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Abstract

Transient cell population balance models consist of nonlinear partial di5erential-integro equations. An accurate discretized approximation
typically requires a large number of nonlinear ordinary di5erential equations that are not well suited for dynamic analysis and model based
controller design. In this paper, proper orthogonal decomposition (also known as the method of empirical orthogonal eigenfunctions and
Karhunen Lo<eve expansion) is used to construct nonlinear reduced-order models from spatiotemporal data sets obtained via simulations
of an accurate discretized yeast cell population model. The short-term and long-term behavior of the reduced-order models are evaluated
by comparison to the full-order model. Dynamic simulation and bifurcation analysis results demonstrate that reduced-order models with
a comparatively small number of di5erential equations yield accurate predictions over a wide range of operating conditions.
? 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many investigators have shown that continuous cultures
of the microorganism Saccharomyces cerevisiae (baker’s
yeast) exhibit sustained oscillations in glucose limited en-
vironments under aerobic growth conditions (Parulekar,
Semones, Rolf, Lievense, & Lim, 1986; Porro, Marte-
gani, Ranzi, & Alberghina, 1988; Strassle, Sonnleitner, &
Fiechter, 1989; von Meyenburg, 1973). Recent work in
our group has demonstrated that the oscillatory dynamics
can be captured by unstructured cell population mod-
els in which each cell is distinguished according to its
mass (Mhaskar, Henson, & Hjortso, 2002; Zhu, Zamamiri,
Henson, & Hjortso, 2000). The cell population model con-
sists of a coupled set of nonlinear integro-partial di5erential
equations. Discretization in the mass domain yields an ap-
proximate model with a large number of nonlinear ordinary
di5erential equations. For our most recent model (Mhaskar
et al., 2002) an accurate approximation consisting of 117
di5erential equations can be derived using orthogonal collo-
cation on Dnite elements. Such high dimensional models are
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not well suited for nonlinear dynamic analysis and
controller design. Furthermore, structured cell population
models derived from Fow cytometric measurements may be
completely intractable due to their signiDcantly increased
complexity (Srienc & Dien, 1992). Consequently, there is
considerable motivation to develop reduced-order models
that capture the key features of cell population dynamics.
After fast initial transients the dynamics of many dis-

tributed parameter systems evolve in a much lower dimen-
sional space than the order of an accurate discretized model.
This suggests that a reduced order model can be derived by
projecting the dynamics of the high-order discretized model
onto an appropriate reduced dimensional subspace. The de-
velopment of mathematically rigorous order reduction tech-
niques for nonlinear partial di5erential equation models such
as the yeast cell population model is an open problem. How-
ever, several semi-empirical order reduction methods in-
cluding proper orthogonal decomposition (POD) (Holmes,
Lumley, & Berkooz, 1997) and approximate inertial man-
ifolds (Foias, Sell, & Temam, 1988; Jolly, Kevrekidis, &
Titi, 1990) can be used to construct a reduced dimensional
space where the relevant dynamics evolve. In the POD ap-
proach, nonlinear model reduction is viewed as the prob-
lem of generating a convenient and in some sense optimal
eigenfunction basis from which the reduced order model can
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be constructed. The basis functions of the reduced dimen-
sional space are generated empirically by applying principal
component analysis (PCA) to spatiotemporal data gener-
ated from open-loop simulation of the full-order discretized
model. Galerkin projection of the full-order model onto the
empirical eigenfunctions yields the reduced-order nonlinear
model.
In this paper, we apply the POD-Galerkin method to a dis-

cretized model of yeast cell population dynamics to derive
reduced-order nonlinear models that are more amenable to
dynamic analysis and controller design. Several issues asso-
ciated with the collection of a representative simulation data
set that are critical for construction of a useful reduced-order
model are illustrated. This requires a methodology for eval-
uating the accuracy of the reduced-order model with respect
to the full-order discretized model. Dynamic simulation is
used to assess the short-term accuracy of reduced-order mod-
els generated from di5erent spatiotemporal data sets. While
open-loop simulation is an invaluable tool for such com-
parisons, we demonstrate that bifurcation analysis allows a
more complete characterization of the reduced-order model
dynamics. Our previous work has demonstrated that the
yeast cell population model possesses a bifurcation structure
where two critical values of the dilution rate separate regions
of stable steady state and stable periodic solutions (Zhang,
Zamamiri, Henson, & Hjortso, 2002). The long-term be-
havior of the reduced-order models is evaluated by compar-
ing bifurcation diagrams of the full-order and reduced-order
models. We show that a reasonably small number of em-
pirical eigenfunctions is required to capture the long-term
dynamic behavior of the full-order model.
The remainder of the paper is organized as follows. The

yeast cell population model chosen for study is described
in Section 2. The computational techniques used for nonlin-
ear model reduction and bifurcation analysis are discussed
in Section 3. The results of the model reduction study are
presented and discussed in Section 4. A summary and con-
clusions are presented in Section 5.

2. Yeast cell population model

The dynamic model chosen for investigation consists of a
segregated description of the cell population and a structured
description of the growth medium. The resulting model is
not a substitute for segregated yeast models that include a
detailed description of the intracellular reactions. However,
the structured medium description allows the model pre-
dictions to be compared with easily measured extracellular
variables. Below the transient equations governing the cell
population and the extracellular environment are presented.
Our previous work (Mhaskar et al., 2002; Zhu et al., 2000)
should be consulted for additional details.
Cell division in the budding yeast cell cycle is asymmetric.

The smaller of the newborn cells obtained after division is
referred to as a daughter cell while the larger cell is called

a mother cell. Newborn daughter cells must grow to attain
the size of a newborn mother cell (characterized here by
the cell transition mass) before starting a budding cycle. By
contrast, newborn mother cells bud shortly after being born.
After budding has occurred, the bud grows while the mass
of the mother cell remains essentially constant. The bud
grows until the cell attains the size necessary for division
(characterized by the cell division mass).
A population balance equation (PBE) that describes the

evolution of the cell mass distribution is formulated as fol-
lows (Eakman, Fredrickson, & Tsuchiya, 1966):

@W (m; t)
@t

+
@[K(S ′)W (m; t)]

@m

=
∫ ∞

0
2p(m;m′)	(m′; S ′)W (m′; t) dm′

− [D + 	(m)]W (m; t); (1)

where m is the cell mass,W (m; t) is the cell number density,
K(S ′) is the overall single cell growth rate, S ′=G′+E′ is the
e5ective substrate concentration (deDned below), p(m;m′)
is the newborn cell probability function, 	(m; S ′) is the di-
vision intensity function, and D is the dilution rate. The di-
vision intensity function is modeled as

	(m; S ′) =




0 m6m∗
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∗
d )
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∗
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(2)

wherem∗
t is the cell transitionmass,mo is the additional mass

that mother cells must gain before division is possible, m∗
d is

the cell division mass, and � and � are constant parameters.
The newborn cell probability function has the form:

p(m;m′) = A exp[− �(m− m∗
t )

2]

+A exp[− �(m− m′ + m∗
t )

2] (3)

when m¡m′ and m′¿m∗
t +mo; the function is identically

zero otherwise. Here A and � are constant parameters. This
function yields two Gaussian peaks in the cell number dis-
tribution, one centered at m∗

t corresponding to mother cells
and one centered at m∗

t − m′ corresponding to daughter
cells.
Functions (2) and (3) introduce dispersive e5ects into

the PBE model that tend to counteract cell cycle synchrony
(Porro et al., 1988) and dampen oscillatory dynamics. Sus-
tained oscillations are obtained by modeling the dependence
of the transition and division masses on the extracellu-
lar environment. The following saturation functions are
used:

m∗
t (S

′) =



mt0 + Kt(Sl − Sh) S ′¡Sl

mt0 + Kt(S ′ − Sh) S ′ ∈ [Sl; Sh]

mt0 S ′¿Sh;

(4)



Y. Zhang et al. / Chemical Engineering Science 58 (2003) 429–445 431

m∗
d(S

′) =



md0 + Kd(Sl − Sh) S ′¡Sl
md0 + Kd(S ′ − Sh) S ′ ∈ [Sl; Sh]

md0 S ′¿Sh;

(5)

where Sl, Sh, mt0, md0, Kt and Kd are constants.
The structured medium model allows both glucose and

ethanol to serve as substrates for cell growth. The following
reaction sequence accounts for the three major metabolic
pathways: glucose fermentation, glucose oxidation and
ethanol oxidation:

C6H12O6 → 2C2H5OH + 2CO2; (6)

C6H12O6 + 6O2 → 6CO2 + 6H2O; (7)

C2H5OH + 3O2 → 2CO2 + 3H2O: (8)

The substrate balance equations are
dG
dt

=D(Gf − G)

−
∫ ∞

0

[
Kgf(G′)
Ygf

+
Kgo(G′)
Ygo

]
W (m; t) dm; (9)

dE
dt

=D(Ef − E) + 92
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∫ ∞

0
f(m)
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W (m; t) dm

−
∫ ∞

0

Keo(E′)
Yeo

W (m; t) dm; (10)

where G and E are the glucose and ethanol concentrations,
respectively; G′ and E′ are the e5ective glucose and ethanol
concentrations, respectively;Gf and Ef are the feed glucose
and ethanol concentrations, respectively; Ygf, Ygo and Yeo
are constant yield coePcients; and the ratio 92

180 represents
the mass of ethanol produced per mass of glucose consumed
in Eq. (6). The e5ective substrate concentrations model the
lagged response of cell metabolism to changes in the extra-
cellular environment:
dG′

dt
= �g(G − G′); (11)

dE′

dt
= �e(E − E′); (12)

where �g and �e are constants.
The glucose fermentation rate Kgf is assumed to follow

Monod kinetics with respect to glucose. The glucose oxi-
dation rate Kgo and ethanol oxidation rate Keo are assumed
to follow Monod kinetics with respect to both the substrate
and the dissolved oxygen. Furthermore, the ethanol oxida-
tion rate is assumed to be inhibited by glucose. The rate
expressions are

Kgf(G′) =
�mgfG′

Kmgf + G′

Kgo(G′) =
�mgoG′

Kmgo + G′
O

Kmgd + O
;

Keo(E′) =
�meoE′

Kmeo + E′
O

Kmed + O
Kinhib

Kinhib + G′ ; (13)

where O is the dissolved oxygen concentration; �mgf , �mgo

and �meo are maximum consumption rates;Kmgf ,Kmgo,Kmgd,
Kmeo and Kmed are saturation constants; and Kinhib is a con-
stant that characterizes the inhibitory e5ect of glucose on
ethanol oxidation. The function f(m) in Eq. (10) is used to
model production of ethanol by budded cells:

f(m) =

{
0 m6m∗

t

�e exp[− �e(m− m∗
t − me)2] m¿m∗

t

(14)

where �e, �e and me are constant parameters.
The liquid phase oxygen balance is written as

dO
dt

=Kloa(O∗ − O)

−
∫ ∞

0

[
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+
96
46
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]

×W (m; t) dm; (15)

where O∗ is the saturation oxygen concentration, Klo is the
oxygen mass transfer coePcient, a is the interfacial area per
unit liquid volume, the ratios 192

180 and 96
46 account for di5er-

ences in molecular weights of the reactants and products.
The oxygen solubility is assumed to be governed by Henry’s
law:

O∗ = HORTOout ; (16)

where HO is the Henry’s rate constant for oxygen, Oout is
oxygen partial pressure in the gas exhaust stream, T is the
absolute temperature, and R is the gas constant. The gas
phase oxygen balance is

dVgOout

dt
= F(Oin − Oout)− Kloa(O∗ − O)Vl; (17)

where Vg and Vl are the gas phase and liquid phase volumes,
respectively; F is the volumetric air feed Fow rate; and Oin

is the oxygen partial pressure in the air feed stream. The
liquid phase carbon dioxide balance is

dC
dt

=Klca(C∗ − C)

+
∫ ∞

0

[
264
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+
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+
∫ ∞

0

[
f(m)

88
180

Kgf(G′)
Ygf

]
W (m; t) dm; (18)

where C is the liquid phase carbon dioxide concentration,
C∗ is the saturation carbon dioxide concentration, Klc is the
carbon dioxide mass transfer coePcient, and the ratios 264

180 ,
88
46 and

88
180 account for di5erences in molecular weights. The

carbon dioxide solubility is modeled as

C∗ = HC(pH)RTCout ; (19)
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Table 1
Yeast cell population model parameters

Variable Value Variable Value

HO 0:0404 g=l=atm HC 1:48 g=l=atm
Vg 1 l Vl 0:4 l
Kla 1500 h−1 Klc 1500 h−1

D 0:16 h−1 Gf 20 g=l
Ef 0 g=l F 10 l=h
T 298 K Oin 0:21 atm
Cin 0:003 atm
Ygo 0:15 g=g �mgo 5× 10−11 g=h
Yeo 0:5 g=g �meo 5× 10−11 g=h
� 400 � 7
�e 8 �e 20
mo 1× 10−11 g me 1 ×10−11 g
A

√
10=( � 40

Sl 0:1 g=l Sh 2:0 g=l
Kt 0:01 g=g l Kd 2 g=g l
mto 6× 10−11 g mdo 11× 10−11 g
Kgo 0:002 g=l Keo 0:002 g=l
Kmgf 10 g=l Kmgo 1 g=l
Kmeo 0:1 g=l Kinhib 1 g=l
Kmgd 0:002 g=l Kmed 0:002 g=l
�g 20 �e 20

where the carbon dioxide rate constant HC is evaluated at
a pH of 5.0, and Cout is the carbon dioxide partial pressure
in the exhaust gas stream. The gas phase carbon dioxide
balance is
dVgCout

dt
= F(Cin − Cout)− Klca(C∗ − Cout)Vl; (20)

where Cin is the carbon dioxide partial pressure in the air
feed stream. The model parameters listed in Table 1 are
obtained from (Mhaskar et al., 2002).

3. Computational techniques

3.1. Numerical model solution

The cell population model presented in the previous sec-
tion is comprised of a coupled set of nonlinear algebraic,
ordinary di5erential and integro-partial di5erential equa-
tions. Numerical solution of the model is required to gener-
ate the spatiotemporal data required for construction of the
reduced-order nonlinear models. The standard approach is
to spatially discretize the PBE to obtain a Dnite number of
nonlinear ordinary di5erential equations (ODEs) with time
as the independent variable. A variety of numerical solu-
tion techniques based on Dnite di5erence, weighted residual
and orthogonal collocation methods are available. An ac-
curate approximation may require a large number of node
points especially if there is more than a single dimension
(Shvartsman & Kevrekidis, 1998).
Zhu et al. (2000) use orthogonal collocation on Dnite el-

ements to discretize a simpliDed version of the yeast cell
population model presented in Section 2. The cell mass do-

main is discretized into a number of Dnite elements, each of
which contains several collocation points where the PBE is
approximated by an ODE. Integral terms are approximated
using Gaussian quadrature. The state vector of the resulting
nonlinear ODE model consists of the cell number density at
each collocation point, as well as the substrate and e5ective
substrate concentrations. To obtain a suPciently accurate
discretization, 12 Dnite element and 8 internal collocation
points on each Dnite element are employed. In this paper, we
apply this discretization scheme with the same number of
discretization points to the cell population model presented
in Section 2. The resulting model consists of 117 nonlinear
ODEs.

3.2. Nonlinear model reduction

High-dimensional models such as a discretized cell
population model are not amenable to dynamic analy-
sis and model-based controller design. Fortunately, most
high-dimensional models possess di5erent time scales over
which the dynamics evolve. The model is viewed as having
“fast modes” and “slow modes” according to the location
of the associated eigenvalues in the complex space (Khalil,
1996). As the transient e5ect of the fast modes has a short
duration, the relevant dynamic behavior of the model is de-
termined mainly by the slow modes. If a high-order model
possesses only a few slow modes, then it is e5ectively a
low-dimensional system. Using various model reduction
techniques, the full-order model can be projected onto a
much lower dimension subspace where the slow modes
evolve. The resulting low-dimensional model should be a
good approximation of the full-order model.
Because the discretized cell population model has a total

of 117 nonlinear ODEs, it is too complex for e5ective anal-
ysis and control system design. However, 109 of the state
variables represent the cell number distribution at di5erent
cell masses. As these state variables are highly correlated,
it is envisaged that a signiDcant dimensionality reduction is
possible. As shown in Fig. 1, the cell population model has
a large number of fast modes. These observations motivate
an attempt to perform dimensionality reduction on the cell
population model to facilitate future dynamic analysis and
controller design studies.
Several nonlinear model reduction techniques have

been proposed in the literature. They can be categorized
into three groups: (i) methods based on approximate in-
ertial manifolds (AIM) (Armaou & ChristoDdes, 2000);
(ii) methods based on POD (Holmes et al., 1997) and
(iii) methods based on balanced truncation (Lall, Mars-
den, & Glavaski, 2002). The POD method is used in
this paper since it has been shown to yield accurate
reduced-order models while accounting for the e5ect
of input changes on the system behavior (Shvartsman
& Kevrekidis, 1998). The POD method was originally pro-
posed by Lorenz (Lorenz, 1956) and has been popularized
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Fig. 1. Spectrum of the full-order model.

by Lumley and others (Holmes et al., 1997) for the study of
dynamical features in complex Fuid Fows. More recently,
POD has found wide application in solids and structures
(Holmes et al., 1997), image processing (Sirovich, 1989)
and the design of controllers for PDE systems (Shvartsman
& Kevrekidis, 1998). Below we provide a brief outline of
the POD method; a more detailed description can be found
in (Holmes et al., 1997).
Consider a nonlinear system of the general form

ẋ = f[x(t); u(t)]; (21)

where x∈Rn and u∈Rm are the state and input vectors,
respectively. The underlying idea of the POD method is to
Dnd an optimal low-dimensional linear subspace of the state
space in which the relevant dynamics of the original system
evolve. The method requires extensive spatiotemporal data,
either from the actual process or from simulation of an ac-
curate model. For a given sampled data set {x(1); : : : ; x(N )}
of x(t), deDne R as the correlation matrix of the data

R :=
N∑
i=1

x(i)x(i)∗; (22)

where x(i) is the ith snapshot of the state variables in the
data set and x(i)∗ is the complex conjugate of x(i). Let
.1¿ .2¿ · · · .n be the eigenvalues of R, k be the rank
of R, and 01; 02; : : : ; 0k be orthogonal eigenvectors of R

corresponding to the nonzero .i. Each vector x(i) can be
written as

x(i) =
k∑
j=1

�ij0j;

where �ij = 〈x(i); 0j〉, and 〈0i; 0j〉 = 2ij. The optimal
s-dimensional subspace approximation of the original state
variables is given by

x̂(i) =
s∑
j=1

�ij0j: (23)

Denote P := [01; 02; : : : ; 0s]T as the transformation matrix.
The projection of x on the subspace S=span{01; 02; : : : ; 0s}
can be written as y = Px where y is a representation of x
in the new coordinates 0i. The approximation of x is given
by x̂ = P∗Px∈ S where P∗ is the complex conjugate of P.
This subspace approximation is optimal in the sense that the
“total energy” preserved

p=
∑s

i=1 .i∑n
i=1 .i

(24)

is maximized. The number of principal components s re-
tained in the reduced-order model should be chosen such
that p ∼= 1 to ensure good approximation of the full-order
system.
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Galerkin projection has been used extensively to con-
struct reduced-order mathematical models of dynami-
cal systems (Holmes et al., 1997). The basic idea is to
project the full-order vector Deld on the tangent space of a
s-dimensional subspace S ⊂ Rn of the original state space.
Using the coordinates obtained from the POD methods, the
resulting reduced-order approximation is given by

ẏ(t) = Pf[P∗y(t); u(t)]: (25)

The POD-Galerkin method projects the dynamics onto the
subspace containing most of the “energy” of the system. If
all the eigenvectors corresponding to the nonzero eigenval-
ues of the correlation matrix R are retained, then this sub-
space will contain all the local dynamics. Clearly there is
a trade-o5 between the extent of model reduction and the
quality of the reduced-order model. The goal is to utilize
as few basis functions as possible to ensure an “acceptable”
approximation of the full-order dynamics.
In summary, the POD-Galerkin model reduction method

involves:

1. Collection of a representative set of spatiotemporal pro-
cess or model simulation data.

2. Extraction of an empirical eigenfunction basis from the
data.

3. Construction of a reduced-order dynamical system by
projection of the full-order vector Deld onto these basis
functions.

The empirical nature of the method suggests that the Drst
step is crucial for generating a useful approximate model.
The data ensemble is the starting point for forming the
reduced-dimensional subspace onto which the original state
space is projected by the Galerkin procedure. All dynam-
ics orthogonal to this subspace are neglected under the as-
sumption that the resulting error will be “small”. In addition
to the necessity for a large spatiotemporal data set, there
are no a priori comprehensive guidelines for generation of
a suitable ensemble from which the empirical basis func-
tions will be extracted. A potentially representative ensem-
ble can be obtained by combining spatiotemporal motions
at several values of key operating parameters, mixing tran-
sients from di5erent initial conditions distributed randomly
around relevant regions of the phase space and collecting
responses to perturbation of actuators from their nominal
settings. Additional guidelines for spatiotemporal data col-
lection are discussed elsewhere (Aling, Ebert, Naeini, &
Kosut, 1996; Deane, Kevrekidis, Karniadakis, & Orszag,
1991; Graham & Kevrekidis, 1991; Park & Cho, 1996;
Shvartsman & Kevrekidis, 1998).
Because we are primarily interested in capturing oscilla-

tory dynamics of the cell population model, it is necessary
to include transient data as well as stationary data. Our ul-
timate goal is to develop a reduced-order model (ROM)
suitable for model-based controller design. The ROM is re-
quired to provide reasonable predictions over a large oper-

ating regime. Consequently, it is necessary to incorporate
simulation data for several parameter values that span the
desired region of operation.

3.3. Bifurcation analysis

In our previous publications (Zhang & Henson, 2001;
Zhang et al., 2002) we have argued that bifurcation anal-
ysis allows more ePcient and insightful analysis of biore-
actor model behavior than is possible with dynamic simu-
lation alone. The same argument applies to comparison of
full-order model (FOM) and reduced-order model behavior.
If a ROM has a bifurcation structure that closely matches
that of the FOM, then the ROM is a good candidate for fur-
ther analysis. It is important to note that bifurcation analysis
only allows investigation of the long-term model dynamics.
Therefore, dynamic simulation is necessary to analyze the
short-term dynamic behavior.
In this paper, only steady state and periodic solutions of

the yeast cell population model are studied. Steady-state
solutions are located using the nonlinear equation solver
NNES. Eigenvalues of the Jacobian matrix are computed at
each steady state to determine the local stability. A steady
state where one or more eigenvalues cross the imaginary
axis is known as a bifurcation point (Kuznetsov, 1995). A
continuation code based on the shooting method is used to
locate periodic solutions and to determine their stability.
The code requires a good initial guess of the state variables
and the oscillation period at a particular operating condi-
tion. Such an initial point is readily obtained for a stable
periodic solution by dynamic simulation. The ODE solver
ODESSA is used for numerical integration. Limit cycles at
di5erent operating conditions can then be found via contin-
uation. Stability of the periodic solutions is determined by
examining the Floquet multipliers of the Poincar<e map.

4. Results and discussion

4.1. Full-order model

In our previous work (Mhaskar et al., 2002), we have
demonstrated via dynamic simulation that the yeast cell pop-
ulation model can predict the coexistence of stable steady
state and stable periodic solutions at the same operating
conditions as has been observed experimentally (Zamamiri,
Birol, & Hjortso, 2001). Figs. 2 and 3 illustrate dynamic
responses of the model for the inputs D = 0:14 h−1 and
Sf=30 g=l starting from two di5erent initial conditions. An
initial distribution that leads to a stable steady-state solution
is shown in the top plot of Fig. 2. As shown in the bottom
plot, the initial distribution is suPciently dispersed for the
oscillations to slowly decay. Note that the Dnal distribution
shown in the top plot is very dispersed as compared to the
initial distribution. A slightly less dispersed initial distribu-
tion that leads to sustained oscillations is shown in the top
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Fig. 2. Transient response of the full-order model decaying to a steady-state solution.
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plot of Fig. 3. In this case, the oscillation amplitude grows
until a stable periodic solution is obtained. Two well deDned
peaks that correspond to daughter and mother cell subpopu-
lations are present in the Dnal distribution. These tests con-
Drm that the model is consistent with experimental observa-
tions that sustained oscillations are intimately related to cell
cycle synchrony (Strassle, Sonnleitner, & Fiechter, 1988)
and the formation of distinct cell subpopulations. Both at-
tractors have signiDcant regions of attraction, as will be
veriDed by the bifurcation analysis results presented below.
Given their similarity, the initial distributions shown in
Figs. 2 and 3 appear to be near the separatrix that divides
the domains of attraction of the two solutions.
A bifurcation diagram for the full-order model is shown

in Fig. 4 where the dilution rate (D) is the bifurcation pa-
rameter and the glucose concentration (G) is chosen as a
representative output variable. The model possesses a single
stable steady-state solution (+) at low dilution rates. As the
dilution rate is increased, a bifurcation (H1) occurs where
the steady-state solution becomes unstable (◦) and a sta-
ble periodic solution with oscillations of the amplitude in-
dicated (–) appears. This Hopf bifurcation is accompanied
by the appearance of large amplitude oscillations. The sta-
ble periodic solution and the unstable steady-state solution
coexist over a large range of dilution rates. As the dilution
rate is increased further, a second bifurcation (H2) occurs

where the periodic solution disappears and the steady-state
solution regains its stability. This Hopf bifurcation is char-
acterized by small amplitude oscillations. The Poincar<e map
indicates that the upper bifurcation is supercritical since all
multipliers lie inside the unit circle, while the lower Hopf
bifurcation is subcritical due to the presence of one Floquet
multiplier outside the unit circle. It also discloses that the pe-
riodic solution branch undergoes a fold bifurcation (F) and
changes its stability when one Floquet multiplier crosses the
unit circle. Note that there is a small range of dilution rates
D∈ (0:135; 0:145 h−1) near the subcritical bifurcation that
supports both stable steady state and periodic solutions. The
domains of attraction of the two solutions are separated by
an unstable periodic solution with oscillations of the ampli-
tude indicated (- - -) and its unstable manifold. This diagram
provides a simple explanation for the dynamic simulation
results presented above as the operating conditions are lo-
cated in this range. It is important to note that our previously
published model without the structured medium description
(Zhu et al., 2000) does not exhibit a subcritical Hopf bifur-
cation. Therefore, the current model represents a signiDcant
improvement because it more faithfully reproduces experi-
mentally observed behavior.
Before performing POD-Galerkin model reduction, it is

useful to investigate the spectrum of the FOM to deter-
mine if such a reduction is expected to be beneDcial; i.e.,
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Fig. 5. Performance of ROMs based on a single data set at D = 0:17 h−1.

if the discretized model has a large number of fast modes
and a small number of slow modes. Fig. 1 shows the spec-
trum of the FOM at an unstable steady-state solution where
D=0:15 h−1 and Sf=30 g=l. The model has a total of 117
eigenvalues, many of which have very large negative real
parts. For clarity, only the 64 eigenvalues which have real
parts greater than −30 are shown in the Dgure. As shown
in the inset, there are also approximately 20 slow modes
corresponding to eigenvalues which have real parts greater
than −0:5. Investigation of the model spectrum at di5er-
ent operating conditions yields similar results. This suggests
that the ROMs derived will require on the order of 20 basis
functions to produce accurate predictions. Also note that the
arrangement of eigenvalues suggests the possible existence
of continuous and discrete spectrum for this problem. The
Hopf bifurcation is clearly associated with discrete spectrum
crossing and results in coherent oscillations of the popula-
tion. The observation of possibly continuous spectrum rel-
atively close to the imaginary axis is worth further explo-
ration since it may have implications for the separation of
time scales in the system.

4.2. Reduced-order model: single data set

Before presenting the ROM results, a few practical is-
sues involved in applying the POD-Galerkin method are

discussed. First, we have found that it is important to scale
the FOM state variables such that they have comparable
magnitude. Since the POD method is concerned only with
the “total energy” in the data ensemble, important variables
with small magnitude may not be adequately reFected in the
ROM in the absence of scaling. In fact, we failed to generate
useful ROMs with unscaled raw data. Second, we have used
the scaled raw data directly for ROM construction. Some
researchers (Deane et al., 1991; Lall et al., 2002). have sug-
gested that the ensemble mean should be subtracted from the
data before model reduction. For a single data set, we have
found that this approach provides no discernible advantage.
Furthermore, the ensemble mean does not have a physi-
cal meaning when multiple data sets at di5erent parameter
values are combined to generate a “global” reduced-order
model. Therefore, we have not subtracted the mean value
from the data ensemble.
To study the e5ectiveness of POD-Galerkin model reduc-

tion, a ROM derived from a single set of transient simula-
tion data at a Dxed operating condition (D = 0:17 h−1 and
Sf = 30 g=l) is Drst studied. The training data set consists
of 600 snapshots of the 117 state variables during the Drst
60 h of the open-loop simulation shown in the Drst sub-
plot of Fig. 5. This data set contains information on both
the transient phase and the fully developed oscillations. A
ROM constructed from this data set is expected to capture
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Fig. 6. Transient response of the 25-PC ROM for D = 0:18 h−1.

both the short-term and long-term dynamics of the FOM. A
variety of ROMs with di5erent numbers of principal com-
ponents (PCs) were constructed and compared to the FOM.
The results are summarized below:

• 6 6 PCs: integrator fails to converge.
• 7–8 PCs: the transient response exhibits large errors, while
the sustained oscillations have an amplitude comparable
to that of the full-order model. The mean value of the
fully developed oscillations has signiDcant o5set.

• 9–16 PCs: integrator fails to converge.
• 18–20 PCs: the ROMs yields reasonably accurate predic-
tions.

• 25+ PCs: the ROMs yields almost perfect predictions.

The need to maintain approximately 20 PCs to obtain an
accurate ROM is not particularly desirable, but it is consis-
tent with the earlier analysis of the model spectrum. The re-
sult that ROMs with 7 or 8 PCs can yield reasonable results
while ROMs with 9–16 PCs fail is surprising. Although
not studied here, additional order reduction may be possible
with more advanced techniques such as nonlinear Galerkin
projection (Aling et al., 1997).
Fig. 5 provides a comparison of two ROMs with 20 and

25 PCs with the FOM. The original 117 state variables are
reconstructed from the ROM simulation results, and the re-

constructed glucose concentration is plotted in the Dgure.
The 25-PC ROM provides a very good match to the FOM,
both in terms of short-term transients and long-term sus-
tained oscillations. The 20-PC ROM not only inaccurately
predicts the short-term dynamics, but it also yields sustained
oscillations with an incorrect period and a signiDcant o5-
set in mean glucose concentration as compared to the FOM.
Phase portraits corresponding to sustained oscillations of
the three models are shown in the lower subplot of Fig. 5
where the glucose concentration (G) and the gas phase CO2

concentration (Cout) are selected as representative variables.
The 20-PC ROM exhibits large errors, while the trajectory
for the 25-PC ROM is almost identical to that of the FOM.
Extensive simulation tests conDrm that ROMs based on 25+
PCs also provide very accurate predictions.
A validation test is performed to evaluate the ability of

the 25-PC ROM to predict dynamic behavior under di5erent
operating conditions. Fig. 6 shows an open-loop simulation
for D = 0:18 h−1 and Sf = 30 g=l. The ROM does not ef-
fectively capture the dynamic behavior of the FOM at this
operating condition. Because the ROM ultimately will be
used for model-based controller design, it is clear that a sin-
gle data set at a Dxed dilution rate will not be satisfactory.
Additional FOM data representing the operating regime of
interest must be collected for the ROM to yield accurate
predictions over a meaningful range of dilution rates.
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Fig. 9. Performance of ROMs outside the training range for D = 0:20 h−1.

0 20 40 60 80 100 120
0.2

0

0.2

0.4

0.6

t (h)

G
 (

g/
L)

FOM
35_PC ROM
40_PC ROM

0 0.5
3

4

5

6

7

8
x 10

 -4

G (g/L)

C
ou

t (
m

ol
/L

)

FOM
35_ PC ROM
40_ PC ROM

Fig. 10. Performance of ROMs outside the training range for D = 0:14 h−1.



Y. Zhang et al. / Chemical Engineering Science 58 (2003) 429–445 441

4.3. Reduced-order model: oscillatory range

Fig. 7 shows a training data set consisting of Dve sets
of transient data obtained from open-loop simulations of
the FOM under di5erent operating conditions that sup-
port sustained oscillations. The data sets are generated by
Dxing Sf at 30 g=l and setting D at Dve di5erent values:
0:15; 0:16: 0:17; 0:18, and 0:19 h−1. Each data set consists
of 400 snapshots of the FOM state variables at di5erent
phases of the simulation where the oscillations have very
small amplitude (100 points), the oscillations are somewhat
developed (100 points), the oscillations are almost fully
developed (100 points) and the oscillations are fully devel-
oped (100 points). Data sets are constructed in this manner
to avoid large data sets that would result from direct sam-
pling of an oscillatory simulation. By including transient
responses and sustained oscillations at di5erent operating
conditions, the derived ROMs are expected to capture the
short-term and long-term dynamics more “globally” than is
possible with a single data set.
Fig. 8 provides a comparison of two ROMs derived from

the data set in Fig. 7 and the FOM for two dilution rates
(D = 0:15, 0:18 h−1) contained within the training data
set. The 40-PC ROM produces an almost perfect match of
the glucose concentration dynamics. The 30-PC ROM pro-
vides satisfactory approximation for D = 0:18 h−1, but it
is unstable for D = 0:15 h−1. Extensive simulation studies
verify that ROMs with 40+ PCs also yield highly accurate
approximation. Figs. 9 and 10 compare the ROM and FOM
responses for two operating conditions outside the range
of the training data set (D = 0:20, 0:14 h−1). The 40-PC
ROM provides reasonably accurate extrapolation, while the
30-PC or 35-PC ROM is not able to accurately reproduce
the FOM dynamics.
Bifurcation analysis allows a more detailed study of the

long-term dynamics of the ROMs. Fig. 11 shows a com-
parison of the one-parameter bifurcation diagrams of the
35-PC and 40-PC ROMs and the FOM. Within the oscilla-
tory range, the unstable steady-state solutions of the 40-PC
ROM are quite close to those of the FOM. The predicted
steady states outside the oscillatory region are less accurate
due to a lack of training data. The amplitudes of the 40-PC
ROM limit cycles match those of FOM quite accurately over
a large range of dilution rates. Furthermore, the 40-PC ROM
correctly predicts the existence of the two Hopf bifurcations
with the lower bifurcation being subcritical and the upper
bifurcation being supercritical. The locations of the two bi-
furcation points are very close to those of the FOM. On the
other hand, the 40-PC ROM predicts a signiDcantly larger
operating space where stable steady state and stable peri-
odic solutions coexist. These results demonstrate that the
40-PC ROM represents a good approximation of the FOM
despite lack of training data outside the oscillatory region.
To achieve better agreement at lower dilution rates within
the oscillatory region and for dilution rates outside the os-
cillatory region, it is necessary to utilize a more complete

training data set. The predictions of the 35-PC ROM are far
less satisfactory. In particular, the 35-PC ROM does not cap-
ture the lower Hopf bifurcation or the existence of multiple
stable solutions. Consequently, this model is useful only in
the upper range of oscillatory solutions.

4.4. Reduced-order model: global behavior

Fig. 12 shows a training data set used to obtain better pre-
dictions of the global FOM behavior. A total of six distinct
data sets, each with 400 snapshots, are utilized. The data
sets are collected at the same feed substrate concentration
Sf = 30 g=l and six di5erent dilution rates D of 0.13, 0.14,
0.16, 0.18, 0.20 and 0:21 h−1 from left to right in the Dgure.
For dilution rates D = 0:13 h−1 and 0:21 h−1 where the
FOM has only one stable steady-state solution, each data
set consists of 300 snapshots of oscillations decaying to the
steady state and 100 snapshots of the steady-state solution
itself. For D = 0:14 h−1 where multiple stable solutions
are supported, the data ensemble contains 200 snapshots
of growing oscillations and sustained oscillations and 200
snapshots of decaying oscillations and the steady-state solu-
tion. For the other three dilution rates where only sustained
oscillations exist, the data ensemble is constructed as in
Fig. 7.
Fig. 13 provides a comparison of the transient responses

of 35-PC and 40-PC ROMs and the FOM at D= 0:18 h−1.
With 40 basis functions retained, the ROM predictions are
very close to those of the FOM. By contrast, the ROM with
35 PCs is not able to approximate the plant dynamics. Fig.
14 shows a comparison of the 40-PC ROM and the FOM at
D=0:14 h−1 for the set of initial conditions shown in Figs.
2 and 3. The FOM initial conditions are mapped into the
reduced-dimensional space using the transformation matrix
P to generate the initial conditions for the ROM. The ROM
captures the convergence to the two di5erent solutions, al-
though the transient responses exhibit some small errors.
Although not shown in the Dgure, it is worth mentioning
that open-loop simulations with the 35-PC ROM lead to in-
tegration failure.
Fig. 15 shows the bifurcation diagrams for 40-PC and

50-PC ROMs and the FOM. The 40-PC ROM provides
very close agreement near the lower bifurcation point, in-
cluding the predicted range of multiple stable solutions and
the predicted steady-state solutions outside the oscillatory
range. This is attributable to utilizing a more global data set
for ROM construction. This improved predictive capability
is accompanied by less accurate predictions near the upper
bifurcation point. In comparison, the 50-PC ROM is slightly
better in predicting the oscillation bounds but less accurate
in locating the lower Hopf bifurcation point and the fold bi-
furcation point of the periodic solutions. Many other tests of
ROMs with di5erent principal components have been per-
formed. The ROMs with higher number of basis functions
showed little improvement in approximating the overall
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Fig. 15. Bifurcation diagram of ROMs constructed from global data set.

bifurcation diagram over the 40-PC ROM. Taking the com-
putational cost into consideration, we believe that the 40-PC
ROM represents a good approximation of the FOM.
Now we provide a few comments on the di5erences be-

tween the 40-PC ROM built from the oscillatory data set
(Fig. 11) and the 40-PC ROM built from the global data set
(Fig. 15). The former model provides more accurate predic-
tion of the upper and lower oscillation limits over a wide
operating range, while the latter model is superior in captur-
ing the locations of the two bifurcation points. These results
are attributable to di5erences between the training data sets
since the approximation capability is highly dependent on
the data used. As the relative weighting of oscillatory data
in the global data set is signiDcantly reduced with the intro-
duction of data outside the oscillatory range, the prediction
accuracy of the oscillation amplitudes is expected to be sac-
riDced. Clearly, a di5erent data set could be constructed to
obtain a ROM which provides better predictions in the os-
cillatory range at the expense of less accurate predictions of
the bifurcations point locations.
These results again emphasize that the POD method is

empirical and data-driven. The training data sets used in this
study are admittedly heuristic, albeit they are chosen ac-
cording to some reasonable guidelines. Therefore, the ROM
obtained cannot be considered as optimal in a practical
sense. Furthermore, the choice of satisfactory ROMs is based
largely on individual judgment. General guidelines include,

but are not limited to short-term versus long-term prediction
capabilities, dimension versus model accuracy and model
accuracy versus model robustness.

5. Summary and conclusions

We have studied model order reduction of a discretized
yeast cell population balance model using a combination of
proper orthogonal decomposition (POD) and Galerkin pro-
jection. The collection of a representative spatiotemporal
data set from which the basis functions of the reduced-order
model (ROM) are constructed was shown to be critical.
Dynamic simulation and bifurcation analysis results demon-
strate that accurate ROMs can be generated with roughly
one-third of the di5erential equations of the full-order
model. The ROMs yield very good short-term and long-term
predictions over a wide range of operating conditions.
Despite the signiDcant dimensionality reduction, accurate
ROMs are composed of approximately 40 nonlinear di5er-
ential equations. Consequently, additional order reduction
methods such as nonlinear Galerkin projection (Aling et al.,
1997) are currently being pursued. In particular, we plan to
explore the interplay of low-dimensionality and the contin-
uous spectrum suggested in Fig. 1. Additional future work
will focus on the use of ROMs for model-based control of
continuous yeast bioreactors.



Y. Zhang et al. / Chemical Engineering Science 58 (2003) 429–445 445

Acknowledgements

The Drst author would like to acknowledge Dnancial sup-
port from the LSU Department of Chemical Engineering.
The third author would like to acknowledge support from the
National Science Foundation. The authors also would like
to acknowledge Prashant Mhaskar for his assistance with
the cell population model.

References

Aling, H., Banerjee, S., Bangia, A. K., Cole, V., Ebert, J. L.,
Emami-Naeini, A., Jensen, K. F., Kevrekidis, I. G., & Shvartsman,
S. (1997). Nonlinear model reduction for simulation and control of
rapid thermal processing. In Proceedings of the American Control
Conference, Albuquerque, NM (pp. 2233–2238).

Aling, H., Ebert, J. L., Naeini, A. E., & Kosut, R. L. (1996). Application
of nonlinear model reduction to rapid thermal processing reactor.
In Proceedings of the International Rapid Thermal Processing
Conference, Amsterdam, Netherland (pp. 356–361).

Armaou, A., & ChristoDdes, P. D. (2000). Wave suppression by nonlinear
Dnite-dimensional control. Chemical Engineering Science, 55,
2627–2640.

Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E., & Orszag, S.
A. (1991). Low-dimensional models for complex geometry Fows:
Application to grooved channels and circular cylinders. Physics of
Fluids, 3, 2337–2354.

Eakman, J. M., Fredrickson, A. G., & Tsuchiya, H. M. (1966). Statistics
and dynamics of microbial cell populations. Chemical Engineering
Progress Symposium Series, 62, 37–49.

Foias, C., Sell, E. S., & Temam, R. (1988). Inertial manifolds for nonlinear
evolutionary equations. Journal of Di7erential Equations, 73,
309–317.

Graham, M., & Kevrekidis, I. G. (1991). Alternative approaches to
Karhunen–Lo<eve decomposition for model reduction and data analysis.
Computers in Chemical Engineering, 20, 1359–1374.

Holmes, P. J., Lumley, L., & Berkooz, G. (1997). Turbulence, coherent
structures, dynamical systems and symmetry. New York, NY:
Cambridge University Press.

Jolly, M. S., Kevrekidis, I. G., & Titi, E. S. (1990). Approximate
inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis
and computation. Physica D: Nonlinear Phenomena, 44, 36–47.

Khalil, H. K. (1996). Nonlinear systems. Upper Saddle River, NJ:
Prentice-Hall.

Kuznetsov, Y. A. (1995). Elements of applied bifurcation theory. New
York, NY: Springer.

Lall, S., Marsden, J. E., & Glavaski, S. (2002). A subspace approach to
balanced truncation for model reduction of nonlinear control systems.
International Journal of Robust and Nonlinear Control, 12, 519–535.

Lorenz, E. N. (1956). Empirical orthogonal functions and statistical
weather prediction. Technical report, Dept. of Meteorology Statistical
Forecasting Project, MIT.

Mhaskar, P., Henson, M. A., & Hjortso, M. A. (2002). Cell population
modeling and parameter estimation for continuous cultures of
Saccharomyces Cerevisiae. Biotechnological Progress, 18, 1010–
1026.

Park, H. M., & Cho, D. H. (1996). The use of Karhunen-Lo<eve
decomposition for the modeling of distributed parameter systems.
Chemical Engineering Science, 51, 81–98.

Parulekar, S. J., Semones, G. B., Rolf, M. J., Lievense, J. C., & Lim, H. C.
(1986). Induction and elimination of oscillations in continuous cultures
of Saccharomyces Cerevisiae. Biotechnology and Bioengineering, 28,
700–710.

Porro, D. E., Martegani, B., Ranzi, M., & Alberghina, L.
(1988). Oscillations in continuous cultures of budding yeasts: A
segregated parameter analysis. Biotechnology and Bioengineering, 32,
411–417.

Shvartsman, S. Y., & Kevrekidis, I. G. (1998). Nonlinear model
reduction for control of distributed systems: A computer-assisted study.
A.I.Ch.E. Journal, 44, 1579–1595.

Sirovich, L. (1989). Low dimensional description of complicated
phenomena. Contemporary Mathematics, 99, 277–305.

Srienc, F., & Dien, B. S. (1992). Kinetics of the cell cycle of
Saccharomyces cerevisiae. Annuals of the New York Academy of
Sciences, 665, 59–71.

Strassle, C., Sonnleitner, B., & Fiechter, A. (1988). A predictive model for
the spontaneous synchronization of Saccharomyces cerevisaie grown
in continuous culture. I. Concept. Journal of Biotechnology, 7, 299–
318.

Strassle, C., Sonnleitner, B., & Fiechter, A. (1989). A predictive model
for the spontaneous synchronization of Saccharomyces cerevisaie
grown in continuous culture. II. Experimental veriDcation. Journal of
Biotechnology, 9, 191–208.

von Meyenburg, H. K. (1973). Stable synchrony oscillations in continuous
culture of Saccharomyces cerevisaie under glucose limitation. In
Chance, B., Pye, E. K., Shosh, A. K., & Hess, B. (Eds.), Biological
and biochemical oscillators (pp. 411–417). New York, NY: Academic
Press.

Zamamiri, A. M., Birol, G., & Hjortso, M. A. (2001). Multiple stable
states and hysteresis in continuous, oscillating cultures of budding
yeast. Biotechnology and Bioengineering, 75, 305–312.

Zhang, Y., & Henson, M. A. (2001). Bifurcation analysis of continuous
biochemical reactor models. Biotechnological Progress, 17, 647–660.

Zhang, Y., Zamamiri, A. M., Henson, M. A., & Hjortso, M. A. (2002).
Cell population models for bifurcation analysis and nonlinear control
of continuous yeast bioreactors. Journal of Process Control, 12,
721–734.

Zhu, G.-Y., Zamamiri, A. M., Henson, M. A., & Hjortso, M. A.
(2000). Model predictive control of continuous yeast bioreactors
using cell population models. Chemical Engineering Science, 55,
6155–6167.


	Nonlinear model reduction for dynamic analysis of cellpopulation models
	Introduction
	Yeast cell population model
	Computational techniques
	Numerical model solution
	Nonlinear model reduction
	Bifurcation analysis

	Results and discussion
	Full-order model
	Reduced-order model: single data set
	Reduced-order model: oscillatory range
	Reduced-order model: global behavior

	Summary and conclusions
	Acknowledgements
	References


