mitochondrial adenine nucleotides ðAm;2;Acm;3Þ are
denoted S; N ; Ac and Am; respectively. Single cell
model parameters are identical to those listed in (Wolf
et al., 2001) with the exception of the inhibition constant
for oxidative phosphorylation which was decreased
ðKH : 0:5 ! 0:15Þ to yield experimentally observed
synchronization behavior. The cell density ðjÞ was
chosen as in previous modeling studies on yeast
glycolytic oscillations (Wolf and Heinrich, 2000; Henson
et al., 2002). The remaining extracellular model para-
meters ðk; k18Þ were used to tune the rate of synchroni-
zation. Due to the lack of experimental data on which
to base the kinetic parameter values (Wolf et al., 2001),
the dependent variables plotted below have not been
ascribed physical units. Consequently, the cell popula-
tion model is only suitable for generating qualitative
predictions for comparison to experimental data. The
nominal parameter values in Table 1 produced a
synchronized oscillation period of 45 dimensionless
units.
A dynamic simulation code was developed in FOR-

TRAN using the stiff ordinary differential equation
solver DVODE (Brown et al., 1989). The Jacobian matrix
was computed numerically by finite difference approx-
imation for simplicity. Simulation output was sampled
every minute to obtain adequate resolution of the
oscillatory dynamics. As shown below, ensemble aver-
aged variables were not strongly affected by the number
of cells included in the ensemble. The motivation for
utilizing large cell ensembles was to obtain accurate
resolution of transient cell distributions computed from
ensemble simulation data. Our previous work on yeast
glycolytic oscillations demonstrated that even 1000 cells
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may not be sufficient to produce smooth distributions
(Henson et al., 2002).
Most of the dynamic simulation results presented

below were generated with 10,000 cells or n ¼ 13M þ

1 ¼ 130; 001 nonlinear ordinary differential equations.
The full Jacobian matrix contained 1:69� 1010 elements
that required finite difference approximation each time
the model evaluation subroutine was called by the
differential equation solver. Brute force integration of
this very large differential equation system proved to be
computationally infeasible. Efficient model solution was
achieved by replacing the full Jacobian matrix with a
highly banded approximation (Henson et al., 2002). A
Jacobian matrix is banded with lower half bandwidth ml

and upper half bandwidth mu if the ith model equation
can be written as

dyi

dt
¼ f iðyi�ml

; yi�mlþ1
; . . . ; yi; . . . ; yiþmu�1

; yiþmu
Þ; ð20Þ

where yi is the ith dependent variable. The full Jacobian
matrix was not banded due to the hydrogen sulfide flux
Ji in Eqs. (4) and (19). By neglecting these flux terms
only in the Jacobian calculation, the problem became
highly banded with ml ¼ mu ¼ 12: This approximation
reduced the number of Jacobian calculations by a factor
of 10,000 while having no discernable effect on solution
stability or accuracy when tested with smaller cell
ensembles. All simulation were performed on a Pentium
IV 1.4GHz processor with 64MBs of memory.
Specifying meaningful initial conditions for the cell

population model was non-trivial due to the very large
number of dependent variables. A completely synchro-
nized state in which all cells oscillated with the same
period and phase was used as the base case. The
synchronization mechanism was evaluated by numeri-
cally integrating the population model from various
asynchronous initial states generated by
1.
 Adding random perturbations to the completely
synchronized state.
2.
 Collecting synchronous simulation data over a single
oscillation period. The oscillation was divided into M

snapshots where the intracellular concentrations were
captured. Initial states ranging from completely
synchronous to completely asynchronous where each
cell was located an equally spaced distance along the
oscillatory trajectory were constructed.

While the introduction of random perturbations was
simpler to implement, this initialization method did not
ensure that a particular cell model has a physiologically
meaningful combination of intracellular concentrations.
This problem was avoided in the second method by
initializing each cell with a set of consistent intracellular
concentrations. Random perturbations in intracellular
kinetic parameters were used to study synchronization
in the presence of small cellular variations.
Numerical integration of the cell population model
produced a data matrix which contained the intracel-
lular concentrations of each cell and the extracellular
hydrogen sulfide concentration at every sampling point
in time. The ensemble average of intracellular variable y

at sampling time tj was calculated as

�yðtjÞ ¼
1

M

XM

i¼1

yiðtjÞ: ð21Þ

We previously developed a simple method for calcula-
tion of the transient cell number distribution for any
intracellular variable zðtÞ (Henson et al., 2002). In this
study, we were primarily interested in cell distributions
with respect to intracellular hydrogen sulfide and oxygen
due to their essential roles in the hypothesized synchro-
nization mechanism. The intracellular species concen-
tration of interest was discretized into L equally spaced
bins which covered the full oscillatory range. The
number distribution at each sampling time Nðz; tjÞ was
computed by partitioning the cell ensemble into the
concentration bins. All distribution calculations were
performed using MATLAB. As shown below, achiev-
able resolution was determined by the number of cells
(M) in the ensemble and the number of bins L used for
discretization. We found that an alternative method
based on differentiating the cumulative number dis-
tribution (Hukkanen and Braatz, 2003) yielded unac-
ceptable results due to the extreme steepness of the
cumulative distribution under highly synchronized
conditions.
4. Results and discussion

4.1. Intracellular state initialization studies

The first set of simulation tests were designed to
evaluate the hypothesized synchronization mechanism
by initializing the cell population to represent various
degrees of asynchrony. Each cell ensemble studied was
structurally identical in the sense that the same
parameter values were employed in every single cell
model. Fig. 2 depicts the synchronization of 100 cells
where the initial state was constructed by imposing zero
mean normally distributed perturbations of variance 1.5
on the nominal intracellular concentrations. The top
plot shows the intracellular hydrogen sulfide concentra-
tion of each cell and the ensemble average hydrogen
sulfide concentration. Corresponding results for intra-
cellular oxygen are shown in the bottom plot. The
random perturbations resulted in large initial differences
between the single cell oscillation amplitudes and
phases. Despite the asynchronous initial state, the cell
population became highly synchronized in approxi-
mately five oscillations periods.
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Fig. 2. Synchronization dynamics of a 100 cell ensemble in which the initial state of each cell was perturbed according to a normal distribution with

zero mean and a variance of 1.5. The top plot shows the evolution of the hydrogen sulfide concentration of each cell and the ensemble average

hydrogen sulfide concentration. The bottom plot shows the evolution of the oxygen concentration of each cell and the ensemble average oxygen

concentration.
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The effect of 11 important model parameters on the
synchronization dynamics of 100 randomly initialized
cells is summarized in Table 2. Each parameter was
varied 	100% of the nominal value listed in Table 1
while the other parameters were held constant at their
nominal values. The simulation results were character-
ized as follows: (1) the population synchronized slower
than with the nominal parameters values (slower
synchronization); (2) the population synchronized faster
than with the nominal parameters values (faster
synchronization); (3) the population exhibited partial
synchronization in the sense that a relatively small
number of cells failed to synchronize (incomplete
synchronization); (4) cells exhibited oscillations but the
population did not synchronize (no synchronization);
and (5) each cell asymptotically approached the same
steady-state solution (steady state). The following
conclusions can be drawn from Table 2:
1.
 An overabundance of extracellular sulfate and/or
oxygen inhibits synchronization.
2.
 A limited range of extracellular ethanol concentra-
tions support synchronization.
3.
 Synchronization is inhibited by low cell densities.

4.
 Synchronization requires: (i) a suitable balance of the

cysteine production and degradation rates; (ii) a
sufficiently small value of the sulfate uptake inhibi-
tion constant; and (iii) a sufficiently large value of the
respiratory inhibition constant.
5.
 Synchronization is inhibited by small values of the
cellular coupling parameter and large hydrogen
sulfide degradation rates.

The effect of the respiratory inhibition parameter is
somewhat counterintuitive since larger parameter values
produce smaller inhibitory effects. Unfortunately, the
experimental data required to validate these model
predictions are not currently available.
Fig. 3 shows the effect of cell ensemble size on

population dynamics when the initial intracellular
concentrations were randomly perturbed as discussed
above. To achieve slower synchronization dynamics that
better illustrate the effect of ensemble size, the following
parameter values were modified from those listed in
Table 1: KH ¼ 0:25 and k ¼ 0:5: The top plot in Fig. 3
shows the average intracellular hydrogen sulfide con-
centrations obtained with four different ensemble sizes.
The results for two cells demonstrate a potential
shortcoming of utilizing very small ensembles to
simulate cell population synchronization (Wolf and
Heinrich, 1997, 2000). On the other hand, the nearly
converged results obtained for 100 and 1000 cells
suggest that relatively small ensembles can yield
satisfactory predictions of average population behavior.
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Table 2

Effect of model parameters on synchronization behavior

Parameter Description Value Result

v0 Uninhibited sulfate uptake 0.8 Faster synchronization

1.6 Nominal value

3.2 Slower synchronization

k5 Cysteine production constant 0.05 No synchronization

0.1 Nominal value

0.2 Faster synchronization

k6 Cysteine degradation constant 0.06 Steady state

0.12 Nominal value

0.24 No synchronization

v10 Oxygen influx 40 Faster synchronization

80 Nominal value

160 Slower synchronization

v13 Ethanol uptake 2 No synchronization

4 Nominal value

8 Steady state

v14 Oxygen efflux 5 Slower synchronization

10 Nominal value

20 Faster synchronization

KC Sulfate flux inhibition constant 0.05 Faster synchronization

0.10 Nominal value

0.20 No synchronization

KH Respiration inhibition constant 0.075 Steady state

0.15 Nominal value

0.3 Faster synchronization

f Cell density 0.05 Incomplete synchronization

0.1 Nominal value

0.2 Faster synchronization

k Cell coupling parameter 1.0 Slower synchronization

2.0 Nominal value

4.0 Faster synchronization

k19 H2S degradation constant 0.125 Faster synchronization

0.25 Nominal value

0.50 Incomplete synchronization

M.A. Henson / Journal of Theoretical Biology 231 (2004) 443–458450
The motivation for utilizing much larger ensembles is
high resolution of cell distribution properties. The
middle and bottom plots in Fig. 3 show hydrogen
sulfide number distributions computed at t ¼ 140 and
t ¼ 500; respectively, for three ensemble sizes. The
number of bins used to compute the number distribu-
tions were chosen as follows: 100 cells (20 bins), 1000
cells (50 bins) and 10,000 cells (200 bins). While the 100
cell ensemble produced a nearly converged solution for
the average intracellular concentration, this relatively
small ensemble did not provide satisfactory resolution of
the transient cell distribution. For example, the result
obtained at t ¼ 140 suggests a unimodal distribution.
The corresponding results for larger cell ensembles
clearly show a bimodal distribution that represents two
cell subpopulations which spontaneously emerged from
the randomized initial state. Adequate resolution of
such cell subpopulations is critical for understanding the
emergence and stabilization of yeast autonomous
oscillations. For instance, cell cycle related oscillations
are characterized by the formation of two subpopula-
tions which represent budded and unbudded cells
(Henson, 2003a). Fig. 3 shows that 10,000 cells are
required to achieve high resolution of the cell distribu-
tion dynamics. The asymmetric distribution obtained at
t ¼ 500 eventually converged to a very sharp symmetric
distribution corresponding to a highly synchronized
population.
Corresponding results obtained with completely

asynchronous initial states are shown in Fig. 4. The
top plot demonstrates that only 10 cells were needed to
obtain a converged solution for the average intracellular
hydrogen sulfide concentration. Hydrogen sulfide num-
ber distributions computed at t ¼ 0 and t ¼ 50 with the
bin numbers chosen as before are shown in the middle
and bottom plots, respectively. The 10,000 cell ensemble
accurately reproduced the initial bimodal distribution
and generated a trimodal distribution at t ¼ 50: The
bimodal form of the initial distribution is attributable to
initialization procedure as equal time spaced sampling
produced a large number of cells concentrated near the
peak and valley of the synchronous oscillation. A
trimodal distribution was temporarily produced during
the initial phases of synchronization. The lower and
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Fig. 3. Synchronization dynamics for five cell ensemble sizes in which the initial state of each cell was perturbed according to a normal distribution

with zero mean and a variance of 1.5. The model parameters in Table 1 were used with the exception of KH ¼ 0:25 and k ¼ 0:5: The top plot shows

average hydrogen sulfide concentrations computed for ensembles containing 2, 10, 100 and 1000 cells. The middle ðt ¼ 140Þ and bottom ðt ¼ 500Þ

plots show hydrogen sulfide number distributions computed for ensembles of 100 cells (20 bins), 1000 cells (50 bins) and 10,000 cells (250 bins).
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upper peaks correspond to two cell subpopulations with
relatively large amplitude oscillations of different
phases. The middle peak represents a third cell
subpopulation with relatively small amplitude oscilla-
tions that eventually coalesces with the other two
subpopulation to produce synchronous oscillations.
Such detailed analysis requires the 10,000 cell ensemble
as the subpopulations were smeared when smaller
ensembles are used as shown in Fig. 4.
The simulation results in Figs. 3 and 4 suggest that

100 cells were sufficient to predict average population
dynamics and that 10,000 cells were required for high
resolution of distribution properties. Available compu-
tational resources limit the number of single cell models
that can be included in the ensemble. The following
CPU times were obtained for a typical 300min dynamic
simulation on a Pentium IV 1.4GHz processor with
64MBs of memory: 100 cells (17 s), 1000 cells (180 s) and
10,000 cells (1680 s). The linear relationship between cell
number and computation time was expected because the
banded Jacobian option of the ODE solver DVODE was
employed. Although results are not presented in this
paper, the incorporation of analytical Jacobian calcula-
tions had a negligible effect on code efficiency and
robustness.
The effect of the initial intracellular state on the
synchronization dynamics of a 10,000 cell ensemble is
illustrated in Fig. 5. Three initial states ranging from
completely asynchronous (100% of the snapshots used
for initialization) to relatively synchronized (25% of the
snapshots used for initialization) were generated from
synchronous simulation data following the procedure
described in the previous section. The top plot in Fig. 5
shows the initial hydrogen sulfide number distributions
computed with 250 bins. By construction the initial state
of the completely asynchronous population (100%) was
much disperse than that for the mostly synchronized
population (25%). The middle plot which shows
ensemble average hydrogen sulfide concentrations
clearly demonstrates that the rate of synchronization
increased with the degree of initial synchrony. Hydrogen
sulfide number distributions computed at t ¼ 50
are shown in the bottom plot. As expected, the
distribution obtained with the asynchronous initial
condition (100%) was considerably more disperse
than those obtained with the partially synchronized
initial conditions (25% and 50%). The completely
asynchronous population (100%) generated a trimodal
distribution with three cell subpopulations as discussed
above.
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Fig. 4. Synchronization dynamics for five cell ensemble sizes in which completely asynchronous initial states were obtained from synchronous

simulation data as explained in the text. The top plot shows average hydrogen sulfide concentrations computed for ensembles containing 2, 10 and

100 cells. The middle ðt ¼ 0Þ and bottom ðt ¼ 50Þ plots show hydrogen sulfide number distributions computed for ensembles of 100 cells (20 bins),

1000 cells (50 bins) and 10,000 cells (250 bins).
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Fig. 6 shows the effect of the respiration inhibition
parameter ðKH Þ on the synchronization dynamics of a
100 cell ensemble. For each KH value a fully synchro-
nized solution was obtained and used to generate a
completely asynchronous intracellular state for initiali-
zation of the cell population. Because this parameter
determines the inhibitory effect of hydrogen sulfide on
oxidative phosphorylation, the simulation results are
plotted in terms of the intracellular oxygen concentra-
tion. The nominal parameter value ðKH ¼ 0:15Þ pro-
duced relatively slow synchronization even though large
amplitude single cell oscillations were quickly estab-
lished. As the KH value was increased, more rapid
synchronization was observed but the time required to
achieve fully developed single cell oscillations was
substantially longer. Although not shown in Fig. 6, the
ensemble average oxygen concentration approached its
asymptotic solution most rapidly for the nominal KH

value even though the synchronization dynamics were
markedly slower. These results demonstrate a potential
limitation of using extracellular and/or average intra-
cellular measurements to investigate the synchronization
of cellular oscillations.
The effect of the cell coupling parameter ðkÞ on the

synchronization dynamics of a 100 cell ensemble is
illustrated in Fig. 7. For each parameter value investi-
gated a completely asynchronous intracellular state was
generated for initialization of the cell population. The
top and bottom plots show the evolution of the average
intracellular and extracellular hydrogen sulfide concen-
trations, respectively. Shorter oscillation periods, larger
amplitudes in extracellular hydrogen sulfide and more
rapid synchronization were observed as the k value was
increased. Because the oscillation period only varied
between 44 and 49 dimensionless units over this range of
parameter values, k appears to be a suitable parameter
for tuning the cell population model to match data
once the necessary synchronization experiments are
conducted.

4.2. Intracellular parameter randomization studies

The second set of simulation tests were designed to
evaluate the robustness of the proposed synchronization
mechanism through the introduction of random pertur-
bations in the single cell model parameters. These tests
mimic the effects of cellular variations which result in
different expression levels of enzymes controlling the
rates of intracellular reactions and membrane transport
processes. The nine single cell model parameters
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Fig. 5. Synchronization dynamics for three ensembles containing 10,000 cells in which the initial states were obtained from synchronous simulation

data as explained in the text. The three initial states correspond to a completely asynchronous population (100% of the synchronous snapshots used),

a partially synchronized population (50% of the synchronous snapshots used) and a mostly synchronized population (25% of the synchronous

snapshots used). The top plot shows initial hydrogen sulfide number distributions computed with 250 bins. The middle plot shows the evolution of

the average intracellular hydrogen sulfide concentrations. The bottom plot shows hydrogen sulfide number distributions computed at t ¼ 50:
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ðv0; k5; k6; v10; v13; v14;KC ;KH ;kÞ listed in Table 2 were
subjected to random perturbations.
The effect of single cell parameter variations on the

synchronization dynamics of three ensembles containing
10,000 cells is illustrated in Fig. 8. Zero mean normally
distributed perturbations of variance 0 (no variations),
0.2 (small variations) and 0.4 (large variations) were
imposed on the nominal parameter values listed in Table
1. The initial condition for each simulation corre-
sponded to a completely asynchronous state. The top
plot in Fig. 8 shows the intracellular oxygen concentra-
tions of 100 representative cells when small parameter
variations were introduced. A substantial degree of
synchronization was achieved despite the cellular varia-
tions. The middle plot shows the ensemble average
intracellular oxygen concentration for each case. The
asymptotic solution for small parameter variations was
characterized by a slightly smaller amplitude and a
shorter oscillation period than those obtained with no
variations. Large parameter variations resulted in very
small amplitude oscillations indicative of asynchronous
population dynamics. The bottom plot shows oxygen
number distributions computed at the final time ðt ¼
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parameters listed in the text were subjected to zero mean normally distribut

state was generated as described in the text. The hydrogen sulfide degradation

200pto800; k19 ¼ 6:25; 800ptp1400: The top and middle plots show the

average intracellular oxygen concentration, respectively. The bottom plot sho

and 1400.
500Þ with 250 bins. A distribution consistent with a
partially synchronized population was obtained for
small parameter variations. By contrast, large variations
produced a very dispersed distribution with several
distinct cell subpopulations which exhibited different
oscillation amplitudes and phases.
Fig. 9 illustrates the effect of the hydrogen sulfide

degradation rate on the synchronization dynamics of a
10,000 cell ensemble. This test was designed to simulate
experiments in which increased hydrogen sulfide re-
moval from the extracellular environment was achieved
by increasing the purge gas flow rate (Keulers et al.,
1996a). Experimentally the dissolved oxygen concentra-
tion exhibited oscillations of decreasing amplitude as the
purge gas flow rate was increased. The authors
hypothesized that this behavior was attributable to a
lack of population synchronization rather than the
absence of single cell oscillations (Keulers et al., 1996a).
The simulation test was performed with normally
distributed perturbations of variance 0.1 in the single
cell model parameters and an initial condition
corresponding to a completely asynchronous state.
The following step changes in the hydrogen sulfide
800 1000 1200 1400
e

800 1000 1200 1400
e

8 7 7.2 7.4 7.6

2
]

t = 200
t = 800
t = 1400

tion dynamics of a 10,000 cell ensemble. The nine single cell model

ed perturbations with variance 0.1. A completely asynchronous initial

rate constant was varied as follows: k19 ¼ 0:25; 0pto200; k19 ¼ 1:25;
intracellular oxygen concentrations of 100 representative cells and the

ws oxygen number distributions computed with 200 bins at t ¼ 200; 800
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degradation rate constant were implemented: k19 ¼

0:25; 0pto200; k19 ¼ 1:25; 200pto800; k19 ¼ 6:25;
800ptp1400:
The top plot in Fig. 9 shows the intracellular oxygen

concentrations of 100 representative cells. While sub-
stantial population desynchronization was observed
with increasing k19 value, the amplitude of single cell
oscillations were not strongly affected. The evolution of
the average intracellular oxygen concentration shown in
the middle plot is qualitatively similar to the dissolved
oxygen concentration response measured in the purge
gas flow rate experiments (Keulers et al., 1996a). The
bottom plot shows intracellular oxygen number dis-
tributions computed with 200 bins immediately before
the two k19 changes ðt ¼ 200; 800Þ and at the final time
ðt ¼ 1400Þ: Progressive desynchronization of the cell
population is clearly evident from the computed
distributions. This simulation result supports the hy-
pothesis that large purge gas flow rates cause the loss of
macroscopically observable oscillations through popu-
lation desynchronization rather than by elimination of
oscillations at the single cell level.
The effect of a hydrogen sulfide pulse on the

synchronization dynamics of a 100 cell ensemble is
illustrated in Fig. 10. The simulation was performed
with randomly distributed perturbations of variance 0.1
in the single cell model parameters and an initial
condition corresponding to a completely synchronous
state. At t ¼ 100 the extracellular hydrogen sulfide
concentration was instantaneously increased by 800%
and then allowed to decay to its normal level through
the effect of extracellular degradation. This test was
designed to mimic experiments in which the extracellular
hydrogen sulfide concentration was suddenly increased
by injection of sodium sulfide (Sohn et al., 2000). The
top and bottom plots in Fig. 10 show ensemble average
values of the intracellular hydrogen sulfide and oxygen
concentrations, respectively. As observed experimentally
(Sohn et al., 2000), the sustained oscillations were only
briefly perturbed before quickly returning to their
unperturbed forms. The similarity between the experi-
mental and simulated responses provides further sup-
port for the proposed synchronization mechanism.
5. Summary and conclusions

A cell population model was developed to investigate
a hydrogen sulfide mediated mechanism proposed for
the synchronization of yeast respiratory oscillations. A
recently published single cell model was modified to
include hydrogen sulfide transport across the cell
membrane and degradation in the extracellular environ-
ment. The cell population model was formulated by
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coupling a large ensemble of single cell models to a mass
balance for extracellular hydrogen sulfide. A variety of
dynamic simulation tests were performed to investigate
the effect of the initial intracellular state and intracel-
lular kinetic parameter variations on synchronization
dynamics. The cell population model was shown to
generate synchronous oscillations for a wide range of
model parameter values. Approximately 100 cells were
required to obtain converged solutions for average
intracellular concentrations, while ensembles containing
10,000 cells were shown to be advantageous for
computing transient number distributions. The cell
population model was shown to provide qualitative
agreement with synchronization experiments presented
in literature.
The simulation results provide important insights into

the synchronization of cellular oscillators that are
chemically coupled by intracellular species such as
hydrogen sulfide which are transported across the cell
membrane. An appropriate balance between the mem-
brane transport rate and the rate at which the coupling
species is removed from the extracellular environment is
required to maintain the coupling species extracellular
concentration within the range that supports synchro-
nization. Another general conclusion pertains to feed-
back inhibiting metabolites such as cysteine which are
responsible for single cell oscillations. Synchronization
requires a suitable balance between the production and
degradation rates of the feedback inhibiting metabolite
such that its intracellular concentration is maintained
within a certain range.
The proposed modeling framework is broadly applic-

able to synchronization problems in other cellular
systems which are not amenable to analytical treatment
(Mirollo and Strogatz, 1990). We have previously used
the cell ensemble approach to investigate yeast glycolytic
oscillations mediated by the coupling species acetalde-
hyde (Henson et al., 2002). Although considerably more
complex due to the interaction between cell cycle
progression and energy and storage carbohydrate
metabolism, yeast cell cycle oscillations can also be
investigated with the proposed methodology by viewing
ethanol as the coupling species (Nielsen and Villadsen,
1994). Another potential application is the synchroniza-
tion of circadian oscillators governed by gene regulatory
networks (Leloup and Goldbeter, 1998). Such studies
are the subject of our future research.
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