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Microbial cultures are comprised of heterogeneous cells that

differ according to their size and intracellular concentrations of

DNA, proteins and other constituents. Recent advances have

been made in cell population modeling, which allow the effects

of cell heterogeneity on culture dynamics and metabolite

production to be predicted. If the intracellular state can be

captured with a few variables, the population balance

equation framework is a viable modeling approach. The cell

ensemble modeling technique is better suited for the

development of population models that include more detailed

descriptions of cellular metabolism and/or cell-cycle

progression.
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Introduction
By viewing a microbial culture as a homogeneous mixture

of identical cells, experimental results and mathematical

models representative of average cell behavior are read-

ily scaled to the cell population level. However, individ-

ual cells exhibit heterogeneity as a result of small

differences in their cellular metabolism and cell-cycle

dynamics. Repeated movement through the cell cycle

yields a heterogeneous population in which individual

cells differ according to their size and intracellular state.

Unless a synchronous population is established by

exploiting natural mechanisms [1] or through artificial

means [2], the average cell behavior is not representative

of the entire population. This motivates the develop-

ment of experimental and modeling techniques that

account for heterogeneities present at the single-cell

level.

Cell heterogeneities can have a significant impact on

microbial culture dynamics and the production of key

metabolites. Several examples are given below.

Yeasts can exhibit glycolytic oscillations at the single-cell

level owing to the autocatalytic activity of the enzyme

phosphofructokinase. In the absence of a synchronization

mechanism, random variations in energy metabolism

would cause individual cells to oscillate out of phase.

Instead, secreted acetaldehyde causes dynamic synchro-

nization of the individual cells and results in sustained

oscillations at the cell population level [3,4�].

Continuous yeast cultures can exhibit oscillations of a

much longer period, which are related to the asymmetric

nature of the budding cell cycle. Normally random varia-

tions in cellular metabolism and cell-cycle regulation

produce a heterogeneous population in which individual

cells are dispersed throughout the cell cycle. Under

aerobic and glucose-limited growth environments, a syn-

chronization mechanism yet to be fully understood causes

cell subpopulations to move simultaneously through the

cell cycle and leads to sustained oscillations in extracel-

lular measurements [1,5].

Secretion rates of microbial products can be affected by

the cell-cycle position of individual cells and therefore on

the degree of heterogeneity. Synchronous cultures of the

budding yeast Saccharomyces cerevisiae have been used to

investigate the secretion rates of various proteins as a

function of the cell-cycle phase. Studies have shown that

significant protein secretion rates are obtained only as the

synchronized cells approach mitosis [6,7].

To develop fundamental understanding of cell hetero-

geneities and their effects on microbial population

dynamics, biochemical analysis methods which provide

information at the single-cell level are required. Flow

cytometry has emerged as a very powerful method for

measuring the distribution of cellular properties across

large cell populations. By combining cell staining tech-

niques and analysis of light scattering and fluorescence

signals, individual cells can be differentiated with respect

to their size, protein content, DNA content and other

intracellular properties [8]. Recently, flow cytometry has

been combined with flow injection techniques to produce

automated systems that provide on-line measurements of

cell distribution properties [9]. When combined with

suitable cell population models, on-line flow cytometry

will enable the development of computer-based systems

that provide real-time monitoring and control of cellular

distributions in microbial fermentations.

This review focuses on dynamic models of microbial

populations that explicitly account for cell heterogene-

ities. Two general approaches are discussed: population
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balance equation (PBE) models, in which the intracellular

state is characterized by a single variable such as cell age

or mass, and cell ensemble models constructed from

single-cell models that have more detailed descriptions

of cellular metabolism and/or cell-cycle progression.

Applications of these cell population models for predict-

ing culture dynamics and designing feedback control

strategies are described. Discussion of other types of

microbial cell population models [10,11] is omitted for

the sake of brevity.

Population balance equation models
The most rigorous approach for describing the effects of

cell heterogeneities on microbial culture dynamics is

based on the PBE. As originally shown by Fredrickson

and co-workers [12], the PBE results from a dynamic cell

balance that includes single cell descriptions of cellular

growth and division. Individual cells are differentiated

using appropriately chosen variables that characterize the

intracellular state. PBE models based on a single internal

state such as cell age [13] or cell mass [14] are most

common due to their simplicity. Typically the PBE is

coupled to mass balance equations for the important

nutrients in the extracellular environment. A single

rate-limiting substrate often is assumed for simplicity

[15]. More general formulations that include multistaged

descriptions of the cell cycle are also available [16].

Figure 1 shows the basic principles of PBE modeling

when a single internal state and a single rate-limiting

substrate are employed. The PBE is a nonlinear partial

differential equation with two independent variables

(time and the internal state) and a dependent variable,

which represents the number distribution of cells. Under

certain conditions the physiological functions in the cell

and substrate balance equations can be extracted from

flow cytometric data [17,18]. A wide variety of discretiza-

tion techniques has been proposed for approximating the

Figure 1
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Basic principles of cell PBE modeling. A single variable (x) is used to characterize the intracellular state and a single rate-limiting nutrient (S) is used to

describe the extracellular environment. Flow cytometric data can be used to estimate the dependence of the following physiological functions on the

intracellular state: the single-cell growth rate (r); the division rate (G); the partition function (p), which determines the partitioning of cellular material
between two cells resulting from division; and the yield coefficient (Y). The dependent variables of the PBE model are the cell number distribution

function (F) and the substrate concentration (S), where F(x,t)dx represents the number of cells per unit volume at time t with intracellular state in the

range [x,xþdx]. Derivative and integral expressions involving the intracellular state (x) are approximated to yield a nonlinear ordinary differential

equation model with time (t) as the only independent variable. The discretized model can be integrated numerically to yield dynamic predictions. It can

also be used to estimate unknown model parameters and/or state variables from experimental data and can be utilized to design feedback controllers

in which the dilution rate (D) and the feed substrate concentration (Sf) are potential input variables.
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PBE model with a set of nonlinear ordinary differential

equations that are suitable for numerical integration. The

discretized model can be utilized for dynamic simulation

and analysis, for the estimation of unknown model param-

eters from experimental data, and for the development of

on-line fermentor monitoring and control schemes.

Table 1 lists some recent applications of PBE modeling to

microbial cell populations. Most studies focus on mass-

structured models in which the internal state is charac-

terized by the individual cell mass. Many papers have a

significant emphasis on fermentor control. A widely

recognized shortcoming of the PBE modeling framework

is the lack of a fundamental biochemical basis for select-

ing the physiological functions associated with single cell

growth and division [19]. A partial solution to this problem

has been obtained by formulating a PBE in which the

division rate is independent of the intracellular state, and

physiological functions for transitions between cell-cycle

phases are not needed [20]. A complementary approach is

to estimate unknown parameters of the physiological

functions directly from experimental data. By formulating

a mass-structured model with a simple description of the

abiotic environment, nonlinear optimization techniques

were used to determine parameter values that minimize

the least-squares difference between the model predic-

tions and readily available extracellular measurements

[21��]. The resulting model accurately predicted the

amplitude and period of cell-cycle-dependent oscillations

in continuous cultures of S. cerevisiae.

A typical PBE model is comprised of a coupled set of

nonlinear integro-ordinary differential and integro-partial

differential equations. A potentially large set of nonlinear

ordinary differential equations suitable for numerical

integration is obtained by discretizing the partial deriv-

atives and integrals involving the intracellular state vari-

ables. A comprehensive study of alternative discretization

methods has been presented in a series of three papers

[22�,23,24]. Although considerably more sophisticated

techniques were investigated, a relatively simple finite

difference approximation scheme was found to provide

the best tradeoff between solution accuracy and compu-

tational efficiency when applied to PBE models with

Table 1

Recent applications of cell population balance equation modeling.

Microorganism Problem Focus Contribution Ref

General� Physiological functions Modeling Formulation of PBE model that does not require physiological
functions for transitions between cell-cycle phases and in

which the division rate is independent of the intracellular state

[20]

S. cerevisiae Cell-cycle-dependent

oscillations

Modeling and

parameter

estimation

Formulation of mass-structured PBE model with a structured

description of the extracellular environment and estimation

of physiological function parameters from simulated and

experimental data

[21��]

General� Batch and continuous

fermentors

Numerical

solution

Detailed study of finite difference discretization

methods for numerical solution of PBE models

[22�]

General� Batch and continuous

fermentors

Numerical

solution

Detailed study of spectral discretization methods for

numerical solution of PBE models

[23]

General� Batch and continuous

fermentors

Numerical

solution

Detailed study of finite element discretization methods

for numerical solution of PBE models

[24]

S. cerevisiae Cell-cycle-dependent

oscillations

Modeling

and control

Formulation of mass-structured PBE model and design of

a model-based controller that allows direct control of

the cell mass distribution

[25]

S. cerevisiae Cell-cycle-dependent

oscillations

Dynamic

analysis

Use of age-structured PBE model to study the dynamic

behavior of oscillating yeast cultures

[26]

S. cerevisiae Cell-cycle-dependent

oscillations

Dynamic

analysis
and control

Use of mass-structured PBE model to study the

bifurcations leading to sustained oscillations and to design
model-based controllers for oscillation attenuation

[27�]

S. cerevisiae Cell-cycle-dependent

oscillations

Dynamic

analysis

Application of nonlinear order reduction to derive

simplified nonlinear models which capture the oscillatory

dynamics of a mass-structured PBE model

[28]

Yeast Chemostat Modeling and

control

Formulation of PBE model with two cell-cycle phases and

model-based control of product formed only during second

cell-cycle phase

[29�]

E. coli Plasmid instability Modeling Formulation and experimental evaluation of PBE model in

which the intracellular state is the number of plasmids per cell

[30]

Yeast Chemostat Review Overview of recent progress in dynamic analysis and model-based

control of chemostats described by mass-structured PBE models

[44]

S. cerevisiae Cell-cycle-dependent

oscillations

Modeling and

control

Overview of author’s recent work on mass-structured PBE

models and model-based control of oscillating yeast cultures

[45]

�General, no specific type or class of microorganism is considered.
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single variable and multivariable intracellular state vec-

tors. In another study, discretization using orthogonal

collocation on finite elements was found to provide effi-

cient and robust solution of a mass-structured model [25].

Numerical solution codes allow the dynamic behavior of

PBE models to be explored and compared with exper-

imental data. Dynamic simulation of an age-structured

model for yeast cell-cycle-dependent oscillations has

been used to investigate the relationship between the

cell age distribution and oscillatory behavior [26]. A

complementary approach involves the use of numerical

bifurcation techniques to explore the effects of key

parameters on long-term model predictions. A bifurca-

tion represents a qualitative change in the dynamic

system behavior (e.g. a stable steady-state solution is

replaced by a stable oscillatory solution). Bifurcation

analysis of a mass-structured PBE model demonstrated

the presence of multiple stable states as observed exper-

imentally in continuous cultures of S. cerevisiae [27�]. The

accuracy of simplified dynamic models derived from a

mass-structured PBE model using nonlinear order reduc-

tion techniques has been evaluated using bifurcation

analysis [28].

The availability of discretized PBE models and/or

low-order approximate models facilitates the design of

feedback controllers, which provide direct regulation of

cell distribution related variables. Recent studies have

focused on chemostats where the dilution rate and the

feed concentration of the rate-limiting substrate are

potential manipulated variables. A model-based nonlinear

controller for optimizing chemostat productivity was

designed from a mass-structured PBE model with a multi-

staged cell-cycle description [29�]. A mass-structured

model of yeast cell-cycle-dependent oscillations has been

used to design simple nonlinear controllers for oscillation

attenuation [27�] and optimization-based linear control-

lers that have the potential to increase the production of

key metabolites only synthesized during part of the cell

cycle [25]. These studies demonstrate the intimate

relationship between the cell-cycle model dynamics

and the resulting feedback control strategy. Although

not extensively investigated, individual cell metabolism

and population dynamics also can be expected to have a

major impact on model-based controller design.

All the PBE models discussed above use either cell mass

or cell age to discriminate between individual cells.

A PBE model of plasmid instability in continuous

Escherichia coli cultures utilizes the relative copy number

of plasmid DNA as the internal variable [30]. PBE models

are closely related to morphologically structured models

of filamentous microorganisms, which have a finite num-

ber of morphological states. Mathematically the two types

of models are equivalent in the limit as the number of

distinct morphological states approaches infinity [31].

Recently a morphologically structured model for penicil-

lin production in fed-batch cultures was developed and

used to investigate optimal glucose feeding policies [32].

A recently developed model for quorum sensing in bac-

teria which differentiates upregulated and downregulated

cell populations [33] can be viewed as a morphologically

structured model with two cell classes. These problems

demonstrate the wide applicability of the PBE modeling

framework and suggest that many potential applications

remain unexplored.

Cell ensemble models
A disadvantage of the PBE modeling framework is the

lack of a fundamental biochemical basis for determining

the physiological functions associated with single cell

growth and division [19]. The incorporation of intracel-

lular reaction pathways which provide mechanistic

descriptions of these cellular processes is possible if

the distribution function represents the mass fraction

(rather than the number) of cells with a particular internal

state [31]. In this formulation, the intracellular state is

represented by a potentially high dimensional vector,

which contains the concentrations of the various intra-

cellular species. In addition to difficulties associated with

modeling cell-cycle events, such metabolically struc-

tured PBE models are expected to be computationally

intractable because discretization will produce a very

large number (1 000 000 or more depending on the

metabolic description) of nonlinear ordinary differential

equations.

Figure 2 shows the basic principles of an alternative cell

population modeling approach, which is termed cell

ensemble modeling in this review. A dynamic model of

a single microbial cell that adequately describes the

cellular processes of interest is required [34]. The state

vector of this nonlinear ordinary differential equation

model contains the concentrations of various intracellular

species. An ensemble is constructed from a potentially

large number of single-cell models in which intracellular

parameters are randomly perturbed from their nominal

values to capture heterogeneities associated with partic-

ular cellular processes [35]. Typically the random per-

turbations are assumed to be normally distributed with

zero mean and variance consistent with any available

data. The cell ensemble model is completed by adding

differential equations, which capture the concentration

dynamics of the relevant extracellular species. Numerical

integration of the ensemble model allows individual cell

dynamics and the average dynamics of the cell population

to be predicted. Simulation data can be used to compute

dynamic cell distributions with respect to any intracel-

lular property predicted by the single-cell model [36].

The goal is to utilize a sufficiently large number of single-

cell models such that ensemble averages are independent

of the cell number and the computed cell distributions are

acceptably smooth.
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The cell ensemble modeling approach was originally

proposed by Shuler and co-workers [35,36]. They used

ensembles of approximately 225 individual cells to pre-

dict steady-state and dynamic size distributions for aero-

bic and anaerobic cultures of E. coli as well as plasmid

instability in a genetically modified E. coli strain. A list of

more recent applications of ensemble modeling to micro-

bial cell populations is shown in Table 2. Most studies

focus on the synchronization of single cell glycolytic

oscillations observed in specially prepared suspensions

of yeasts such as S. cerevisiae [3]. The simplest model is

based on a single cell description that accounts only for

glucose and ATP dynamics and utilizes an ensemble of

just two cells which interact via linear couplings [37].

Ensemble models which include more detailed descrip-

tions of the glycolytic pathway and more physiologically

based cellular interactions have been proposed. A single-

cell model that accounts for the dynamics of four glyco-

lytic intermediates, ATP and NADH has been used to

construct ensembles in which cellular interactions are

mediated by acetaldehyde secreted into the extracellular

environment [38]. Detailed bifurcation analysis shows

that a two-cell ensemble model is capable of producing

a wide range of periodic solutions including synchronous

oscillations, as observed experimentally. An extended

version of this cell model which includes the dynamics

of two additional glycolytic intermediates has been used

to construct a two-cell ensemble for studying synchroni-

zation dynamics [39]. A very detailed cell model that

accounts for the transport of glucose, glycogen, ethanol,

acetaldehyde and cyanide across the cell membrane, the

degradation of acetaldehyde by cyanide, the storage of

energy as ATP, basic cellular processes consuming ATP

and 11 reactions between the glycolytic intermediates

was recently proposed [40]. Although the single-cell

model provides good agreement with available data, an

ensemble model comprised of two individual cells and

the necessary extracellular balances does not produce

synchronous oscillations. This demonstrates that incor-

porating more metabolic structure into the single-cell

model does not necessarily improve the predictions of

the resulting ensemble model.

Much larger cell ensemble models have been constructed

to investigate the synchronization of yeast glycolytic

oscillations. A simplified cell model, which captures the

dominant dynamics of a metabolically structured model

[40] near the bifurcation point where sustained oscilla-

tions appear, has been derived through the application of

nonlinear dynamic analysis techniques [4�]. An ensemble

model comprised of 1000 simplified cells was able to

capture the rapid synchronization that is observed exper-

imentally upon mixing two cell populations oscillating

180 degrees out of phase. The single-cell model of Wolf

and Heinrich [38] has been used to construct ensembles

of 1000 cells in which the initial state and/or kinetic

parameters of each cell were randomly perturbed from

their nominal values [41��]. Synchronous oscillations were

obtained for large variations in the initial intracellular

state, while much smaller variations in the intracellular

reaction kinetics resulted in desynchronization. Dynamic

simulation data were used to compute the ensemble

averaged NADH concentration as well as the NADH

number distribution.

Other applications of the cell ensemble modeling

approach have been investigated. A very simple cell

model which provides a phenomenological description

of biomass accumulation has been used to construct very

large ensembles with as many as 100 000 cells for the

prediction of average biomass concentration in activated

sludge processes [42]. A single-cell model based on a

lumped description of cellular growth and proliferation

Figure 2
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Basic principles of cell ensemble modeling. The intracellular state vector

(x) of the single-cell model contains the concentrations of various

species involved in energy metabolism, biosynthesis, cell-cycle

progression and other cellular processes. The intracellular parameter

vector (y) includes constants associated with reaction and transport

processes. The extracellular state vector (y) contains the concentrations

of substrates, secreted metabolites and other species in the extracellular
environment. Experimental techniques such as flow cytometry are used

to identify intracellular processes that are subject to significant variations

between individual cells and to estimate statistical variations of the

associated single-cell model parameters. The cell ensemble model is

comprised of N individual cell models and extracellular balances, which

involve the state vector of each cell (xi) and a vector of extracellular

parameters (Y). The ensemble model can be used to generate

predictions of cell population dynamics and to yield the simulation data

required to compute approximate cell number distributions.
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was used to construct ensembles for the prediction of

biomass distributions in bacterial colonies [43]. A short-

coming of the modeling approach proposed by Ginovart

and colleagues [43] is that the number of single-cell

models is not fixed, but rather increases exponentially

with time due to cell division. A computationally tractable

alternative is to utilize a fixed number of cell models, each

of which represents several individual cells, which varies

with time as new cells are created through division [35].

Regardless of their limitations, these studies demonstrate

that the cell ensemble modeling approach can be

employed whenever an appropriate single-cell model is

available. This desirable property suggests that many

potential applications remain unexplored.

Conclusions
Table 3 provides a comparison of the PBE and ensemble

approaches to cell population modeling. Although the

basic strategies employed are different, both techniques

allow the description of heterogeneities at the single-cell

level. The major distinction is the relative tradeoff

between the amount of intracellular structure and the

number of cells included. The PBE modeling technique

is not limited with regard to cell number, but the intra-

cellular state dimension must be restricted to a few

variables to ensure computational feasibility of the dis-

cretized model. By contrast, the cell ensemble technique

allows direct incorporation of arbitrarily complex single-

cell models at the expense of relatively small cell

Table 2

Recent applications of cell ensemble modeling.

Microorganism Problem Ensemble

size

Contribution Ref

S. cerevisiae Glycolytic oscillations 1000 Use of an approximate cell model derived from a detailed single-cell model

to construct ensemble models for study of cell population synchronization

[4�]

S. cerevisiae Glycolytic oscillations 2 Formulation of a very simple ensemble model that includes glucose and

ATP dynamics for investigation of cell population synchronization

[37]

Yeast Glycolytic oscillations 2 Formulation and detailed bifurcation analysis of an ensemble model which

includes the intracellular dynamics of ATP, NADH and four metabolites

[38]

Yeast Glycolytic oscillations 2 Formulation and dynamic analysis of an extended version of the ensemble

model in [38], which includes two additional glycolytic intermediates

[39]

Yeast Glycolytic oscillations 2 Use of a detailed single-cell model to construct an ensemble model that

fails to exhibit cell population synchronization

[40]

Yeast Glycolytic oscillations 1000 Construction of ensemble models for investigation of the effects of random [41��]

Single-cell variations on cell population synchronization

Heterotrophic

bacteria

Activated sludge

dynamics

100 000 Use of a very simple cell model for biomass accumulation to construct

an ensemble model for prediction of average biomass concentration

[42]

Bacteria Colony growth and

metabolic oscillations

Time varying

(1–69 000)

Formulation of ensemble models to investigate the effects of random

single-cell variations on colony growth and metabolic oscillations

[43]

Table 3

Comparison of cell population modeling techniques.

Modeling issues PBE models Ensemble models

Intracellular state Limited to 1–2 variables High dimension possible

Number of cells Infinite Limited by intracellular state dimension

Single-cell models Cannot be used Can be incorporated directly

Heterogeneity Realized via physiological functions Realized via single-cell model parameters

Parameter estimation analysis issues Physiological function parameters Single-cell model parameters

Numerical solution Discretization of intracellular state followed

by numerical integration

Numerical integration

Dynamic simulation Prohibitively slow for high intracellular state dimension Prohibitively slow for large number of cells
Intracellular distributions High resolution of multidimensional distributions possible Resolution limited by number of cells

Bifurcation analysis Applied to mass and age-structured models Applied to very small ensembles

Feedback controller design applications Applied to mass-structured models Unexplored

Batch fermentor dynamics Several studies None

Chemostat dynamics Many studies Several studies

Yeast glycolytic oscillations None Many studies

Yeast cell-cycle-dependent oscillations Many studies None

Plasmid instability One study One study
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numbers, which can limit the resolution of intracellular

distributions. Direct comparisons are not currently pos-

sible because the two techniques have been applied to

different problems.

The combination of increasingly powerful computers and

sophisticated numerical algorithms will facilitate the con-

tinuing development of microbial cell population model-

ing. Although recent progress has been significant, several

challenges must be addressed before cell population

modeling can be viewed as a general purpose tool for

biochemical systems analysis. Several issues are partic-

ularly important for the PBE modeling technique: the

formulation of dynamic models with multidimensional

intracellular state vectors; the development of systematic

techniques for constructing the physiological functions

from flow cytometric data; and the development of dis-

cretization and numerical solution techniques that allow

efficient simulation of multidimensional models. Corre-

sponding issues for the cell ensemble modeling tech-

nique are the development of systematic techniques for

introducing heterogeneity into the single-cell models,

efficient dynamic simulation of very large ensembles

comprised of highly structured single-cell models, the

development of more sophisticated methods for comput-

ing intracellular distributions from ensemble simulation

data, and the incorporation of large ensemble models in

dynamic analysis and feedback control strategies.
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