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Abstract We propose a computational approach to modeling the collective dynamics
of populations of coupled, heterogeneous biological oscillators. We consider the syn-
chronization of yeast glycolytic oscillators coupled by the membrane exchange of
an intracellular metabolite; the heterogeneity consists of a single random parameter,
which accounts for glucose influx into each cell. In contrast to Monte Carlo simu-
lations, distributions of intracellular species of these yeast cells are represented by a
few leading order generalized Polynomial Chaos (gPC) coefficients, thus reducing the
dynamics of an ensemble of oscillators to dynamics of their (typically significantly
fewer) representative gPC coefficients. Equation-free (EF) methods are employed to
efficiently evolve this coarse description in time and compute the coarse-grained sta-
tionary state and/or limit cycle solutions, circumventing the derivation of explicit,
closed-form evolution equations. Coarse projective integration and fixed-point algo-
rithms are used to compute collective oscillatory solutions for the cell population
and quantify their stability. These techniques are extended to the special case of a
“rogue” oscillator; a cell sufficiently different from the rest “escapes” the bulk syn-
chronized behavior and oscillates with a markedly different amplitude. The approach
holds promise for accelerating the computer-assisted analysis of detailed models of
coupled heterogeneous cell or agent populations.
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1 Introduction

Autonomous oscillations are observed in biological systems ranging in complexity
from microorganisms to human beings [51]. Often these oscillations are generated at
the cellular level through positive feedback loops embedded in gene regulatory or met-
abolic networks [22]. Robust strategies have evolved, based on intracellular coupling
of multiple oscillators (rather than on a single cellular oscillator subject to degradation
and failure). A fundamental feature of such multicellular systems is the synchroniza-
tion of individual oscillators to produce a coherent overall rhythm [47]. Synchronized
oscillators are responsible for rhythm generation at second (heartbeat generation),
daily (circadian timekeeping) and monthly (menstrual cycles) time scales. Malfunc-
tioning of these interconnected oscillators can produce disastrous consequences such
as sudden heart attacks and epileptic seizures.

The development of mathematical models to study the synchronization of cou-
pled oscillators has a long and beautiful history [51]. Seminal contributions to the
fundamental understanding of synchronization have been made by rigorous mathe-
matical analysis of simple model systems [2,46]. The study of mechanistic models of
multicellular biological systems typically involves computational approaches such as
dynamic simulation and numerical bifurcation analysis. Difficulties in applying such
scientific computing tools are largely determined by population model complexity,
which in turn is determined by the complexity of the individual cell model and the
number of cells included in the population. Certain applications require both a detailed
single cell model and a large ensemble of single cells for meaningful computational
study. For instance, a single mammalian circadian oscillator contains multiple inter-
connected feedforward and feedback loops that have been modeled with up to 73
coupled differential equations [14]. Meanwhile, the mammalian circadian system is
comprised of approximately 10,000 individual oscillators that communicate via neu-
rotransmitter mediated coupling [36]. The development of stochastic simulations to
generate meaningful population statistics is possible only if the model ensemble size
is sufficiently large. Therefore, there is considerable motivation to develop efficient
simulation and bifurcation analysis techniques for large, heterogeneous ensembles
of coupled, complex biological oscillators. Previous studies of heterogeneity [37,38]
used idealized phase models (a single “phase” equation for each oscillator); in this
work, we show how the approach can be applied to ensembles of realistic limit cycle
oscillator models.

Among traditional techniques employed in the study of ensemble statistics of
stochastic systems, the most popular one is Monte Carlo simulation [13] (or the cell-
ensemble method [44] in the biological context). This approach, however, becomes
extremely time-consuming when the number of simulation realizations is large, as
in the case of multicellular coupled oscillator populations. As an alternative, the sto-
chastic Galerkin method for uncertainty quantification (UQ) has been widely used
in recent years for solving stochastic ODEs or PDEs. Pioneering work along these
lines [20] studied stochastic systems with Gaussian random variables: by viewing
randomness as an additional dimension, beyond the space and time dimensions,
the dependence of system responses on random parameters is represented
in terms of orthogonal polynomial expansions of random variables. In this context
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(see Appendix A) all orthogonal polynomials of a given order are called Polyno-
mial Chaoses or Homogeneous Chaoses of that order; projections of the system
responses onto the Polynomial Chaos (PC) coefficients evolve deterministically, and
equations for their evolution can in principle be obtained, and then solved, by apply-
ing a Galerkin projection. The method has been applied for UQ purposes in vari-
ous physical and engineering systems including structures with random properties
[20], porous media [19], fluid dynamics [34] and chemical reactions [41]. In [55],
the method was extended: gPC, applicable to a variety of continuous and discrete
probability measures, was proposed based on the Askey scheme. In addition to rep-
resentations of orthogonal polynomials, this method was also improved in other
directions, in the form of piecewise (h-refinement) representations [12] and wavelet
expansions [35].

One advantage of the stochastic Galerkin method, as compared to direct Monte
Carlo simulation, is that it can reduce a stochastic system to a deterministic one with
(often significantly) fewer degrees of freedom, thus accelerating computation and
saving data storage space. In order to apply the stochastic Galerkin method, however,
one must derive equations for the temporal evolution of gPC coefficients either explic-
itly or through a pseudospectral approach (e.g. [40]) and develop a new code for the
solution of these equations. To circumvent this additional effort, Equation-Free (EF)
methods [30,31,48] have been utilized recently to quantify propagation of uncertainty
in a stochastic system by evolving gPC coefficients of random solutions using the
system dynamic simulator in a nonintrusive way, that is, without deriving the corre-
sponding explicit gPC evolution equations [56]. Within this multiscale equation-free
framework, the original stochastic dynamics code is viewed as a fine-level simulator,
while the (unavailable) ODEs for the time-evolution of the gPC coefficients are viewed
as a coarse-grained system model. These equation-free algorithms are built based on
protocols that enable communication between different levels of system description;
the lifting protocol translates coarse-grained initial conditions to one or more consis-
tent fine scale initial conditions; the restriction protocol computes the coarse-grained
description (values of the coarse variables, “observables”) of fine scale system con-
figurations. The success of this class of methods relies on the assumption that closed
evolution equations for the dominant (low-order) gPC coefficients exist in principle,
even if they are not explicitly available.

The purpose of this paper is to demonstrate that efficient simulation strategies for
large populations of coupled biological oscillators can be developed by utilizing these
EF-UQ-based methods. A six-dimensional cellular model of yeast glycolytic oscilla-
tions [25,53] is used to study synchronization of 1,000 heterogeneous cells in a well
mixed environment. The random variable (which characterizes the cell population
heterogeneity) is chosen as the glucose influx for each cell. In the context of EF-UQ,
we demonstrate coarse projective integration, which accelerates temporal simulation
of the cell population dynamics, and coarse fixed-point computations combined with
Poincaré return maps to efficiently converge on limit cycle solutions, corresponding
to synchronous population oscillations. Limits of the applicability of the procedure
are discussed, including an extension of the basic methodology to handle loss of syn-
chronization when isolated outlier cells “detach” from the main coherent population
and develop individual oscillatory characteristics.
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2 A mechanistic synchronization model for yeast glycolytic oscillations

The yeast Saccharomyces cerevisiae exhibits autonomous oscillations with a period of
approximately one minute when grown under anaerobic conditions [4,9,11]. Similar
oscillations have been observed in other yeast strains [6,10] as well as algae [32],
muscle [50], heart [8] and tumor [28] cells. Yeast studies suggest that an autocata-
lytic reaction involving the glycolytic enzyme phosphofructokinase is the main cause
of oscillations at the single cell level. Therefore, the observed limit cycle behavior
has been termed glycolytic oscillations. Additional experimental work has focused
on characterizing the intercellular mechanisms involved in the synchronization of
individual yeast cell oscillations [21]. Oscillations at the cell population level can be
observed using fluorometry to continuously monitor the average level of intracellu-
lar NADH, the reduced form of nicotinamide adenine dinucleotide (NAD+) involved
in cellular oxidation/reduction reactions. Experiments with Saccharomyces cerevisi-
ae grown in anaerobic stirred cuvettes suggest that secreted acetaldehyde is the key
signaling molecule in the synchronization mechanism [42,43].

A number of simple cell models have been developed to capture the glycolytic
oscillation mechanism in yeast [7,23,45,52]. Cell models based on more detailed
descriptions of the glycolytic reaction pathway also have been proposed [27,54]. Small
ensembles of single cell models have been used to investigate the synchronization
phenomenon [7,52,54]. In this paper, we use a single cell model of intermediate
complexity [53] to demonstrate our computational framework for simulating large
populations of coupled biological oscillators. Our cell ensemble model is based on an
intracellular coupling mechanism involving the transport of acetaldehyde across the
cell membrane [25,53].

A single cell in the population is described by the following differential equations:

d S1,i

dt
= J0,i − v1,i = J0,i − k1S1,i A3,i

[
1 +

(
A3,i

K I

)q]−1

(1)

d S2,i

dt
= 2v1,i − v2,i − v6,i = 2k1S1,i A3,i

[
1 +

(
A3,i

K I

)q]−1

− k2S2,i (N − N2,i ) − k6S2,i N2,i (2)
d S3,i

dt
= v2,i − v3,i = k2S2,i (N − N2,i ) − k3S3,i (A − A3,i ) (3)

d S4,i

dt
= v3,i − v4,i − Ji = k3S3,i (A − A3,i ) − k4S4,i N2,i − Ji (4)

d N2,i

dt
= v2,i − v4,i − v6,i = k2S2,i (N − N2,i ) − k4S4,i N2,i − k6S2,i N2,i (5)

d A3,i

dt
= −2v1,i + 2v3,i − v5,i = −2k1S1,i A3,i

[
1 +

(
A3,i

K I

)q]−1

+ 2k3S3,i (A − A3,i ) − k5 A3,i (6)

where the index i denotes the cell. The pathway model accounts for glucose flux into
the cell (J0), metabolism of glucose to produce intracellular glycerol, ethanol and a
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combined acetaldehyde/pyruvate pool (hereafter called acetaldehyde), acetaldehyde
flux out of the cell (J ), and degradation of extracellular acetaldehyde by cyanide.
Glycolytic intermediates modeled are intracellular glucose (S1), the glyceraldehyde-
3-phosphate/ dihydroxyacetonephosphate pool (S2), 1,3-bisphosphoglycerate (S3) and
intracellular acetaldehyde (S4). The energetic state of the cell is characterized by the
relative amounts of adenosine 5′-triphosphate (ATP) and its dephosphorylated product
adenosine diphosphate (ADP). Each co-metabolite pair is assumed to be conserved
with A and N denoting the constant concentrations of the ADP/ATP and NAD+/NADH
pools, respectively. Therefore, only the NADH (N2) and ATP (A3) concentrations are
treated as independent variables. The intracellular reaction rates v2–v6 depend linearly
on the metabolite and co-metabolite involved in each reaction, while the acetaldehyde
degradation rate, denoted v7, depends linearly on the extracellular acetaldehyde con-
centration. Individual cell oscillations are attributable to the nonlinear term in the
reaction rate v1 that accounts for ATP inhibition.

The net flux of acetaldehyde from the i-th cell into the extracellular environment is
modeled as Ji = κ(S4,i − S4,ex ) where S4,ex is the extracellular acetaldehyde concen-
tration and κ is a coupling parameter related to the cell permeability. A mass balance
on extracellular acetaldehyde is derived under the assumption that the ratio of the total
cell volume to the extracellular volume (ϕ) remains constant as the total number of
cells M is varied:

d S4,ex

dt
= ϕ

M

M∑
i=1

Ji − v7 = ϕ

M

M∑
i=1

κ(S4,i − S4,ex ) − kS4,ex (7)

where k is the kinetic constant of the acetaldehyde degradation reaction. Nominal
values of the parameters are given in Table 1. The chosen parameter values [25] pro-
duce an asymptotic solution in which all cells are synchronized regardless of the cell
number. The total number of differential equations (n) in the cell ensemble model
increases linearly with the number of intracellular metabolites (6) and the number of
cells (M): n = 6M + 1. Unless otherwise stated, the following simulations involve
1,000 cells: n = 6,001.

Table 1 Nominal parameter values for the cell population model

Parameter Value Parameter Value

J0 2.30 mM min−1 κ 50.0 min−1

k1 100 mM−1 min−1 q 4.00

k2 6.00 mM−1 min−1 K I 0.520 mM

k3 16.0 mM−1 min−1 N 1.00 mM

k4 100 min−1 A 4.00 mM

k5 1.28 min−1 ϕ 0.1

k6 12.0 mM−1 min−1 M 1,000

k 1.30 min−1
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3 Application of EF-UQ computation to yeast glycolytic oscillations

3.1 Polynomial chaos representation of cell properties

Our cell ensemble model of yeast population dynamics consists of a large set of
coupled nonlinear ODEs. The intracellular metabolite concentrations in such prob-
lems are in general random variables; many different sources of randomness exist,
from intrinsic kinetic fluctuations, to population heterogeneity, to randomness in the
initial conditions. In our particular case we consider the randomness arising from
population heterogeneity; there is a single random parameter, the glucose flux J0:
J0 = J̄0 + σJ ξ(ω), where ξ is normal over the sampling space �. This simple choice
of a normally distributed uncertainty is made for illustration/validation purposes; the
procedure is directly applicable to different distributions of uncertainty, as we will
discuss below. As our heterogeneous population evolves, each intracellular concen-
tration evolves, and so therefore do the corresponding concentration distributions over
the population. The “obvious” collective variables for evolving distributions are the
first few moments of the distribution: mean, variance etc.; it might, at first sight,
appear that good coarse-grained observables of our population state would be these
first few moments of the individual intracellular concentration distributions. These
moments, however, do not take into account correlations across the distributions [37];
in our heterogeneous population it is not enough to know how many cells have a cer-
tain intracellular metabolite concentration—we must also know which cells have this
concentration: the cells with higher or with lower intrinsic values of J0?

We have observed in our simulations (and the same phenomenon has been docu-
mented in different heterogeneous coupled oscillator contexts [38]) that, after a typical
initialization, two distinct phases are observed in the dynamics. During an initial, rel-
atively fast phase, strong correlations develop between the distributions of the various
intracellular concentration values; this is followed by a second, long term phase, dur-
ing which the distributions evolve, but with the correlations “locked in”. In effect,
these correlations appear to be strongly related to the heterogeneity of the popula-
tion—cells with different J0 exhibit systematically different concentration patterns.
Figure 1 shows the dependence of concentrations of NADH and ATP on the population
heterogeneity parameter (the random variable J0) at three instantaneous states. There
is clearly a relation/dependence between the intracellular metabolite concentrations
and the “identity” of the cell (the value of its J0).

Consider a simulation that has been evolving long enough for the relations shown
in Fig. 1 to develop. We interrupt this simulation at a time t0; we then consider two
different possibilities for continuing the interrupted simulation. If we restart it from
the exact state where it was interrupted, obviously these correlations will remain in
place and continue evolving smoothly (see the red curves in Figs. 2 and 3). If instead
we create new, artificial initial conditions, where leading moments of the distributions
of individual intracellular concentrations are retained but in which the correlations
are deliberately scrambled, then the system will quickly move away from the syn-
chronized oscillation in a violent transient. Indeed, it will take a long time for the
correlations to become reestablished. This can be seen in the “collective” blue curve
in Fig. 2 and more succinctly in the sequence of detailed cell state snapshots in Fig. 3;
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Fig. 1 (color online) One period of the oscillation of [NADH] for an ensemble of yeast cells is shown
(blue, left axis); one period of the oscillation of the leading order gPC coefficient [ATP] is shown (green,
right axis). The relationship of two intracellular concentrations, [NADH] (blue) and [ATP] (green), with
respect to the heterogeneity of the glucose influx (J0) is shown in the inset figures. Note the continuous
dependence of the intracellular concentration on the parameter J0

clearly a long time (of the order of 100) elapses before the correlations become estab-
lished again. These numerical experiments suggest that strong correlations between
cell heterogeneity and cell behavior get established during initial stages of the popu-
lation response, and are subsequently retained in the long term dynamics. Based on
this observation, and on the functional dependence of intracellular concentrations on
our random variable ξ clearly apparent in Fig. 1, we will assume that all intracellular
concentrations across the population can, in the long-term dynamics, be expressed as
(unknown) functions of the same random variable.

Denoting

x(ξ(ω), t) = (S1(ξ(ω), t), S2(ξ(ω), t), S3(ξ(ω), t), S4(ξ(ω), t),

N2(ξ(ω), t), A3(ξ(ω), t))T ,

we will represent x in terms of a truncated Polynomial Chaos expansion of ξ

x(ξ, t) =
P∑

j=0

x j
c (t)� j (ξ). (8)

The fine scale state is the 6,001-long vector of dependent variables (the 6,000 intra-
cellular concentrations plus one extracellular one) in our detailed set of coupled
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Fig. 2 (color online) A long, ongoing simulation (black curve) is interrupted at time t0 (green circle); it is
then restarted in two distinct ways: from the exact distribution of states at the interruption time (red curve);
and from different, artificial distributions of states that do, however, preserve the lowest few moments of
the exact state distribution at t0. Projections of the variables onto the variances (over the cell population)
of [NADH] and [S4] over a small temporal range (t1 = t0 + 1) are shown. The purple and blue dashed
curves show the variances observed during the simulations initialized with two artificial distributions; they
both quickly move away from the “correct” trajectory

ODEs. Our coarse-grained observables are the gPC truncation coefficients, x j
c (t) =

(x j
1,c, x j

2,c, x j
3,c, x j

4,c, x j
5,c, x j

6,c)
T . The lifting step, the construction of ensemble real-

izations of intracellular concentrations (fine-level states) consistent with a particular
set of values of gPC coefficients (coarse-level observables), is performed through

x(ξi , t) =
P∑

j=0

x j
c (t)� j (ξi ), i = 1, 2, . . . , M. (9)

Here M(= 1,000) is the total number of cells, the truncation level P is set to 3, and
{� j } are orthonormal Hermite polynomials [1] for the case of normally distributed
ξ . We reiterate that different types of polynomials can be used for random variables
obeying different distributions. The total number of our coarse model states is thus
4 × 6 + 1 = 25 (the deterministic extracellular concentration S4,ex is counted here as
a single coarse variable); this is clearly much less than the number of internal states,
6M + 1, in the original cell dynamics.

Obtaining the coarse grained observables from a detailed state constitutes the restri-
ction step (see Appendix); our restriction protocol consists of the inner product, Eq. 12
in the Appendix, which can be performed in one of two ways: (i) we can discretize the
integral to approximate the inner product, i.e., 〈x, �i 〉 = 1/M

∑M
j=1 x(ξ j )�i (ξ j );

or (ii) we can perform a simple least squares fitting to find x j
c such that an L2 norm

||x(ξ, t) − ∑P
j=0 x j

c (t)� j (ξ)|| is minimized. We used the second implementation to
obtain gPC coefficients in this work.

123



An equation-free approach to analyzing heterogeneous cell population dynamics 339

−4 −2 0 2 4
0.1766

0.1768

0.177

0.1772
[N

A
D

H
] (

m
M

)

−4 −2 0 2 4
1.092

1.093

1.094

1.095

[A
T

P
] (

m
M

)

−4 −2 0 2 4
0.208

0.2085

0.209

0.2095

0.21

[N
A

D
H

] (
m

M
)

−4 −2 0 2 4
0.41

0.42

0.43

0.44

0.45

[A
T

P
] (

m
M

)

−4 −2 0 2 4
0.1356

0.1358

0.136

0.1362

ξ

[N
A

D
H

] (
m

M
)

−4 −2 0 2 4
1.995

2

2.005

ξ

[A
T

P
] (

m
M

)

t=t
0 t=t

0

t=t
1

t=t
1

t=t
0
+100 t=t

0
+100

Fig. 3 (color online) Evolution of the “fine structure” of the metabolite distribution from the different
initializations in Fig. 2. Continuing a long run (red points) preserves correlations between individual cell
features (quantified by the random variable ξ ): the red points visibly fall on smooth curves. If we initialize
from an artificial initial metabolite distribution (blue points), a long simulation time must elapse before the
correlations become reestablished. (t1 = t0 + 1, an in Fig. 2)

In what follows, we will demonstrate two distinct ways of using the EF-UQ meth-
odology in order to accelerate population computations for our model problem. We
will first demonstrate direct simulation acceleration through coarse projective inte-
gration. We will then demonstrate the accelerated computation and coarse-grained
stability analysis of synchronized population oscillations through matrix-free fixed
point computations and eigenvalue approximation; these synchronized limit cycles
will be computed as fixed points of a coarse Poincaré map. By doing so, we demon-
strate that our multiscale toolkit provides a generally applicable and computationally
efficient framework for dynamic simulation and analysis of heterogeneous populations
of cellular oscillators.

3.2 Full direct simulation and coarse projective integration

The full direct simulation consists of integrating of 6M + 1 differential equations (M
is the number of cells, six internal states for each cell, and one extracellular variable).
The package ODETools is used in Matlab for this simulation, with variable step-size
chosen for relative error tolerance 1 × 10−9 and absolute error tolerance 1 × 10−12.
Figure 4 shows the time history of such a full simulation of an ensemble of cells over
one complete period when the distribution of the parameter J0 has mean 2.3 and stan-
dard deviation 1 × 10−3. At discrete moments in time, the values of the full ensemble
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Fig. 4 Top The time series of [NADH] in selected cells of the ensemble are plotted against time t and the
random parameter J0 (glucose influx) over one oscillation period. The lines transverse to the time series
curve are equal-time curves. Bottom left Time series of the leading order gPC coefficients of [NADH].
Bottom middle Time series of the leading order gPC coefficients of [ATP]. Bottom right A projection of the
coarse limit cycle onto the leading order [NADH] and [ATP] gPC coefficient plane. The distribution of the
glucose influx parameter J0 has mean 2.3 and standard deviation 0.001

are projected to the gPC basis (the full state is restricted onto coarse observables), also
shown in Fig. 4. At the fine scale, the concentration of each intracellular metabolite
oscillates and, at the end of an oscillation, returns exactly to its starting value. At the
coarse, macroscopic level, it is the gPC coefficients that return to themselves. This
is, in effect, saying that the distributions of the species concentrations return to their
initial values.

We now briefly describe the projective integration procedure and compare its results
to direct simulation. Starting at t = t0 from a given coarse initial condition (values
of the first few gPC coefficients, the observables), we generate fine-level model states
by the lifting procedure Eq. 9. We use the original, full dynamic simulation code to
evolve the fine-level description for an initial time interval theal ; we continue the full
direct simulation over three successive time intervals of duration δt . At the end of each
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of these intervals, the coarse observables (the gPC coefficients) are obtained from the
full system state by restriction, see Eq. 12 in the Appendix. Using this short time
history of gPC observations, the temporal derivatives of the coarse observables can
now be estimated; here for convenience we use least squares, but maximum-likelihood
based methods are more appropriate [3]. More specifically, the coarse variables are
locally expanded in a third order truncated Taylor series in time, whose coefficients
are estimated using least squares, fit to the three observations. The fitted expansion
can be used to estimate time derivatives, or, more directly, can be evaluated at a time
t jump in the future to provide our prediction (“projection”) of what the values of the
coarse variables will be then. Using these predicted values we begin the same cycle
of brief healing, detailed simulation observed by restriction, estimation of local time
derivatives and projection of the coarse behavior into the future. Depending on the
coarse projection algorithm used in the forward-in-time projection, more (or fewer)
restrictions from the short burst of full simulation may be used. The particular values
of theal and δt can also vary from those used here (theal = 5×10−3 min, δt = 5×10−3

min), and their on-line optimal selection is problem-dependent.
Figure 5 demonstrates the acceleration of the full simulation through a coarse pro-

jective forward Euler algorithm. Note that for every 4δt of full direct simulation, we
project 5δt into the future – only 44.44% of the work is necessary this way. This type of
computational savings enables the simulation of larger cell ensembles, allowing more
accurate reconstructions of population statistics. As discussed in [15] the method can
provide significantly larger savings if a separation of time scales exists in the problem;
for linear problems this can be readily seen as a gap between a few leading, slow, and
the remaining many, fast eigenvalues of the system. Different coarse projective algo-
rithms (e.g. projective Runge–Kutta, or even implicit projective algorithms) can also
be used; linking them to modern estimation techniques and extending them to account
for adaptive projective step size selection is the subject of ongoing research (see [16]
as well as [33]).

3.3 Coarse-grained limit cycle computations

Limit cycle computations. Beyond direct simulation, which asymptotically approaches
stable limit cycles, periodic orbits are located by solving boundary value problems in
time. In particular, they can be located as fixed points of a Poincaré map (see, for exam-
ple, the textbook [26]). A Poincaré section, S, is a hypersurface (often a hyperplane)
crossing a limit cycle transversely at an isolated point. The Poincaré map, P : S → S,
is a return map defined by

P(x) = φt (x) ∈ S,

for x ∈ S, t the smallest positive time for which φt (x) ∈ S, and φt the time t flow
map. Note that it is not necessary to know a priori the period of the limit cycle when
defining the Poincaré map. Let Pf be the Poincaré map for the full simulation and Pc

be the Poincaré map for the coarse simulation. The two maps are related by

Pc = R ◦ Pf ◦ L
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Fig. 5 Projective integration in coarse variables (blue) compared to direct, full simulation evolution (black)
along a “synchronized” limit cycle. Projective integration accelerates computation of the evolution of a cell
population. Top An ensemble of size M = 1,000 is simulated; the distribution of the glucose influx param-
eter has mean 2.3 and standard deviation 0.001. The horizontal axis is the leading order gPC coefficient for
[NADH], and the vertical axis is the leading gPC coefficient for [ATP]. Bottom An ensemble of M = 50
cells is simulated; the distribution of the glucose influx parameters has mean 2.1 and standard deviation
0.08. In this regime, there is one “free” cell, which oscillates at an amplitude relatively larger than the
others. The horizontal axis is the leading order gPC coefficient of [NADH] for the bulk of the cells, and the
vertical axis is the [ATP] concentration of the “free” (rogue) cell

for R, L the restricting and lifting operators and ◦ is composition. We use the Newton–
Krylov GMRES method to find solutions of Pc(Xc) = Xc [29]. This implementation
of Newton iteration does not explicitly require the computation of the Jacobian of the
equation to be solved (often computed in shooting methods through integration of the
variational equations). The action of this Jacobian along sequentially selected direc-
tions (directional derivatives) is estimated from the results of simulations starting at
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appropriately chosen nearby initial conditions. Since this only requires simulations of
the problem, and the linear equations are solved without ever assembling the relevant
Jacobian, this is a matrix-free implementation.

Note that the Poincaré return map can be constructed, not only by direct simulation,
but also by projective integration. That is, projective integration can be implemented
to accelerate the computations of the Poincaré map itself. The limit cycle in Fig. 5 was
found by solving this fixed point problem.

Limit cycle stability. For multiscale problems with limit cycles, we can discuss
stability at the fine-scale and also at the coarse-grained level. We describe here limit
cycle stability computations at both levels, and it is interesting that the results are
essentially the same—the coarse-grained stability computations quantify the same
information as the (computationally intensive) fine-scale computations.

Let T be the period of the limit cycle, and let x0 be a point on the limit cycle. The
time T flow map is φT (x0) = x(t; x0). Eigenvalues (Floquet multipliers) of the matrix
DφT (x0) (the Jacobian of φT at x0, the so-called monodromy matrix) quantify the
linearized stability of the limit cycle. The time T coarse flow map is 
T = 
T (Xc),
see Eq. 19. The matrix D
T (Xc) can be approximated by finite differences,

[

T (Xc + εe1) − Xc

ε
,

T (Xc + εe2) − Xc

ε
, . . .

]

for ε << 1 and e j the standard basis vectors. The eigenvalues of D
T (Xc) are shown
in Fig. 6, and the leading eigenvalues are listed in Table 2. Note that the number 1
is an eigenvalue (corresponding to time translational invariance along the limit cycle
at the point Xc). This invariance gives rise to a neutrally stable direction; all limit
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Fig. 6 (color online) Leading eigenvalues of state transition matrices Dφt (blue, ×) and D
t (red, ◦).
The leading eigenvalues are essentially the same, as expected. The unit circle is the black curve; note the
eigenvalues at 1, and that all other eigenvalues are inside the unit circle
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Table 2 Leading eigenvalues from limit cycle computations

Coarse eigenvalues Detailed eigenvalues

1.000004 1.000219

0.942622 0.9426798

0.496275 0.4962654

0.328651 0.3273728

0.100267 ± 0.068410i 0.100250 ± 0.0683621i

0.126292 0.126075

cycles possess this neutral eigenvalue at 1. The magnitudes of the remaining leading
eigenvalues of the limit cycle are less than 1 (they lie inside the unit circle). Therefore,
the limit cycle is stable.

Eigenvalues of the fine-scale monodromy matrix reveal the stability of the full
limit cycle. Divided differences could in principle be used to approximate the full
6,001×6,001 Jacobian of the fine scale problem; instead, to obtain this matrix we inte-
grated the variational equations (see, for example, the textbook [26]). Let ẋ = f (x);
then the variational equations along the solution x(t, x0) are

U ′(t, x0) = D f (x(t, x0)) · U (t, x0),

where U (t) is a (6M + 1) × (6M + 1) matrix and the initial condition U (0) is the
identity matrix. This gives

DφT (x0) = U (T, x0).

The “fine” eigenvalues are shown in Fig. 6, and the leading ones are in Table 2.
Eigenvalues of the coarse and fine-scale monodromy matrices should ideally be

close, and their numerical coincidence is evident in the table. Analysis of the fine-scale
model considered here is computationally tractable; for larger problems, however, a
full analysis may not be possible, and the coarse stability analysis suffices to char-
acterize stability of the fine-scale limit cycles. For instance, these methods could be
profitably applied to large models of coupled biological oscillators involved in yeast
respiratory oscillations [24] or mammalian circadian rhythm generation [49].

3.4 When coarse-graining starts to fail: “rogue” oscillators

When the variance of J0 is small, NADH concentrations (N2) in the cells across the
population are narrowly distributed; an overall synchronized solution for the entire
population prevails, and our coarse-graining methods are successful. When the var-
iance of J0 increases, however, the amplitudes of the N2 oscillations across the cell
population will separate significantly.
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In the simulations above, the parameters were chosen so that each cell, if uncoupled
from the others, would oscillate—the population is an ensemble of coupled oscillators.
We now choose to work in parameter regimes where each cell, if uncoupled from the
others, will go to a stable steady state; yet, as the J0 distribution becomes wider, cells
arise which, if uncoupled from the population, would oscillate with a finite amplitude.
In such parameter regimes, for certain combinations of mean and variance of J0, the
bulk of the coupled population will appear almost stationary, while one or more cells
will appear to oscillate “freely” in amplitude. An illustration of this, using a 50 cell
ensemble as the full direct simulation, and setting the mean and standard deviation of
J0 to 2.1 and 0.08, respectively is seen in Fig. 7 (top). The cause of this single “free,
oscillating” cell can be rationalized based on the relatively large variance of J0. If one
simulates a reactor containing a single cell, using J0 as a bifurcation parameter, one
finds that initially (low J0 values) the cell is attracted to a stable steady state; but above
a certain value of J0 (J0 = 2.2296...), stable periodic solutions exist because there
is a (subcritical) Hopf bifurcation (at J0 = 2.32322...) followed by a turning point
(or fold) along the new branch of solutions. A model of several identical cells will
also have a “collective”, synchronized Hopf bifurcation at the same J0 value. When,
in our heterogeneous population, all individual J0 values are low (below this Hopf
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Fig. 7 (color online) The breakdown of the smooth relation between [NADH] and the parameter J0 is
illustrated for distributions of M = 50 cells that include “rogue” oscillators. Top J0 has a Gaussian distribu-
tion with mean and standard deviation 2.1 and 0.08, respectively; bottom mean 2.1 and standard deviation
0.3. The figures on the left show the time history of [NADH] for all 50 cells. The figures on the right show
[NADH] as a function of J0 at a snapshot in time (t = 45). Equation-free computations can be applied in
these regimes by using more and different coarse variables (see text)
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bifurcation), we expect (and observe) the coupled dynamics to converge to a (heter-
ogeneous) steady state. When, however, some individual cell J0 values approach or
go beyond this “single cell critical” value, it is reasonable to anticipate more com-
plicated dynamics. Indeed, if these “outlying” (in J0) cells were uncoupled from the
population, they would individually oscillate, while the bulk of the population cells
(characterized by low J0) would be attracted to a steady state. What we observe in
such circumstances is indeed an oscillation, but one characterized by a strong dis-
continuity in the amplitudes of the oscillations of the various cells. The bulk of the
population cells evolve on a “very small amplitude” limit cycle; one may consider
them “effectively steady”; yet the cells with outlying values of J0 perform oscillations
with considerably larger amplitude—see Fig. 7 (top).

As the standard deviation σJ increases, the strong correlations that allowed us to use
a gPC expansion for the collective behavior fail even more dramatically—see Fig. 7
(bottom), which is quite representative of dynamics in populations with large variance
of the glucose influx. We expect that such strong discontinuities in the relation between
heterogeneity and detailed state (reminiscent, at some level, of Gibbs phenomena) will,
in general, be encountered in probabilistic problems involving strong nonlinearity and
bifurcations of the single oscillator behavior as the heterogeneity parameter(s) is var-
ied. Clearly, a few gPC coefficients are no longer good observables of the collective
system state. The recent literature includes some efforts in resolving such cases using
a wavelet-based chaos expansion [35] or piecewise Polynomial Chaos [12]; yet the
problem remains an open subject for future research.

Here we will limit ourselves to the case of a single rogue oscillator, shown in Fig. 7
(top). A simple and rational way to tackle this problem is to employ gPC coeffi-
cients to describe the oscillators that are “clumped together” with smaller oscillation
amplitudes, and use an additional, different set of variables to describe intracellular
metabolite concentrations for the single “freely oscillating” cell. More specifically, for
a total number M of cells which include one “free” cell, the coarse observables are com-
prised of x0

c , x1
c , . . . , x P

c (obtained by restricting intracellular concentrations of M −1
clumped cells through the least-square fitting method mentioned earlier), the extra-
cellular concentration S4,ex and six intracellular concentrations S1, S2, S3, S4, N2, A3
representative of the free cell. When lifting is now implemented, only intracellular
concentrations of M − 1 cells are generated from x0

c , x1
c , . . . , x P

c through Eq. 9.
The intracellular concentrations S1, S2, S3, S4, N2, A3 for the free cell are part of the
coarse-grained description. Therefore, the full direct simulation is again characterized
by 6M + 1 variables, but the number of observables of the reduced, coarse-grained
problem increases to 4×6+1+6 = 31 if the first four leading order gPC coefficients
are retained (P = 3).

The initial condition (of the values of the coarse observables) for the projective
integration is found by using the equation-free fixed-point algorithm in conjunction
with the Poincaré map on the 31-dimensional space. Coarse projective integration for
this new, 31-dimensional coarse grained system is illustrated in Fig. 5. Our coarse
initial condition is the restriction of a point on the detailed, fine-scale limit cycle solu-
tion; starting there, we use short bursts of full direct simulation to estimate the time
derivatives of our 31 coarse observables, and then coarse projective forward Euler to
project their values forward in time.
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The phase portrait of the coarse-grained limit cycle, projected on the leading order
gPC coefficient of the concentration of NADH of the M −1 clumped cells and the con-
centration of ATP in the free cell, is shown in Fig. 5. Reasonable numerical agreement
with the full direct oscillation (observed on the same variables) prevails; even in the
presence of one (more generally, of a few) free cell(s), choosing a good set of coarse-
grained variables allows us to accelerate the computations of the long-term system
dynamics. Of course, this approach requires a priori identification of the rogue oscil-
lating cells, so that we can include them in our new set of coarse variables. Clearly more
research is needed towards the selection of good coarse observables for such problems.

4 Summary and conclusions

Equation-Free Uncertainty Quantification methods were used in this paper to acceler-
ate the computer-aided analysis of the dynamics of heterogeneous ensembles of cou-
pled biological oscillators; in particular, coarse-grained computations of synchronized
population-wide limit cycles and their stability was demonstrated for an ensemble of
yeast glycolytic oscillators coupled by membrane exchange of intracellular acetalde-
hyde. The feasibility of the EF UQ in describing certain particular situations (where
one—or a few—oscillator(s) move freely in amplitude, distinguished from the “bulk”
of the population) was also demonstrated.

This paper contains only representative “proof of concept” computations. There is
a clear necessity for extensive numerical analysis of the schemes illustrated, includ-
ing adaptive step-size selection, error estimation and control. Different restriction
schemes need to be devised when the relation between heterogeneity and behavior
becomes nonsmooth or discontinuous in the “randomness direction(s)”. Different lift-
ing schemes [18] exploiting a non-explicit separation of time scales may reduce the
number of gPC coefficients required for an accurate reduced description. Furthermore,
a wealth of data-mining techniques currently under development (and, in particular,
the diffusion map approach [5,39]) holds the promise of extracting low-dimensional
parameterizations of high-dimensional data based on graphs constructed on simulation
data and the eigenfunctions of diffusion operators on these graphs. It would be inter-
esting to explore the performance of such techniques when simple gPC observables
fail, as in the case of the discontinuities and “multiple oscillator clumps” mentioned
above.

Acknowledgements This work was partially supported by DARPA, the US DOE (CMPD), an NSF
Graduate Research Fellowship (KAB), and the National Institutes of Health grant GM078993 (MAH).

Appendix A: Some basic uncertainty quantification (UQ) and equation
free uncertainty quantification (EF-UQ) issues

On polynomial chaos expansion of random variables and processes

Orthogonal polynomials of random variables with an arbitrary probability measure
(Gaussian, uniform, Poisson, binomial,. . .) are called generalized Polynomial Chaos
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gPC [55]. Any functional vector, x(ω), of random variables, ξ(ω) (= (ξ1(ω), . . . ,

ξn(ω))T ), defined over a probability space (�,F , P), can be expressed in terms of a
gPC expansion,

x(ω) =
∞∑

i=0

xi
c�i (ξ(ω)), (10)

where �i (ξ(ω)) is the i th generalized Polynomial Chaos gPC which admits the
following orthogonality properties,

〈�i , � j 〉 =
{ 〈�2

i 〉, if i = j,
0, if i �= j,

(11)

and xi
c is the corresponding coefficient of �i (ξ(ω)), determined by

xi
c = 〈x(ω),�i (ξ(ω))〉

〈�2
i 〉 . (12)

In the above equations, the inner product 〈·, ·〉 is defined by

〈 f (ξ), g(ξ)〉 =
∫
�

f (ξ)g(ξ)p(ξ)dξ , ξ = (ξ1(ω), . . . , ξn(ω))T , (13)

where p(ξ) is the joint probability measure of ξ and � the support of p(ξ).
In the case that x is a random field or process having the form x(ω, s) or x(ω, t)

where s and t are, respectively, spatial and time coordinates, the projections of x onto
the Polynomial Chaos, xi

c, must admit a form that depends on these spatial or time
coordinates as well. In our illustrative example the gPC coefficients evolve in (and
thus also depend on) time.

On the stochastic Galerkin method

The stochastic Galerkin method aims at quantifying propagation of uncertainty in
dynamical systems. In this method, solutions of stochastic systems are first expressed
in terms of a finite linear combination of generalized Polynomial Chaos gPC. The
error resulting from the finite-term expansion is then required to be orthogonal to test
functions, which are normally chosen to be the same as the generalized Polynomial
Chaos gPC. A coupled system of equations for the gPC coefficients can thus be derived
and solved [20]. Probability distributions and statistical moments of the solutions can
be computed from the gPC coefficients subsequently.

In particular, let the states of a stochastic system be represented by a vector x(ω, t) :
� × R → R

N , where ω is an element in the sampling space �. This system state is
governed by the differential equation

dx
dt

= f (x, ξ(ω)), x(ω, 0) = x0(ω). (14)
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The solution of the above equation can be approximated by a finite expansion in the
form of Eq. 10,

x(ω, t) =
P∑

i=0

xi
c(t)�i (ξ(ω)). (15)

By applying a Galerkin projection, equations governing the gPC coefficients xi
c(t) are

obtained as

dxi
c

dt
= 1

〈�2
i (ξ)〉

〈
f

(
P∑

i=0

xi
c(t)�i (ξ)

)
, �i (ξ)

〉
, i = 0, 1, . . . , P, (16)

with xi
c(0) = 〈x0,�i (ξ)〉

〈�2
i (ξ)〉 . The above equation can be rewritten as

d Xc

dt
= H(Xc). (17)

Here Xc = (x0
c , x1

c , . . . , x P
c )T and H = (h0, h1, . . . , hP )T , where

hi (Xc) = 1

〈�2
i (ξ)〉

〈
f

(
P∑

i=0

xi
c(t)�i (ξ)

)
, �i (ξ)

〉
, i = 0, 1, . . . , P.

If d Xc
dt = 0 in the long-time limit, then Eq. 17 has a steady state, which can then be

used to recover the probability distribution of the random steady state of Eq. 14. The
stochastic Galerkin method can provide an effective reduction of a stochastic model if
a relatively small truncation in Eq. 15 above is sufficiently accurate. The correspond-
ing deterministic model will then be considerably easier to simulate and analyze than
large numbers of realizations in a Monte Carlo simulation of the original dynamics.

On equation-free methods and their application in uncertainty quantification

The basic building block of equation-free methods [48,30,31] is the coarse time-step-
per, which consists essentially of three components: lifting, micro-simulation, and
restriction. Lifting is a procedure to transform a coarse-level state to its fine-level
counterpart and restriction the converse of lifting. By employing the model states x(t)
in Eq. 14 as the fine-level system state vector, and their low-order gPC coefficients
Xc as the coarse-level observables, equation-free methods can be used to numeri-
cally study the behavior of gPC coefficients without needing closed form ODEs for
their evolution, Eq. 17 [56]. The lifting and restriction protocols in our context are
then Eq. 15 and Eq. 12, respectively. The micro-simulation is just the simulation of
the original large coupled ODE system Eq. 14. Assuming that the long-term coarse-
grained dynamics in gPC space lie on a low-dimensional, attracting slow manifold,
one can use coarse projective integration to accelerate the computation of successive
coarse-level system states, i.e., low-order gPC coefficients Xc(t j ), j = 0, 1, . . . , M ,
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through restriction of (one or more) short bursts of fine scale simulation as follows:
Temporal derivatives d Xc

dt at tM are estimated by least-squares fitting of the short-time
gPC coefficient evolution Xc(t j ), j = M − k, M − k + 1, · · · , M, k < M . These
gPC coefficients in conjunction with their locally estimated temporal derivatives are
then used to extrapolate (in effect, integrate the gPC coefficients numerically in time)
over a relatively large coarse time interval T . For instance, if the coarse forward Euler
projective integration is used, then the predicted gPC coefficients at a later time tM +T
are obtained by

Xc(tM + T ) ≈ Xc(tM ) + d Xc

dt
(tM )T, i = 0, 1, . . . , P. (18)

These projected in time gPC coefficients Xc(tM + T ) are lifted again to the full fine
state level, and a new short burst of micro-simulation is initiated. The procedure is
repeated until a desired time limit is reached. Issues of time-step selection, estimation
and error control are important, and often “the devil lies in these details”; discussing
these numerical analysis issues, however, is not the aim of this brief exposition, and
we refer the reader to [15–17,30].

If Eq. 17 possesses a steady state Xs
c , then Xs

c must satisfy an integral form of
Eq. 17 given by

Xs
c = Xs

c +
t0+T∫
t0

H(Xc)dt (19)

where Xc(t0) = Xs
c . The right-hand side of Eq. 19 can be viewed as a time flow


T : R
N×(1+P) × R → R

N×(1+P). Therefore, the steady state Xs
c is the fixed-point

of the equation
Xc = 
T (Xc). (20)

When the above equation is not explicitly available, we can use the coarse time-stepper
to approximate the time flow 
T . Newton’s method or other iterative algorithms, often
in matrix-free implementations, can be readily employed to compute steady-state gPC
coefficients, which can be used to reconstruct random stable/unstable steady states
of the original system, Eq. 14. It is also possible to compute limit cycles of the gPC
coefficients through Poincaré return maps, thus linking EF methods with the analysis
on random limit cycles.
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