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Abstract

Biochemical reactors are essential unit operations in a wide variety of biotechnological processes. As compared to conventional

chemical reactors, bioreactors present unique modeling and control challenges due to the complexity of the underlying biochemical

reactions and the heterogenous nature of cell populations. The dynamic behavior of bioreactors can be strongly affected by

variations between individual cells that are captured only with cell population models. This paper is intended to highlight our recent

work on dynamic modeling and feedback control of yeast cell populations in continuous bioreactors. The results presented

demonstrate the feasibility of using cell population models as the basis for dynamic analysis and model-based control of continuous

yeast bioreactors. The paper concludes with a short discussion of future research needs in this challenging area.
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1. Introduction

The goal of biochemical engineering research is

industrial production of biologically based products

such as foods and beverages, pharmaceuticals and

various commodity and specialty chemicals. The bio-

chemical manufacturing industry is growing rapidly due

to dramatic advancements in biotechnology and the

high value of biochemical products such as pharmaceu-

ticals (Lee, 1992). Process control has played a limited

role in the biochemical industry because the economic

incentives for improved process operation often are

dwarfed by costs associated with product research and

development. This situation is expected to change due to

the expiration of key patents and the continuing

development of global competition. Another obstruc-

tion to process control has been the lack of on-line

sensors for key process variables. While this will remain

an issue for the foreseeable future, recent advancements

in biochemical measurement technology make the

development of advanced process control systems a

realistic goal.

A continuous biochemical reactor (also known as a

continuous fermentor) used to grow microbial cells is

depicted in Fig. 1. Medium is supplied continuously to

the reactor to sustain growth of the cell population. The

medium contains substrates metabolized by the cells

during growth as well as other constituents such as

mineral and salts required to mimic the natural growth

environment. The agitator speed is chosen to provide

sufficient mixing while avoiding excessive shear forces

that may damage the cells (Lee, 1992). A stream is

removed continuously from the reactor to achieve

constant volume operation. The removal rate is char-

acterized by the dilution rate, which is the reciprocal of

the reactor residence time. The effluent stream contains

unreacted substrates, cellular biomass and various

metabolites produced by the cells. Desired products

may be the cells themselves and/or some combination of

the metabolites. Off-gases such as carbon dioxide also

are produced as byproducts of the biochemical reac-

tions.
Mathematical modeling of microbial cell growth

kinetics continues to be an important focus of biochem-

ical engineering research (Nielsen and Villadsen, 1994).
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The potential impact of predictive models on bioprocess

simulation, design, optimization and control is substan-

tial. As compared to conventional chemical reactors,

bioreactors are particularly difficult to model due to the

complexity of the biochemical reactions, the unique

characteristics of individual cells and the lack of key

process measurements. The consumption of substrates

and production of metabolites result from hundreds of

coupled biochemical reactions (Mauch, Arnold, and

Reuss, 1997). Construction and dynamic modeling of

these complex reaction networks is a very challenging

problem. While they often are viewed as homogeneous

mixture of identical cells, microbial cultures actually are

comprised of heterogeneous mixtures of cells that differ

with regard to size, mass and intracellular concentra-

tions of proteins, DNA and other chemical constituents

(Srienc and Dien, 1992). Accurate modeling of cell

growth and metabolite formation kinetics may require

that individual cells be differentiated based on these

characteristics.

As shown in Fig. 1, a typical control system for a

continuous bioreactor consists of simple feedback loops

that regulate reactor liquid volume, temperature and

pH. The control system is designed to supply a constant

nutrient flow that is expected to maximize steady-state

cell growth in the absence of external disturbances. This

open-loop control strategy does not ensure satisfactory

regulation of key output variables such as the biomass

and product concentrations. The development of closed-

loop control strategies for direct biomass/metabolite

optimization would represent a significant advance in

the biochemical industry. Such control strategies require

the availability of appropriate dynamic models and on-

line measurements of key process variables. These

technical obstructions and the lack of clear economic

incentives have hindered the implementation of model-

based control systems on industrial bioreactors. Recent

progress in bioreactor modeling and measurement

techniques and the increasing realization that improved

bioreactor operation is necessary to remain competitive

has motivated new research on cell population model-

ing, dynamics and control.

The objective of this paper is to highlight our recent

work on dynamic modeling and control of continuous

Fig. 1. Continuous biochemical reactor.
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yeast bioreactors described by cell population models.

In Section 2, a yeast cell population model that includes

a simple structured description of the extracellular

environment is presented. Section 3 contains dynamic
simulation and bifurcation analysis results for the yeast

model. The potential impact of recent advances in cell

distribution measurement technology on the develop-

ment of model-based control strategies is illustrated in

Section 4 where simulation results for a model predictive

controller that allows direct control of yeast cell

distribution properties are presented. Section 5 contains

a short discussion of future research needs in cell
population modeling and control.

2. Yeast cell population modeling

2.1. Background

Saccharomyces cerevisiae (baker’s yeast) is an impor-

tant microorganism in the brewing, baking, food

manufacturing and genetic engineering industries. Ba-

ker’s yeast can be produced in continuous bioreactors

by supplying a nutrient stream containing the substrate

glucose. As shown in Fig. 2, yeast cells proliferate via an

asymmetric process known as budding (Hjortso and
Nielsen, 1994). A daughter cell grows until it reaches a

critical mass called the transient mass (mt�). At this point

the cell is called a mother cell. All further growth occurs

in the bud attached to the mother cell. At a critical mass

called the division mass (md�) the mother cell and the bud

divide to produce a newborn daughter cell and a

newborn mother cell.

Many investigators have shown that continuous yeast
bioreactors can exhibit complex dynamic behavior

characterized by the unpredictable appearance and

disappearance of sustained oscillations (Parulekar, Se-

mones, Rolf, Lievense, and Lim, 1986; Strassle, Sonn-

leitner, and Fiechter, 1989; von Meyenburg, 1973).

While the asymmetric cell cycle has been hypothesized

to play a key role, the underlying cellular mechanisms

that cause oscillatory yeast dynamics are controversial.

Understanding and manipulating these dynamics could
lead to important advances in yeast production pro-

cesses and provide key insights into the cellular behavior

of more complex cells present in higher organisms.

Our group has been developing a cell population

model based on the simple description of the asymmetric

yeast cell cycle to rationalize the oscillatory dynamics

observed experimentally. The long-term goal is to design

model-based controllers that improve bioreactor oper-
ability and productivity through the attenuation and/or

stabilization of the oscillatory open-loop dynamics. A

key feature of the cell population model is that the

transition and division masses vary with the glucose

concentration in the extracellular environment. Our

previously published model (Zhu, Zamamiri, Henson,

and Hjortso, 2000) is unstructured in the sense that

other constituents of the extracellular environment are
neglected completely. This unstructured model lacks

variables that can be compared directly to readily

available extracellular measurements such as the dis-

solved oxygen and evolved carbon dioxide concentra-

tions. Below our recently developed cell population

model (Mhaskar, Henson, and Hjortso, 2002) which

contains a simple structured description of the extra-

cellular environment is presented. Although not dis-
cussed here for the sake of brevity, the model structure is

well suited for the application of estimation techniques

aimed at determining unknown parameters from experi-

mental data (Mhaskar, Henson, and Hjortso, 2002).

2.2. Model formulation

The population balance equation (PBE) that describes

the evolution of the cell mass number distribution is

formulated as follows (Eakman, Fredrickson, and

Tsuchiya, 1996):

@W (m; t)

@t
�

@[K(S?)W (m; t)]

@m

�g
m?

0

2p(m;m?)G(m?;S?)W (m?; t)dm?

� [D�G(m)]W (m; t) (1)

where m is the cell mass; W (m , t) is the cell number

density; K (S ?) is the overall single cell growth rate; S ? is

the effective substrate concentration (defined below);

p (m , m ?) is the newborn cell probability function;
G(m;S?) is the division intensity function; and D is the

dilution rate. The division intensity function is modeled

as:Fig. 2. Simplified cell cycle for budding yeast.
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G(m;S?)�
0 m5mt��mo

ge�o(m�md�)2

m � [mt��mo;md�]
g m]md�

8<
: (2)

where mt� and md� are the cell transition and division

masses, respectively; mo is the additional mass beyond

mt� that mother cells must gain before division is
possible; and o and g are constant parameters. This

function models the probabilistic nature of cell division.

The newborn cell probability function has the form:

p(m;m?)�A exp[�b(m�mt�)
2]

�A exp[�b(m�m?�mt�)
2] (3)

when m B/m ? and m ?�/mt��/mo; the function is identi-

cally zero otherwise. Here A and b are constant

parameters. This function yields two Gaussian peaks

in the cell number distribution, one centered at mt�

corresponding to mother cells and one centered at mt��/

m ? corresponding to daughter cells.

Yeast cell cycle events are affected by the extracellular
environment through a highly complex set of signaling

processes. In principle, these relationships can be

captured by a structured bioreactor model (Nielsen

and Villadsen, 1994). We pursue a much simpler

approach that preserves the unstructured nature of the

intracellular description. The transition and division

masses are assumed to be functions of the effective

substrate concentration:

mt�(S?)�
mt0�Kt(Sl�Sh) S?BSl

mt0�Kt(S?�Sh) S? � [Sl;Sh]

mt0 S?�Sh

8<
: (4)

md� (S?)�
md0�Kd(Sl�Sh) S?BSl

md0�Kd(S?�Sh) S? � [Sl;Sh]

md0 S?�Sh

8<
: (5)

where Sl, Sh, mt0, md0, Kt and Kd are constants. These
saturation functions are consistent with experimental

observations that the ratio of the division and transition

masses increases as the nutrient concentration increases

(Alberghina, Ranzi, Porro, and Martegani, 1991).

The following reaction sequence accounts for the

major metabolic pathways (glucose fermentation, glu-

cose oxidation and ethanol oxidation) thought to be

involved in oscillatory yeast dynamics:

C6H12O6 0 2C2H5OH�2CO2

C6H12O6�6O2 0 6CO2�6H2O

C2H5OH�3O2 0 2CO2�3H2O (6)

The glucose fermentation rate Kgf is assumed to follow

Monod kinetics with respect to glucose. The glucose

oxidation rate Kgo and the ethanol oxidation rate Keo

are assumed to follow Monod kinetics with respect to

the associated substrate and dissolved oxygen. Prefer-

ential consumption of glucose as compared to ethanol is

modeled by introducing a glucose inhibition term in the

ethanol oxidation rate. The resulting rate expressions

are:

Kgf (G?)�
mmgfG?

Kmgf � G?
(7)

Kgo(G?;O)�
mmgoG?

Kmgo � G?

O

Kmgd � O
(8)

Keo(G?;E?;O)�
mmeoE?

Kmeo � E?

O

Kmed � O

Kinhib

Kinhib � G?
(9)

where O is the dissolved oxygen concentration; mmgf ;
mmgo and mmeo are maximum consumption rates; Kmgf,

Kmgo, Kmgd, Kmeo and Kmed are saturation constants;
and Kinhib is a constant that characterizes the inhibitory

effect of glucose on ethanol fermentation. The overall

single cell growth rate K (S ?) is the sum of the growth

rates due to the three metabolic pathways.

The substrate mass balance equations are:

dG

dt
�D(Gf �G)

�g
�

0

�
Kgf (G?)

Ygf

�
Kgo(G?)

Ygo

�
W (m; t)dm (10)

dE

dt
�D(Ef �E)�

92

180 g
�

0

f (m)
Kgf (G?)

Ygf

W (m; t)dm

�g
�

0

Keo(E?)

Yeo

W (m; t)dm (11)

where G and E are the glucose and ethanol concentra-

tions, respectively; G ? and E ? are the effective glucose

and ethanol concentrations, respectively; Gf and Ef are

the feed glucose and ethanol concentrations, respec-
tively; Ygf, Ygo and Yeo are constant yield coefficients;

and the ratio 92/180 represents the mass of ethanol

produced per mass of glucose fermentatively consumed.

Experimental data suggests that ethanol is excreted

primarily by budded cells (Alberghina, Ranzi, Porro,

and Martegani, 1991). The function f (m ) in Eq. (11) is

used to model this behavior:

f (m)�
0 m5mt�
ge exp[�oe(m�mt��me)

2] m�mt�

�
(12)

where ge; oe and me are constant parameters. The filtered
substrate concentrations model the delayed response of

cell metabolism to changes in the extracellular environ-

ment:

dG?

dt
�ag(G�G?) (13)

dE?

dt
�ae(E�E?) (14)

where ag and ae are constants.
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The liquid phase oxygen balance is written as:

dO

dt
�Kloa(O��O)

�g
�

0

�
192

180

Kgo(G?)

Ygo

�
96

46

Keo(E?)

Yeo

�
W (m; t)dm (15)

where O* is the saturation oxygen concentration; Klo is
the oxygen mass transfer coefficient; a is the interfacial

area per unit liquid volume; the ratio 192/180 represents

the mass of oxygen consumed per mass of glucose

oxidatively metabolized; and the ratio 96/46 represents

the mass of oxygen consumed per mass of ethanol

metabolized. The oxygen solubility is assumed to be

governed by Henry’s law:

O��HORTOout (16)

where HO is the Henry’s rate constant for oxygen; Oout

is oxygen partial pressure in the gas exhaust stream; T is

the absolute temperature; and R is the gas constant. The

gas phase oxygen balance is:

dVgOout

dt
�F (Oin�Oout)�Kloa(O��O)Vl (17)

where Vg and Vl are the gas phase and liquid phase
volumes, respectively; F is the volumetric air feed flow

rate; and Oin is the oxygen partial pressure in the air feed

stream.

The liquid phase carbon dioxide balance is:

dC

dt
�Klca(C��C)

�g
�

0

�
264

180

Kgo(G?)

Ygo

�
88

46

Keo(E?)

Yeo

�
W (m; t)dm

�g
�

0

�
f (m)

88

180

Kgf (G?)

Ygf

�
W (m; t)dm (18)

where C is the liquid phase carbon dioxide concentra-

tion; C* is the saturation carbon dioxide concentration;

Klc is the carbon dioxide mass transfer coefficient; the
ratio 264/180 represents the mass of carbon dioxide

produced per mass of glucose oxidatively metabolized;

the ratio 88/46 represents the mass of carbon dioxide

produced per mass of ethanol metabolized; and the ratio

88/180 represents the mass of carbon dioxide produced

per mass of glucose fermentatively metabolized. The

carbon dioxide solubility is modeled as:

C��HC(pH)RTCout (19)

where HC is the Henry’s constant for carbon dioxide
which is evaluated at a pH of 5.0; and Cout is the carbon

dioxide partial pressure in the exhaust gas stream. The

gas phase carbon dioxide balance is:

dVgCout

dt
�F (Cin�Cout)�Klca(C��C)Vl (20)

where Cin is the carbon dioxide partial pressure in the air

feed stream.

The yeast cell population model contains approxi-

mately 40 parameters which must be specified. Values
for parameters such as yield coefficients and maximum

growth rates available in the literature are listed in Table

1. Also listed in this table are nominal operating

conditions used in our laboratory experiments. Other

parameter such as constants in the division intensity and

newborn probability functions are not available. The

parameter values listed in Table 2 have been chosen to

obtain qualitative agreement with experimental data.
Although not discussed here, a limited number of these

parameters can be estimated from data to improve the

predictive capability of the model (Mhaskar, Henson,

and Hjortso, 2002).

3. Yeast cell population dynamics

3.1. Experimental data

Many investigators have shown that continuous yeast

bioreactors can exhibit sustained oscillations that are

reflected in measurements of intracellular and extra-

cellular variables (Parulekar, Semones, Rolf, Lievense,

and Lim, 1986; Strassle, Sonnleitner, and Fiechter, 1989;
von Meyenburg, 1973). Sustained oscillations are ob-

served only for a specific range of dilution rates

(Parulekar, Semones, Rolf, Lievense, and Lim, 1986);

stable steady-states are obtained for dilution rates below

and above this range. In collaboration with Prof. Martin

Hjortso (LSU), laboratory experiments were undertaken

to further explore this dynamic phenomenon. Batch and

continuous culture experiments were performed using a
Bioflo 3000 fermenter (New Brunswick) with a working

Table 1

Experimentally derived cell population model parameters

Variable Value Variable Value

Ygf 0.15 g/g mmgf 30�/10�13 g/h

Ygo 0.65 g/g mmgo 3.25�/10�13 g/h

Yeo 0.5 g/g mmeo 7�/10�13 g/h

Kmgf 40 g/l Kmgo 2 g/l

Kmeo 1.3 g/l Kinhib 0.4 g/l

Kmgd 0.001 g/l Kmed 0.001 g/l

HO 0.0404 g/l/atm HC 1.48 g/l/atm

Vg 0.9 l Vl 0.1 l

Kla 1500 h�1 Klc 1500 h�1

D 0.15 h�1 Gf 30 g/l

Ef 0 g/l F 90 l/h

T 298 K Oin 0.21 atm

Cin 0.0003 atm
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volume of 1.0 l. The fermenter was interfaced to a

personal computer with the necessary software for data

collection and basic regulatory control functions. De-

tails on medium preparation and the experimental

protocol are available elsewhere (Zamamiri, Birol and

Hjortso, 2001).

The top plot in Fig. 3 shows the dynamic response

obtained for batch startup followed by a switch to

continuous operation. The exhaust gas CO2 concentra-

tion is used as a representative output variable for the

culture. Following inoculation with yeast cells at t�/0,

the bioreactor was operated in batch mode to allow a

sufficient density of cells to be produced. Sustained

oscillations were observed immediately following the

switch to continuous operation at t�/20 h. The lower

plot in Fig. 3 shows the cell number distribution as a

function of cell size at the times indicated in the top plot.

Two distinct cell subpopulations were formed as the

culture progresses through batch growth. The first and

second peaks represent subpopulations of daughter cells

and mother cells, respectively. As discussed below, the

presence of such well defined subpopulations is strongly

correlated to the subsequent appearance of sustained

oscillations.

Another experiment was designed to test our hypoth-

esis that a stable steady state and a periodic attractor

can exist at the same operating conditions. A represen-

tative set of results is shown in Fig. 4 (Zamamiri, Birol,

and Hjortso, 2001). The experiment started with oscil-

latory dynamics that were obtained by switching the

Table 2

Other cell population model parameters

Variable Value Variable Value

g 400 o 7

ge 8 oe 20

mo 1�/10�13 g me 1.54�/10�13 g

A /

ffiffiffiffiffiffiffiffiffiffi
10=p

p
b 40

Sl 0.1 g/l Sh 2.0 g/l

Kt 0.01 g/g l Kd 3.83 g/g l

mto 4.55�/10�13 g mdo 10.25�/10�13 g

ag 20 ae 20

Fig. 3. Experimental switch from batch to continuous operation.
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culture from batch to continuous operation. Starting at

t�/20 h, the dilution rate was slowly ramped down over

a 24-h period until oscillations disappear. The stationary

state was preserved for two days with the dilution rate

maintained at this low value. Starting at t�/92 h, the

dilution rate was slowly ramped up at the same rate as
used for the negative ramp. No significant oscillations

were observed even though the steady-state dilution rate

produced oscillations at the beginning of the experi-

ment. This strongly suggests the existence of multiple

attractors at the same dilution rate.

While lumped parameter models have been proposed

(Cazzador, 1991; Jones and Kompala, 1999), we believe

that cell population models have the best potential for
rationalizing the complex dynamic behavior observed in

continuous yeast bioreactors. Several investigators

(Munch, Sonnleitner, and Fiechter, 1992; Strassle,

Sonnleitner, and Fiechter, 1989) have shown that the

appearance of sustained oscillations is related to the

formation of distinct cell subpopulations via a mechan-

ism known as cell cycle synchrony. As shown in Fig. 3, a

synchronized culture is characterized by well defined
peaks in the cell number distribution that correspond to

cell subpopulations which collectively pass through the

cell cycle. Cell cycle synchrony establishes a direct

relationship between the cell population and oscillatory

dynamics. Experimental data suggests that sustained

oscillations occur only if the cell population is suffi-

ciently organized into distinct subpopulations. Other-

wise, dispersive effects inherent in the heterogeneous cell
population overwhelms the synchronization effect and

result in a stable steady state. This provides a physical

explanation for the existence of multiple attractors at

the same operating conditions as shown in Fig. 4.

3.2. Dynamic simulation results

The cell population model presented in Section 2 is

comprised of a coupled set of nonlinear algebraic,

integro-ordinary differential and integro-partial differ-

ential equations. We have found that orthogonal

collocation on finite elements (Finlayson, 1980) provides

efficient and robust model solution. A finite cell mass

domain, 05m5mmax; is chosen such that the number

of cells with mass m �/mmax is effectively zero. The

population balance equation is approximated by a

coupled set of nonlinear ordinary differential equations

obtained by discretizing the mass domain. Integral

expressions in the population and substrate balance

equations are approximated using Gaussian quadrature

(Finlayson, 1980). Solution stability is not strongly

affected by the number of finite elements and colloca-

tion points. A converged solution is obtained with

twelve equally spaced finite elements, each with eight

internal collocation points that are determined as the

roots of the appropriate Jacobi polynomial (Finlayson,

1980). These parameters are used in the subsequent

simulations, resulting in 109 total collocation points.

The state vector of the discretized cell population model

consists of the cell number density at each collocation

point as well as the eight extracellular concentrations.

Therefore, the discretized model consists of 117 non-

linear ordinary differential equations.

A comparison between model predictions and experi-

mental data for batch startup followed by a switch to

continuous operation at t�/20 h is shown in Fig. 5. The

two peaks observed experimentally during batch growth

represent increased carbon dioxide production due to

oxidative consumption of glucose and ethanol (first

peak) and fermentative consumption of glucose (second

peak). The model predicts the oxidative growth phase

reasonably well, but the fermentative growth phase is

not captured adequately. Following the switch to

continuous operation, the model produces sustained

oscillations with amplitude and period in good agree-

ment with experimental data. In both cases, the transi-

tion to sustained oscillations is very rapid.

Fig. 4. Experimental ramp changes in dilution rate (Zamamiri, Birol and Hjortso, 2001).
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Model and experimental responses for ramp changes

in the dilution rate are shown in Fig. 6. The series of

dilution rate changes are identical to those used to

produce the experimental data in Fig. 4. The predicted

oscillations at the beginning of the test are very similar

to those observed experimentally. Following the nega-

Fig. 5. Comparison of model and experiment for switch from batch to continuous operation.

Fig. 6. Comparison of model and experiment for ramp changes in dilution rate.

M.A. Henson / Computers and Chemical Engineering 27 (2003) 1185�/11991192



tive ramp change, the model predicts that oscillations

will be strongly attenuated but not completely elimi-

nated. This prediction is consistent with experimental

data because the small amplitude oscillations predicted

by the model are below the noise level in the carbon

dioxide measurement. Following the positive ramp

change, the model predicts that oscillations will dis-

appear completely. This test demonstrates that the

model structure is capable of supporting multiple

attractors at the same operating conditions as observed

experimentally.

The effect of the initial cell number distribution on the

model response is illustrated in Figs. 7 and 8. An initial

distribution that leads to a stable steady-state solution is

shown in the top plot of Fig. 7. As shown in the bottom

plot, the initial distribution is sufficiently disorganized

for the oscillations to slowly decay. The final distribu-

tion shown in the top plot is very dispersed as compared

to the initial distribution. A slightly more organized

initial distribution that leads to sustained oscillations is

shown in the top plot of Fig. 8. The oscillation

amplitude grows until a stable periodic solution is

obtained. Two well defined peaks that correspond to

daughter and mother cell subpopulations are present in

the final distribution. These tests verify that the model is

consistent with experimental observations that sustained

oscillations are intimately related to cell cycle synchrony

and the formation of distinct cell subpopulations. Given

their similarities, the initial distributions shown in Figs.

7 and 8 appear to be near the separatix that divides the

domains of attraction of the two solutions.

3.3. Bifurcation analysis results

In our previous publications (Zhang and Henson,

2001; Zhang, Zamamiri, Henson, and Hjortso, 2002),

we have argued that bifurcation analysis allows more

insightful comparisons of bioreactor model predictions
and experimental data than is possible with dynamic

simulation alone. Such analysis can be applied to the

yeast cell population model to characterize the bifurca-

tions that result in appearance and disappearance of

periodic solutions. Because bifurcation theory has been

developed primarily for nonlinear ordinary differential

equation systems (Kuznetsov, 1995), the discretized

version of the cell population model is utilized for
analysis.

The first task is to determine local stability of steady-

state solutions. This is achieved by computing the

eigenvalues of the Jacobian matrix evaluated at each

steady-state of interest. A dilution rate where one or

more eigenvalues cross the imaginary axis is known as a

bifurcation point. Locating periodic solutions and

determining their stability is a more difficult problem.
We utilize a continuation code specifically designed for

high-dimensional systems obtained from Prof. Yannis

Fig. 7. Model prediction of steady state.
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Kevrekidis (Princeton) (Krishnan, Baer, and Imbihl,

2000). A good initial guess of the state variables and the

oscillation period corresponding to the limit cycle must

be supplied to achieve convergence. For stable periodic

solutions, the initial guess is obtained readily by

dynamic simulation.

A bifurcation diagram for the discretized cell popula-

tion model is shown in Fig. 9 where the dilution rate (D )

is the bifurcation parameter and the glucose concentra-

tion (S) is chosen as a representative output variable.

The model possesses a single stable steady-state solution

(�/) at low dilution rates. As the dilution rate is

increased, a bifurcation occurs where the steady-state

solution becomes unstable (k) and a stable periodic

solution with oscillations of the amplitude indicated

(�/ �/ �/) appears. This subcritical Hopf bifurcation is

accompanied by the appearance of large amplitude

oscillations. The stable periodic solution exists with the

unstable steady-state solution for a large range of

dilution rates. As the dilution rate is increased further,

a second bifurcation occurs where the periodic solution

disappears and the steady-state solution regains its

stability. This subcritical Hopf bifurcation is character-

ized by small amplitude oscillations. There is a small

range of dilution rates near the subcritical bifurcation

that supports both steady-state and periodic attractors.

The domains of attractions of the two asymptotic

solutions are separated by an unstable periodic solution

with oscillations of the amplitude indicated (*/). This

result provides a simple qualitative explanation for the

dynamic simulation results presented above.

4. Yeast cell population control

4.1. Motivation

Feedback control is necessary to ensure satisfactory

performance of continuous yeast bioreactors in the

presence of external disturbances and/or changes in

operational requirements. As depicted in Fig. 1, a

typical bioreactor control system consists of simple

regulatory loops designed to maintain environmental

conditions that promote cell growth. Such schemes do

not allow direct control of variables such as biomass and
metabolite concentrations that determine profitability of

the bioprocess. During the last decade, substantial work

has been focused on the development of more advanced

adaptive and/or nonlinear control strategies for contin-

uous bioreactors (Bastin and Dochain, 1990; Hoo and

Kantor, 1986; Kurtz, Henson, and Hjortso, 2000). These

methods are based on lumped parameter models that

neglect the heterogeneous nature of the cell population.
Lack of suitable on-line measurements has been a

major obstruction to the development of controller

design techniques based on cell population models.

Fig. 8. Model prediction of sustained oscillations.
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This barrier is less daunting with the development of

biochemical measurement technology such as flow

cytometry which enables cell distribution properties to

be elucidated. Flow cytometry allows individual cells to

be differentiated with respect to their protein content,

DNA content and other intracellular properties (Alber-

ghina, Ranzi, Porro, and Martegani, 1991; Srienc, 1999).

Recently, flow cytometry has been combined with flow

injection systems that allow on-line measurement of cell

distribution properties (Zhao, Natarajan, and Srienc,

1999). This provides motivation for the development of

advanced control strategies in which cell population

models are utilized to manipulate cell cycle character-

istics and/or regulate cell property distributions.
Our work on continuous yeast bioreactor control has

been focused on modifying the open-loop dynamics that

result in sustained oscillations (Zhang, Zamamiri, Hen-

son, and Hjortso, 2002; Zhu, Zamamiri, Henson, and

Hjortso, 2000). A possible control objective is stabiliza-

tion of a particular steady state to eliminate oscillations

that adversely affect bioreactor stability and productiv-

ity. In some situations, the induction and stabilization of

oscillations that lead to increased production of key

metabolites synthesized only during part of the cell cycle

my be desirable (Hjortso, 1996). Below a linear model

predictive control (LMPC) strategy which allows either

control objective to be achieved is presented. The cell

population model used for controller design is a

simplified version of the model presented in Section 2

where the extracellular environment is described by the

concentration of a single rate limiting substrate. Addi-
tional details are available in the original reference (Zhu,

Zamamiri, Henson, and Hjortso, 2000).

4.2. Model predictive control strategy

A linear controller design model is generated directly

from the discretized cell population model. The non-

linear model equations are linearized about the steady-

state operating point and temporally discretized with
sampling time Dt/�/0.1 h. The resulting state-space

model has the form:

x(k�1)�Ax(k)�Bu(k)

y(k)�Cx(k) (21)

where x � R111 is the state vector comprised of the cell

mass number density at each collocation point (Wj) and

the substrate and effective substrate concentrations (S ,

S ?); u � R2 is the input vector comprised of the dilution

rate (D ) and the feed substrate concentration (Sf); and

y � Rm is the output vector defined below. The cell mass

number distribution is assumed to be measured via a

method such as flow cytometry. The controllability
matrix for the pair (A , B ) has rank four due to the

large state dimension and the strong collinearity of the

state variables. This indicates that the cell distribution

Fig. 9. Bifurcation diagram for cell population model.
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cannot be modified arbitrarily with the two input

variables available.

The controller design model is completed by defining

the controlled output vector. A straightforward ap-
proach is to choose the cell number density at each

collocation point as a controlled output. This can be

problematic because: (i) the control problem is highly

non-square (2 inputs, 109 outputs); (ii) cell number

densities at nearby collocation points are strongly

collinear; and (iii) the substrate concentration also needs

to be controlled to avoid washout. We have found that

good closed-loop performance can be achieved by
controlling a subset of the cell number densities and

the substrate concentration:

y� [Wj1
Wj2

� � �Wjp
S]T (22)

where the indices fj1; . . . ; jpg define the collocation

points where the associated cell number density is used

as a controlled output. In the subsequent simulations,

the controlled cell number densities are chosen to be the

boundary points of the finite elements. The output

vector of Eq. (22) results in a much lower dimensional

problem (14 outputs) than the full-order case.
The LMPC controller is formulated as (Muske and

Rawlings, 1993):

min
UN (k)

X�
j�0

f[y(k� j½k)�ys]
T Q[y(k� j½k)�ys]

� [u(k� j½k)�us]
T R[u(k� j½k)�us]

�DuT (k� j½k)SDu(k� j½k)g (23)

where y(k�/j jk ) and u (k�/j jk ) are predicted values of

the output and input vectors, respectively; ys and us are

target values for the output and input vectors, respec-

tively; and Du(k)�u(k)�u(k�1): The decision vari-

ables are current and future values of the inputs:
UN(k)� [u(k½k) . . . u(k�N�1½k)] where N is the con-

trol horizon. The inputs are subject to saturation

constraints of the form: umin5u5umax: The infinite

horizon problem in Eq. (23) can be reformulated as a

finite horizon problem and solved using standard

quadratic programming software (Muske and Rawlings,

1993). Only the first calculated input actually is im-

plemented, u (k )�/u (k jk ), and the problem is resolved at
the next time step with new measurements. The target

vectors us and ys can be adjusted on-line using a

disturbance model to eliminate offset (Muske and

Rawlings, 1993). In this application, there is little

motivation to utilize a disturbance model because there

are insufficient degrees of freedom to drive the entire cell

distribution to an arbitrary target distribution.

Fig. 10 shows the ability of the LMPC controller to
stabilize a desired steady-state operating point. The

initial cell number distribution W (m , 0) is a highly

synchronized distribution corresponding to a stable

periodic solution, while the setpoint vector is obtained

from the discretized cell mass distribution at the desired

steady-state operating point. Representative output

variables shown are the zeroth-order moment of the
cell number distribution m0�f

�

0
W (m; t)dm and the

substrate concentration (S ). The solid line is the

LMPC controller response and the dashed line is the

open-loop response obtained in the absence of feedback

control. LMPC yields rapid attenuation of the open-

loop oscillations. Evolution of the cell number distribu-

tion is shown in Fig. 11. The initial distribution has two

well defined subpopulations that typically produce
sustained oscillations. The controller attenuates the

oscillations and achieves the desired steady-state dis-

tribution by counteracting cell synchrony via dispersion

of the subpopulations.

Fig. 12 demonstrates the ability of the LMPC

controller to stabilize a desired periodic solution. The

initial cell number distribution represents a steady-state

solution, while distributions corresponding to the de-
sired periodic solution are defined as a time-varying

setpoint trajectory. The controller stabilizes the periodic

solution by generating oscillatory input moves.

Although not shown here, oscillations with the same

period are maintained when the controller is switched

off and the bioreactor runs under open-loop conditions.

Evolution of the cell mass distribution is shown in Fig.

13. The oscillating dynamics are accompanied by
marked synchronization of the cell population. Two

distinct subpopulations can be identified after 24 h of

operation. These results suggest that feedback control

strategies which provide direct control of the cell

distribution properties have the potential to enhance

the stability and productivity of continuous yeast

bioreactors.

5. Future research directions

This paper has provided an overview of our recent

work in yeast cell population modeling, dynamics and

control. The results presented demonstrate the feasibil-

ity of using cell population models as the basis for

dynamic analysis and feedback control of continuous
yeast bioreactors.

Additional work is required to produce engineering

techniques of practical utility. Some possible directions

for future research include:

1. Derivation of cell population models with intra-

cellular structure to enhance understanding of the

complex interactions between individual cell metabolism

and cell population dynamics. The cell ensemble model-
ing approach (Domach and Shuler, 1984; Henson,

Muller, and Reuss, 2002) appears to be particulary

promising.
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2. Development of numerical solution and dynamic

analysis techniques for structured cell population mod-

els. An overview of available solution strategies for cell

population models is presented in a recent review paper

(Daoutidis and Henson, 2002).

3. Application of parameter estimation techniques to

achieve quantitative agreement between cell population

model predictions and experimental data. Some initial

results are presented in a recent paper (Mhaskar,

Henson, and Hjortso, 2002).

Fig. 10. Feedback stabilization of a steady-state solution.

Fig. 11. Cell number distribution evolution for steady-state solution stabilization.
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4. Development of cell distribution control strategies

that exploit recent advances in biochemical measure-

ment technology such as on-line flow cytometry. The

LMPC strategy (Zhu, Zamamiri, Henson and Hjortso,

2000) discussed above is just a first step in this direction.

5. Collection of laboratory data for evaluation and

refinement of cell population modeling, dynamics and

control techniques. Oscillatory dynamics in yeast cul-

tures (Aon, Cortassa, Westerhoff and van Dam, 1992;

Keulers, Satroutdinov, Suzuki and Kuriyama, 1996;

Fig. 12. Feedback stabilization of a periodic solution.

Fig. 13. Cell number distribution evolution for periodic solution stabilization.
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Parulekar, Semones, Rolf, Lievense and Lim, 1986)

seem well suited for this task.
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