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Abstract

The ability of an age-population balance model to capture experimentally observed oscillatory dynamics of continuous cultures of
budding yeast was investigated through numerical simulations. Experiments with continuous yeast cultures have shown that several
oscillatory modes can occur at the same operating condition, and that the mode attained depends on the start-up conditions. Numerical
simulations of the model did reveal the existence of several stable periodic solutions. However, each occurred over a di3erent range of
dilution rates. Experiments also have shown that the steady state in continuous yeast cultures is stable, even under conditions that allow
oscillatory dynamics. The stability of the steady state of the age population balance model under conditions that allow oscillatory dynamics
was not resolved. The Jacobian matrix at the steady state is highly ill conditioned, with some eigenvalues very close to the imaginary
axis. Using di3erent integration routines to solve the model gave di3erent results with regard to the stability of the steady state, one solver
6nding the steady state to be stable, another 6nding the steady state to be unstable. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Baker’s yeast Saccharomyces cerevisiae is an important
microorganism in many industries including baking, food
manufacturing, brewing and genetic engineering. Continu-
ous cultures of S. cerevisiae can exhibit autonomous and
sustained oscillations under glucose-limited aerobic con-
ditions for a range of operating parameters (Alberghina,
Ranzi, Porro, & Martegani, 1991; Chen, McDonald, &
Bisson, 1990; Chen & McDonald, 1990; Martegani, Porro,
Ranzi, & Alberghina, 1990; MAunch, Sonnleitner, & Fiechter,
1991, 1992a, b; Parulekar, Semones, Rolf, Lievense, &
Lim, 1986; Porro, Martegani, Ranzi, & Alberghina, 1988;
StrAassle, Sonnleitner, & Fiechter, 1988, 1989). Extracellular
and intracellular parameters, such as the concentrations of
evolved carbon dioxide, dissolved oxygen, glucose, ethanol,
pH-controlling agent, storage carbohydrates, protein con-
tent, and cell mass as well as the budding index, exhibit
oscillatory behavior. The oscillations are associated with a
marked cell-cycle synchronization. These oscillations are
referred to as cell-cycle dependent (Keulers, Satroutdinov,
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Suzuki, & Kuriyama, 1996) as opposed to other types of
observed oscillations that do not result in cell-cycle syn-
chrony (Keulers et al., 1996; Keulers, Suzuki, Satroutdi-
nov, & Kuriyama, 1996; Goldbeter, 1996; Satroutdinov,
Kuriyama, & Kobayashi, 1992). In most situations, control
issues arise due to these oscillations as they adversely af-
fect the stability and productivity of bioreactors (Martegani
et al., 1990; Porro et al., 1988; Zhu, Zamamiri, Henson, &
HjortsH, 2000). In some situations, however, it might be de-
sirable to induce and stabilize oscillations to increase the
production of metabolites that are produced during a certain
phase of the cell cycle (Zhu et al., 2000).
Many experimental studies have been conducted to in-

vestigate the cause of the autonomous oscillations and
its stabilizing mechanisms (Alberghina et al., 1991; Chen
et al., 1990; Chen & McDonald, 1990; Martegani et al.,
1990; MAunch et al., 1991, 1992a, b; StrAassle et al., 1988,
1989; Keulers et al., 1996; Cazzador, Mariani, Martegani,
& Alberghina, 1990). Based on these experiments, numer-
ous conceptual and mathematical models were proposed
to describe the oscillations (Martegani et al., 1990; Porro
et al., 1988; StrAassle et al., 1988, 1989; Cazzador et al.,
1990; HjortsH & Nielsen, 1994, 1995; Jones & Kom-
pala, 1999; Kompala, 1999). The proposed models can be
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generally classi6ed into two categories: segregated mod-
els in which cell-cycle dynamics interact with medium
components to cause the oscillations and stabilize the
cell-cycle synchrony; and distributed, metabolic models in
which bifurcation of metabolic kinetics cause the observed
oscillations.
Recent experimental data from our lab (Zamamiri, Birol,

& HjortsH, 2001) indicate that di3erent policies of chemo-
stat start-up result in di3erent 6nal dynamical states. Two
oscillatory states and a steady state were achieved at similar
operating condition in three di3erent experiments. These
observations are not explained by models that oscillate
through a Hopf bifurcation; in fact, there are no published
distributed models known to us that can explain these ob-
servations. This leaves segregated mechanisms as possible
explanations of these dynamics. The results presented in this
paper do not allow one to draw conclusions about the right
kind of model to be used, whether structured, distributed or
segregated, because one cannot predict whether structured,
distributed models will be discovered which are able to
replicate the experimentally observed dynamics. Evidently,
a “true” model will be a richly structured, segregated model
in which the breakage and kinetic functions that appear in
the population balance are modeled in terms of the cellular
metabolism. Formulation of such models is a challenging
task and, once formulated, obtaining their solutions in a rea-
sonable time will be diNcult with current computer power.
It is, therefore, reasonable to ask, as is done in this paper,
whether the simpler unstructured, segregated models can
replicate the experimentally observed yeast dynamics.
In this work, an age distribution model is investigated for

its ability to model the observed multiplicity of stable states.
The aim of this study is not to obtain a quantitative 6t of the
model to the experimental data, but to determine whether
the bifurcation dynamics of the age distribution model can
reproduce the experimentally observed dynamics. A com-
plete dynamics analysis of a population balance model is a
very challenging task. The models have in6nite dimensional
state spaces so the basin of attraction of di3erent attractors
can be objects in in6nite dimensional spaces and the models
include kinetic functions that must be modeled or for which
biologically reasonable expressions must be assumed. In this
study, we investigate the existence of multiple stable states
and explore the e3ect that changing the shape of the tran-
sition probabilities have on the dynamics and bifurcation
behavior of the model. The model is based on population
balance equations (PBE) coupled with a substrate balance.
Since analytical solutions of population balance models for
microbial growth can only be obtained under very restrictive
simplifying assumptions (HjortsH & Nielsen, 1994, 1995;
Liou, Srienc, & Fredrickson, 1997), in this work a numer-
ical solution of the model was obtained by the method of
orthogonal collocation on 6nite elements (Rice & Do, 1995;
Finlayson, 1980). The model predicts several oscillatory at-
tractors, each of which is characterized by a unique structure
of synchronized subpopulations of cells. Preliminary model

simulations show that at some operating conditions, both a
steady-state solution and a stable periodic solution exists,
the attainment of either depends on the initial age distribu-
tion. However, the stability of the steady-state solution is
questionable as will be discussed later. The simulations did
not yield conditions that allowed the existence of two os-
cillatory states and one steady state as we have observed
experimentally (Zamamiri et al., 2001).
The rest of the paper is organized in three sections. In

Section 2, model development and the numerical solution
method are reviewed. The results of model simulations and
bifurcation analysis are discussed in Section 3. Finally, a
summary is given in Section 4.

2. Model development and numerical solution method

2.1. Model development

Although a mathematical description of cell popula-
tions has been introduced more than three decades ago by
Fredrickson, Ramkrishna, and Tsuchiya (1967), little appli-
cation is found in biochemical engineering literature. There
are two reasons that hindered the full utilization of pop-
ulation balances. First is the fact that the resulting partial
integro-di3erential equations are diNcult to solve. Second
is the fact that application of the theory requires knowl-
edge of three physiological functions that are diNcult to
determine experimentally (Srienc, 1999). These functions
are the single-cell growth rate, the transition rates between
di3erent cell compartments, and the partitioning function
which describes how a cell property (e.g. mass) of a divid-
ing cell is partitioned among the two newborn cells (Srienc,
1999). In other particulate systems, the transition and par-
titioning functions are often called the breakage functions
(Ramkrishna, 2000).
In the light of these facts, the use of age distribution

models brings about several advantages that are worth men-
tioning. Unlike population balance models based on mass
which give rise to partial integro-di3erential equations,
models based on age are partial di3erential equations. This
happens because all newborn cells have age zero and the
integral term for the rate of formation of new cells appear
as a boundary condition (the renewal equation) rather than
in the population balance itself. Moreover, in age distri-
bution models, two of the three physiological functions
mentioned above need not be determined experimentally.
First, the single-cell growth rate is simply unity and second,
there are no partitioning functions since all cells are born
at age zero. The transition functions, however, remains to
be estimated. These functions are dependent on both the
cell state (e.g. age or mass) and the environmental con-
ditions. For modeling purposes, environmental conditions
can be lumped in a single variable such as the substrate
concentration. In the current modeling approach, no chem-
ical structure is assumed for either the biophase or the
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environment. Therefore, the model under study is a seg-
regated unstructured model. This type of model is chosen
because it is probably the simplest model form that is able
to predict periodic behavior of the cell population and its
relation to cell-cycle synchrony (HjortsH & Nielsen, 1994,
1995).
The age distribution model is based on the following sim-

pli6ed cell cycle of budding yeast. The cycle is character-
ized by a critical cell mass mc. Cells with mass greater than
mc are called mothers, while cells of lesser mass are called
daughters. The point of the cell cycle when a cell reaches mc
is called the “Start” (StrAassle et al., 1988; Hartwell & Unger,
1977; Lord & Wheals, 1980). Cells at the start grow for a
period of time, Up, before the emergence of a bud. Bud-
ded cells continue growing until the division age is reached.
This period is referred to as budded phase period, B. At divi-
sion, the bud separates forming a new daughter cell and the
original mother cell is returned to the “Start” point of a new
mother. In budding yeast, division is asymmetric as the new-
born daughter cell is born at a smaller mass than the mother.
Asymmetric division approaches symmetric division only
at maximum growth rate (Hartwell & Unger, 1977; Lord
& Wheals, 1980). Daughter cells grow until they reach mc
at which point they are considered as new mothers. Mother
cells at the “Start” point have an age of zero. They grow
until they reach the division age, at which point a mother
cell divides into a daughter cell and a newborn mother cell,
both at age zero. Daughter cells grow until they reach the
transition age, the point at which they become mothers and
their age is reset to zero.
This cell cycle is simpli6ed in the sense that there is

no distinction between budded and unbudded mother cells.
This simpli6cation should not impose a problem unless the
environmental conditions become severely poor. Under poor
conditions, unbudded mother cells rest in their current states
and do not bud until the growth conditions improve. On the
other hand, budded mother cells are committed to divide,
and therefore, they grow for a speci6c period of time, divide
and then rest at their newborn states.
The current model is an enhanced version of the age dis-

tribution model originally proposed by HjortsH and Nielsen
(1995). In the former model, both transition and division
events occur at discrete ages (referred to as control points),
while in the current model both events are modeled by prob-
ability functions. The enhancement make the model more
biologically plausible since it accounts for individual di3er-
ences between cells which cause the transition and division
to occur over ranges of ages rather than at speci6c points.
Another enhancement of the model is the incorporation of
the substrate dependence of the transition probabilities by an
e3ective substrate modeled as a second-order delay as op-
posed to a hard delay. The delay is needed to account for the
fact that cell metabolism does not respond instantaneously
to environmental changes. An e3ect similar to having a hard
time delay can still be achieved by increasing the order of
delay in the 6ltered signal.

Using the formulation of Fredrickson et al. (1967), the
PBE for the age distributions of mothers and daughters, Wm
and Wd, respectively, in a CSTR with dilution rate D are:

@Wm(a; t)
@t

+
@Wm(a; t)
@a

=−[D + D(a; S(2))]Wm(a; t);
(1)

@Wd(a; t)
@t

+
@Wd(a; t)
@a

=−[D + T (a; S(2))]Wd(a; t);
(2)

where a is the cell age and t is the time. The functions
D(a; S(2)) and T (a; S(2)) are the division and transition in-
tensity functions, respectively. The division intensity func-
tion is de6ned such that D(a; S(2)) dt is the probability that
a mother cell with age a will divide in the next dt time inter-
val. Similarly, T (a; S(2)) dt is the probability that a daugh-
ter cell with age a will become a mother in the next dt time
interval. S(2) is the second-order 6ltered-substrate concen-
tration, also referred to as the e3ective substrate concentra-
tion. To account for the inSux of cells due to cell birth or
cell transition, two more equations are needed. These equa-
tions are the renewal equations:

Wm(0; t) =Wm0(t) =
∫ ∞

0
D(a; S(2))Wm(a; t) da

+
∫ ∞

0
T (a; S(2))Wd(a; t) da; (3)

Wd(0; t) =Wd0(t) =
∫ ∞

0
D(a; S(2))Wm(a; t) da: (4)

The division and transition intensity functions are assumed
to have the forms:

D(a; S(2))

=



0; a6 acd(S(2));

�d(a−acd(S(2)))nd ; acd(S(2))¡a6acd(S(2))+�d;
Dmax ; a¿acd(S(2)) + �d;

(5)

T (a; S(2))

=



0; a6 act(S(2));

�t(a−act(S(2)))nt ; act(S(2))¡a6 act(S(2))+�t ;
Tmax ; a¿act(S(2)) + �t ;

(6)

where acd(S(2)) and act(S(2)) are the critical ages of divi-
sion and transition, respectively, which are the ages beyond
which cell division or cell transition commence. Dmax and
Tmax are the maxima of the division and transition intensity
functions, respectively. �d, nd, �d, �t , nt and �t are constant
model parameters. �d and �t are chosen such that the inten-
sity functions are piecewise continuous, giving rise to the
expressions

�d =
(
Dmax
�d

)1=nd
and �t =

(
Tmax
�t

)1=nt
:
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The critical ages of division and transition in this model
were assumed to have analogous forms to the ages of divi-
sion and transition functions in the original model (HjortsH
& Nielsen, 1995). However, the delayed substrate concen-
tration was replaced by the e3ective substrate concentration
as follows:

acd(S(2)) = �0 +
�1
S(2)
; (7)

act(S(2)) =
�2
S(2)
: (8)

These model equations were chosen because they are sim-
ple functional forms that reSect two important physiological
phenomena. First, the division age typically increases when
substrate concentration decreases, reSecting a lower popula-
tion growth rate at lower substrate concentrations. Second,
at the highest possible growth rates, which typically occur
at high substrate concentrations, the transition age become
so small that the division e3ectively becomes symmetric
(Hartwell & Unger, 1977; Lord & Wheals, 1980). The de-
layed response is accounted for by the use of the e3ective
substrate concentration instead of the actual concentration.
�0, �1, and �2 are constant model parameters.
The substrate balance equation is written as

dS
dt
=D(Sf − S)− 1

�m(S)

∫ ∞

0
Wm(a; t) da

− 1
�d(S)

∫ ∞

0
Wd(a; t) da; (9)

where S is the actual substrate concentration, Sf the feed
substrate concentration and �m(S) and �d(S) the yield coeN-
cients for mothers and daughters, respectively. The integrals
appearing in the second and third terms on the right-hand
side of Eq. (9) are the zeroth moments of the mother’s and
daughter’s cell age distributions, which by de6nition are the
mother’s and daughter’s cell number concentrations, respec-
tively. The yield coeNcients are assumed to have the form

�m(S) =
Km + S
�mS

; (10)

�d(S) =
Kd + S
�dS

; (11)

where Km, �m, Kd and �d are constant parameters. The yield
coeNcients are the rate of increase in cell age divided by
the rate of substrate consumption. The rate of increase in
cell age is unity and the �’s are, therefore, the inverse of the
rate of substrate consumption by cells of age a. Modeling
the rate of substrate consumption by the commonly used
Monod rate expression, Eqs. (10) and (11) were obtained.
The 6ltered substrate concentrations are written as

dS(1)

dt
= �(S − S(1)); (12)

dS(2)

dt
= �(S(1) − S(2)); (13)

Table 1
Model parameters

Parameter Value

Kd 20:0 g=l
Km 20:0 g=l
� 2:5 h−1
�d 4.7e-11 g=h
�m 4.7e-11 g=h
�0 1:5 h
�1 0:5 h g=l
�0 3:0 h g=l

Table 2
Parameters of the transition and division intensity functions

Moderate intensity functions

T1 D1

nT 4 nD 4
�T 300 h−5 �D 300 h−5
Tmax 20 h−1 Dmax 20 h−1
�T 0:51 h �D 0:51 h

Sharp intensity functions

T2 D2

nT 3 nD 3
�T 800 h−4 �D 800 h−4
Tmax 20 h−1 Dmax 20 h−1
�T 0:29 h �D 0:29 h

where S(1) is the 6rst-order 6ltered-substrate concentration
and � the adaptivity constant which determine how rapidly
cells respond to environmental changes (Stephens & Lyber-
atos, 1987).
The values of the model parameters are given in

Table 1. Two sets of transition and division intensity func-
tions were used in model simulations and system analysis.
These sets of intensity functions di3er only in the values of
their parameters as shown in Table 2. The intensity func-
tions are referred to as moderate and sharp depending on
the size of the age interval over which the function increase
from 0 to its maximum. The parameter values were not
obtained by a 6t to the experimental data but were found
by trial and error to produce biologically reasonable results.

2.2. Numerical solution

The current model consists of a coupled set of nonlin-
ear algebraic, ordinary di3erential, and partial di3erential
equations. An analytical solution of the model is not possi-
ble, and therefore, numerical solution is needed to perform
model simulations and bifurcation analysis. Possible candi-
date numerical methods are the method of 6nite di3erences
(MFD) and the method of weighted residuals (MWR) (Rice
& Do, 1995; Finlayson, 1980). In general, pure 6nite di3er-
ences schemes do not result in satisfactory solutions for PBE
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models due to various reasons, such as numerical instabili-
ties, low accuracy, and lack of dissipativity, which call for
the use of special “hybrid” MFD (Mantzaris, Liou, Daou-
tidis, & Srienc, 1999). The use of the method of weighted
residuals for solving mass PBE models was illustrated by
Subramanian and Ramkrishna (1971). The method of or-
thogonal collocation is a variation of MWR. In this method,
the model is approximated by coupled, ordinary di3erential
equations (ODEs) for the values of the dependent variable
at the collocation points. The method is easy to apply and
program for this problem and the solution at any point can
be obtained from the values of the dependent variables at
the collocation points. The method of orthogonal colloca-
tion is also superior to 6nite di3erences in terms of stability
because it uses the information from all collocation points,
instead of just neighboring points, to estimate the derivatives
at each point (Rice & Do, 1995). In this work, the method
of orthogonal collocation on 6nite elements was employed
to obtain the numerical solution desired. In orthogonal col-
location on 6nite elements, the domain of the problem is di-
vided into subdomains (called elements) and the method of
orthogonal collocation is applied on each subdomain. This
variation is particularly useful for problems with sharp vari-
ations in the distribution of states (Rice & Do, 1995) such
as our problem.
The method of orthogonal collocation on 6nite elements

was found to provide stable and robust solutions of the age
distribution model. The method divides the mother’s and
daughter’s age domains into elements and further discretizes
the elements into a number of internal collocation points
and two boundary points. From this point onwards, we will
refer to all the internal collocation points and the boundary
points simply as collocation points, unless otherwise speci-
6ed. The partial derivative of Wm or Wd with respect to age
at a collocation point in a speci6c element is approximated
by a linear combination of the age distribution values at all
the collocation points in that element, except for the lower
boundary of the 6rst element in each domain. The elements
are constructed such that the lower boundary of the 6rst el-
ement starts at age zero, and therefore, at these two bound-
aries the renewal equations are applied. Consequently, the
method approximates the PBEs by coupled sets of ODEs
for the values of the distribution of states at the colloca-
tion points. Integral terms are approximated by the Gaus-
sian quadrature (Finlayson, 1980). The resulting nonlinear
ODEs in vector–matrix notation have the form

d
dt
Wm =−AmWm − DWm − �DWm −Wm0Am0; (14)

d
dt
Wd =−AdWd − DWd − �TWd −Wd0Ad0; (15)

where Wm and Wd are the column vectors of the mother’s
and daughter’s age distribution values at each collocation
point, starting from the second collocation point in each

domain. The 6rst collocation points in the mother’s and
daughter’s domains are am0 = 0 and ad0 = 0, respectively.
Am and Ad are the 6rst derivative weight matrices in the
mother’s and daughter’s domains, respectively. �D and �T
are the diagonal matrices of the division and transition inten-
sity functions. �D is de6ned such that the element �D(i; i) is
D(ami; S(2)).�T is de6ned in a similar manner in the daugh-
ter’s domain. Wm0 and Wd0 are the mother’s and daughter’s
age distribution values at am0 and ad0, respectively. Am0 is a
column vector that accounts for the contribution of Wm0 to
the derivatives in the 6rst 6nite element in the mother’s do-
main and Ad0 accounts for the corresponding contribution
of Wd0 in the 6rst element in the daughter’s domain.
The renewal equations are written as

Wm0(t) =
Nm∑
i=1

wgm(ami)D(ami; S(2))Wm(ami; t)

+
Nd∑
i=1

wgd(adi)T (adi; S(2))Wd(adi; t); (16)

Wd0(t) =
Nm∑
i=1

wgm(ami)D(ami; S(2))Wm(ami; t); (17)

where Nm and Nd are the total number of collocation points
in the mother’s and daughter’s domains, respectively. ami
and adi are the ages at collocation point i in the mother’s
and daughter’s domains, respectively. wgm and wgd are the
vectors of quadrature weights in the mother’s and daughter’s
domains, respectively. The substrate balance is written as

dS
dt
=D(Sf − S)− 1

�m(S)

Nm∑
i=0

wgm(ami)Wm(ami; t)

− 1
�d(S)

Nd∑
i=0

wgd(adi)Wd(adi; t): (18)

The rest of the model equations are unchanged.

2.2.1. Model simulations
Model simulations were performed using MATLAB. The

model equations were solved using ODE15s, a sti3 ODE
solver. An analytical expression of the Jacobian matrix was
supplied to the solver. In the previous work, we have used
a mesh of 6xed equal-sized elements to solve a mass PBE
model of budding yeast using the method of orthogonal col-
location on 6nite elements (Zhu et al., 2000). In the current
study, dynamic meshes of 15 elements in the mother’s do-
main and 18 elements in the daughter’s domain were used.
Each element had 3 internal collocation points obtained as
the roots of the appropriate Jacobi polynomials (Rice & Do,
1995). The total number of collocation points in the mother’s
domain is Nm=61 and in the daughter’s domain is Nd=73.
The state vector of the resulting ODE model consists of
the cell age distribution at each collocation point as well as
the substrate concentration and the 6rst- and second-order
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6ltered-substrate concentrations. In the placement of the el-
ements, each domain is divided into three subdomains. The
6rst, subdomain 1, extends from a= 0 to (a= ac − 0:2) or
(a= ac− 0:3) h, where ac is the critical age of either transi-
tion or division. Subdomain 2 starts at the end of subdomain
1 and extends for 1:4 h. Finally, subdomain 3 starts at the
end of subdomain 2 and extends for 1 h. The distribution of
states changes most rapidly in subdomain 2 as the intensity
functions sharply increase from zero to their maxima. There-
fore, at least one-third of the elements are stacked in subdo-
main 2. All the transition and division events are expected
to take place in subdomain 2. However, one 6nite element
is placed in subdomain 3 to take care of any remaining cells
as an extra precaution. The rest of the elements are placed in
subdomain 1. If the element size in subdomain 1 is smaller
than that in subdomain 2, some elements are transferred to
subdomain 2, where they are needed most. The positioning
of the elements is not 6xed. The critical ages are checked
every one virtual hour in each domain. If in either domain,
the current value of the critical age deviates more than 0:1 h
from its value 1 h in the past, the position of the elements
in that domain will be altered accordingly. Performing this
check more frequently than once every virtual hour resulted
in much longer execution times with no clear bene6ts. The
values at the new collocation points are obtained using La-
grange interpolating polynomials in each element (Chapra
& Canale, 1998). If the new age domain is larger than the
old one, the age distribution is set to zero at the new age
collocation points that exceed the range of the old domain.

2.2.2. Bifurcation analysis
The bifurcation analysis was done using code provided

by Professor Yannis Kevrekidis, (Princeton). The shooting
method was used to perform the continuation steps in the
bifurcation analysis. The continuation code was written in
FORTRAN and it uses the sti3 ODE solver ODESSA with
explicit simultaneous sensitivity analysis to solve the ODE
model. An analytical expression of the Jacobian matrix was
also supplied to the ODE solver. For every oscillatory at-
tractor, the code requires a guess of the initial age distribu-
tion and the period, which were obtained from MATLAB
simulation results. The same number of elements and inter-
nal collocation points as used in model simulations are used
here. For the bifurcation analysis, however, simpler 6xed
meshes were utilized. The end of each age domain was 6xed
and the elements were distributed such that the last hour of
each domain was a single element, and the remaining ele-
ments were equally divided in the rest of the domain.

3. Results and discussion

3.1. Simulation results

Oscillatory solutions occur less readily in the current
model than in the simpli6ed control point model (HjortsH &

Nielsen, 1995) due to the dispersive e3ect of the transition
and division intensity functions. In the current study, two
sets of intensity functions were investigated, the parameters
of which are given in Table 2. The sharpness of the func-
tions are related to the rate at which the function increases
from zero to its maximum value. Since the maximum values
for all the intensity functions used were chosen to be the
same, the sharpness of these functions are directly related
to the parameters �T and �D. The smaller the values of �T
and �D, the sharper are the transition and division intensity
functions. Stable oscillatory solutions were still possible
even in the case of moderate transition and division inten-
sity functions T1 and D1. However, further increase in
�T and �D led to the loss of periodic solutions.
Using the moderate intensity functions T1 and D1, two

periodic attractors were found at the feed substrate concen-
tration Sf=30 g=l. By a periodic or oscillatory attractor we
mean the set of oscillatory solutions which are character-
ized by a speci6c subpopulations structure in the mother’s
and daughter’s domains. The N :M attractor is the set of os-
cillatory solutions with N subpopulations in the mother’s
domain, as indicated by N local maxima in the mother’s
age distribution, andM subpopulations in the daughter’s do-
main (HjortsH & Nielsen, 1994, 1995). Fig. 1 depicts the
age distributions of 1:2 and 1:3 attractors. The periodic at-
tractors were found in two separate regions of dilution rate
(D) values. Typical oscillation patterns in the substrate con-
centration (S) and cell number concentrations (Nc) for the
1:2 attractor at D=0:15 h−1 are shown in Fig. 1. The 6gure
also shows the corresponding oscillations at D=0:095 h−1,
which belong to the 1:3 attractor. Naturally, the mother’s
and daughter’s age distributions associated with the oscilla-
tory patterns shown in Fig. 1 are time varying. However, a
representative snapshot of the age distributions in each case
is shown below their respective patterns.
The continuation code utilizing the shooting method was

employed to determine the whole range of limit cycles in a
given attractor. The code requires an initial age distribution
and a reasonably “good” guess of the period, which were
readily available from MATLAB simulations. The results
obtained from the continuation code were in good agree-
ment with those obtained from MATLAB simulations. The
maximum and minimum values of the periodic solutions of
S and Nc obtained from MATLAB simulations at discrete
values of D are shown as (•) in Fig. 2 for the 1:2 and 1:3
attractors. The dashed lines in Fig. 2 represent the results
obtained from the continuation code and the solid line rep-
resents the steady-state pro6le. At steady state, the equa-
tions of the PBE model become a set of nonlinear algebraic
equations coupled with two ODEs. With the type of ex-
pressions used in this analysis, an analytical solution for the
steady-state pro6le, which is shown in Fig. 2, was possible.
It was found that all the system variables oscillate around
their steady-state values.
When the simulations were performed using the sharp

intensity functions T2 and D2, the regions of D



A. M. Zamamiri et al. / Chemical Engineering Science 57 (2002) 2169–2181 2175

age [hr]

0 1 2 3 4 5A
ge

 D
is

tr
ib

ut
io

n 
of

 D
au

gh
te

rs
[1

e1
2/

L 
hr

]

0

1

2

age [hr]

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

age [hr]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

A
ge

 D
is

tr
ib

ut
io

n 
of

 M
ot

he
rs

[1
e1

2/
L 

hr
] 

0

1

2

age [hr]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

1

2

0 5 10 15 20 25 30

C
el

l N
um

be
r 

C
on

c.
 [1

e1
2/

L]

2.5

2.7

2.9

3.1

3.3

3.5

0 5 10 15 20 25 30
3.5

3.7

3.9

4.1

4.3

4.5

Time [hr]

0 5 10 15 20 25 30

S
ub

st
ra

te
 C

on
c.

 [g
/L

]

A
ge

 D
is

tr
ib

ut
io

n 
of

 D
au

gh
te

rs
[1

e1
2/

L 
hr

]
A

ge
 D

is
tr

ib
ut

io
n 

of
 M

ot
he

rs
[1

e1
2/

L 
hr

] 
C

el
l N

um
be

r 
C

on
c.

 [1
e1

2/
L]

S
ub

st
ra

te
 C

on
c.

 [g
/L

]

0.60

0.63

0.66

0.69

0.72

0.75

Time [hr]

0 5 10 15 20 25 30
0.25

0.28

0.31

0.34

0.37

0.40

(a) 1:2 Attractor (b) 1:3 Attractor

(a-1)

(a-2)

(a-3)

(a-4)

(b-1)

(b-2)

(b-3)

(b-4)

Fig. 1. Typical oscillation patterns associated with the 1:2 attractor (a) and 1:3 attractor (b). At Sf=30 g=l, and D=0:15 h−1 a periodic solution that belongs
to the 1:2 attractor is obtained. Oscillations are observed in all system parameters such as cell number concentration (a-1) and substrate concentration
(a-2). The 1:2 attractor is characterized by one subpopulation of mothers (a-3) and two subpopulations of daughters (a-4). At D=0:095 h−1, a periodic
solution that belongs to the 1:3 attractor is obtained. Oscillations are also observed in all system parameters such as cell number concentration (b-1) and
substrate concentration (b-2). The 1:3 attractor is characterized by one subpopulation of mothers (b-3) and three subpopulations of daughters (b-4).

supporting the 1:2 and 1:3 attractors expanded and shifted
towards higher values of D. The ranges of D supporting
the 1:2 attractor under the moderate and sharp intensity
function conditions are compared in Fig. 3. In addition to
the original two attractors a third 1:1 attractor was found.
The bifurcation diagram representing the 1:1 and 1:2 attrac-
tors is shown in Fig. 4. The discovery of the 1:1 attractor
is not surprising. It has the simplest structure of the three
attractors, and intuitively it was expected to be the easiest
attractor to locate. However, all our attempts to locate the
1:1 attractor using the moderate T1 and D1 failed. In
fact, the 1:1 attractor may not exist when this moderate

division intensity is used. The locus of the 1:1 attractor
was found at higher dilution rates than the other attractors,
and at higher values of dilution rate, the average substrate
and e3ective substrate concentrations are also higher. This
results in smaller averages for the critical ages of division
and transition, acd and act , than at lower values of the di-
lution rate. The range of ages over which the mother and
daughter distribution functions, Wm and Wd, are signi6-
cantly di3erent from zero is directly related to acd and act ,
and both ranges are smaller at higher dilution rates than at
lower dilution rates. Consequently, the intensity functions
become relatively more dispersive at higher dilution rates,
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eliminating stable oscillatory solutions. In other words, the
size of �T and �D is only a relative measure of the sharpness
of T and D, and hence the “sharpness” of T and D
with 6xed �T and �D is not the same in all attractors. The

sharpness of the intensity functions should be thought of as
the ratio of �T and �D to the age domains of Wd and Wm,
respectively. Of course, this reasoning is only valid when
the transition intensity functions, Eqs. (5) and (6), are not
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functions of the dilution rate, substrate or e3ective substrate
concentrations.
The e3ect of the feed substrate concentration (Sf) on the

range of D supporting the oscillatory attractors was investi-
gated. Three levels of Sf were studied: 15, 30 and 60 g=l. It
was found that the ranges of D at which the attractors exist
decrease with increasing Sf. As a matter of fact, we were
unable to locate the 1:3 attractor at Sf=60 g=l. Fig. 5 shows
the e3ect of increasing Sf on the domain of the 1:2 attractor
in terms of D. The upper bifurcation point of D is almost the
same in all three cases. However, periodic dynamics start to
appear at lower values of D at lower Sf. It should be noted
that increasing Sf does not a3ect the steady-state value of
S, and neither does it a3ect the average substrate concen-
tration for an oscillating culture. Therefore, the decrease in
the domain of the 1:2 attractor is not due to any change in
the values of the critical ages or the relative sharpness of
the intensity functions. The e3ect of increasing the feed sub-
strate concentration is directly translated into an increase in
the steady-state value of the cell number concentration, or
the average cell number concentration for an oscillating cul-
ture. In this case, the reduction of the 1:2 attractor domain
is attributed solely to the change in operating conditions.

The results obtained from model simulation indicate the
existence of multiple oscillatory attractors, which has been
con6rmed experimentally. In our experiments, however, the
di3erent attractors have been observed at similar operating
conditions, while in simulations the ranges of D supporting
the di3erent attractors do not intersect. However, it has been
demonstrated that the domains of the oscillatory attractors
are strong functions of both model parameters and operating
conditions. Therefore, reproduction of experimental obser-
vations is conceivable given suNcient time and computing
power to adjust the model parameters and transition proba-
bilities.

3.2. Bifurcation analysis results

In our e3ort to investigate the bifurcation dynamics of
continuous yeast cultures, an experiment was performed in
which the periodic dynamics of an oscillating chemostat
culture was quenched by slowly reducing the dilution rate
to a value that did not support oscillations. The chemostat
was run for 2 days at the new conditions, then the dilution
rate was increased slowly (so as to keep the system at a
quasi-steady state) to its original value. The non-oscillatory
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Fig. 6. Bifurcation dynamics of budding yeast investigated experimentally (a) indicate that an oscillatory state and a steady state can be achieved at the
same operating conditions. Model simulations (b) predict the same bifurcation mechanisms. In the top 6gure, the actual response of CO2 concentration
in the exit gas stream (—) to set point changes in the dilution rate (- -) is shown. In the bottom 6gure, the corresponding simulated response of substrate
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state was preserved throughout the ramp, and it was sus-
tained at the original dilution rate for almost three more
days. A simulation of the experiment was performed and
the results obtained were qualitatively similar to those ob-
tained experimentally. Both experimental data for the CO2

in the outlet gas stream and the corresponding model sim-
ulations in terms of substrate concentration are shown in
Fig. 6.
From nonlinear system dynamics viewpoint, since the

model predicts the existence of a stable limit cycle that
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encircles a stable steady state, one expects an unstable limit
cycle somewhere between the two stable solutions (Khalil,
1996). A powerful feature of the continuation code is its
ability to 6nd both stable and unstable limit cycles. At the
end points of the dilution rate region within which oscilla-
tory attractors exist, the stable limit cycle shrinks and ap-
proaches the steady state. If an unstable limit cycle exists
between the stable limit cycle and the stable steady state, the
continuation code is expected to 6nd it near those points. In
all the attractors studied, attempts of 6nding such unstable
limit cycles were unsuccessful. However, when the ampli-
tude of the oscillations diminish as the limit cycles approach
the steady state, it becomes increasingly tedious and time
consuming to perform the analysis. At these points, smaller
step sizes should be speci6ed among other adjustments to
the code parameters. The stable limit cycle keeps getting
smaller until it collapses to the steady state. The failure of
the continuation code in 6nding the unstable limit cycles
brings us back to examine the original assumption that the
steady state is indeed stable.
Model simulations with MATLAB show that the system

remains at steady state for hundreds of virtual hours when
the initial condition is the analytical steady-state distribu-
tion. Further simulations indicated that the system still ar-
rives to the steady-state solution even if small disturbances
were introduced to the initial steady-state distribution. These
simulations indicate the stability of the steady state, and the
existence of at least a small region of attraction for this
state. However, the eigenvalues of the Jacobian matrix tell
another story. When the eigenvalues of the Jacobian ma-
trix were evaluated at Sf = 30 g=l; D = 0:14 h−1 and the
corresponding steady-state distribution, a pair of the eigen-
values was found in the right half-plane. The pair was very
close to the imaginary axis and the value of the real part,
0.0090, was very small compared to the real part of small-
est negative eigenvalue, −55:0729. The condition number
of the Jacobian matrix also was very large, 1:565 × 1027,
indicating that the Jacobian matrix was ill conditioned. To
investigate whether the discretizing process has an e3ect
on the position of the pair of eigenvalues with positive
real part, we have further discretized the system using 22
elements in the mothers’ domain and 25 elements in the
daughters’ domain with 3 internal collocation points in each
element. One pair of positive eigenvalues was found with
a very small real part of 0.0095 compared to the real part
of the smallest eigenvalue of −75:2900. Once again, the
Jacobian matrix was found to be ill conditioned. Consider-
ing the small magnitude of the positive eigenvalues, the ill
condition of the Jacobian matrices and the error involved
in determining their eigenvalues, one can only have lim-
ited con6dence in the Jacobian matrix analysis. The pair
of positive eigenvalues might actually lie on the imagi-
nary axis, in which case the stability of the system cannot
be inferred from the Jacobian matrix but requires analy-
sis of the higher order terms of the Taylor expansions of
the ODEs.

Finally, the ODE integrator used in the continuation code,
ODESSA, was used to integrate the model equations start-
ing with the steady-state distribution as the initial condition.
Again, the system remained at steady state for hundreds of
virtual hours. However, there was a signi6cant di3erence
between the solutions obtained using the MATLAB ODE
solver, ODE15s, and the ODESSA solver. By magnifying
the observed steady-state signals for substrate concentration,
MATLAB simulations reveal a small converging oscillatory
signal, while simulations using ODESSA reveal a small di-
verging oscillatory signal as shown in Fig. 7. The solutions
obtained using the ODESSA solver, therefore, indicate that
the steady state is not stable. The observations above, al-
though not conclusive, raise reasonable doubt about the sta-
bility of the steady state.
Assuming that the unstable limit cycle, indeed, does not

exist as the results of the continuation code imply, the steady
state must then become unstable as the oscillations emerge.
In most of the attractors studied, the stable limit cycles
branch from the steady state and collapse back at the steady
state which is a characteristic of the supercritical Hopf bi-
furcation (Looss & Joseph, 1980). Only the 1:3 attractor at
Sf=30 g=l and the 1:2 attractor at Sf=60 g=l obtained un-
der moderate intensity functions parameters show the Hopf
bifurcations that are subcritical at one end and supercritical
at the other end (Looss & Joseph, 1980). Even at the end
that shows a subcritical Hopf bifurcation, the stable limit
cycle becomes very small before it branches to an unstable
limit cycle that persists for a very small range of the bifur-
cation parameter before it collapses back at the steady state.
In all cases, however, the bifurcation mechanism observed
was a Hopf bifurcation.
Our results raise three questions: (i) is the steady state

predicted by the model stable or not? (ii) is the steady state
observed experimentally stable or not? and (iii) is it justi-
6ed to eliminate models just on the basis of their bifurcation
mechanisms? More speci6cally, is it justi6ed to eliminate
all models that bifurcate through a Hopf bifurcation mech-
anism? The answer to the 6rst question is that we do not
know. Di3erent numerical methods give di3erent and con-
Sicting answers about the stability of the steady state. How-
ever, the important common fact revealed by both methods
is that the system has very slow dynamics and whether the
steady state is stable or not, very little change is observed
in the steady-state conditions even for extended periods of
time. This does raise the possibility that the experimentally
observed steady states are in fact not stable, but are bifur-
cating extremely slowly to an oscillatory state. However,
this conclusion is contrary to the previous observations that
oscillations appear or disappear very rapidly based on envi-
ronmental conditions (MAunch et al., 1992a). In the previous
work (Birol, Zamamiri, & HjortsH, 2000), we have observed
that the actual system is also characterized by long tran-
sients. For instance, FFT analysis revealed that the transients
in the oscillatory state take almost 2 days to die out. There-
fore, the currently observed non-oscillatory state which
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Fig. 7. Results of model simulations performed at Sf = 30 g=l and D = 0:14 h−1 and starting with the corresponding steady-state distribution as the
initial condition. Model equations were integrated using MATLAB sti3 ODE solver, ODE15s (a) and the continuation code ODE solver, ODESSA (b).
The simulations show that the steady state can be observed for hundreds of virtual hours (note the range on the substrate concentration axis); however,
simulations performed using ODE15s predict a stable steady state, while simulations performed using ODESSA predict an unstable steady state.

persisted for several days may be a true stable steady state
or just an extended transient. More experimental work is
required to investigate the stability of this state. Finally, the
bifurcation mechanism underlying the emergence of oscil-
lations in a certain model does not reveal the whole picture.
Knowing that a model bifurcates through a Hopf bifurca-
tion, for example, does not reveal how many oscillatory
solutions are possible, or how rapidly the steady state bifur-
cates to the oscillatory state. Therefore, more information
about model bifurcation than just its bifurcation mechanism
may be needed in order to validate or discard the model.
Performing a detailed bifurcation analysis is a very use-
ful tool in model discrimination. However, care should be
taken not to generalize the conclusions about the validity of
a speci6c model based solely on its bifurcation mechanism.

4. Summary

An age distribution PBE model was proposed as an ex-
planation of the autonomous oscillations in budding yeast.
The model was solved numerically by the method of or-
thogonal collocation on 6nite elements. The model pre-
dicts the existence of multiple oscillatory attractors, an ob-
servation that is experimentally validated. However, in the
model simulations the attractors occur at di3erent dilution

rates while experimentally observed oscillatory modes have
been observed at the same dilution rate. The range of di-
lution rates supporting the attractors depend on values of
model parameters, the proposed mathematical expressions
of di3erent biological functions and the operating condi-
tions. The model also predicts the existence of a stable
oscillatory state and a prolonged steady state at the same
operating conditions in good agreement with experimen-
tal observations. There is conSicting evidence about the
stability of the steady state, however. The system dynam-
ics are very slow and the apparent steady state can per-
sist for extended periods of time. A detailed bifurcation
analysis can be a useful tool for model discrimination, al-
though care should be taken in drawing conclusions about
the validity of models based solely on their bifurcation
mechanism.
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