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Saccharomyces cerevisiae is known to exhibit sustained oscillations in chemostats
operated under aerobic and glucose-limited growth conditions. The oscillations are
reflected both in intracellular and extracellular measurements. Our recent work has
shown that unstructured cell population balance models are capable of generating
sustained oscillations over an experimentally meaningful range of dilution rates. A
disadvantage of such unstructured models is that they lack variables that can be
compared directly to easily measured extracellular variables. Thus far, most of our
work in model development has been aimed at achieving qualitative agreement with
experimental data. In this paper, a segregated model with a simple structured
description of the extracellular environment is developed and evaluated. The model
accounts for the three most important metabolic pathways involved in cell growth
with glucose substrate. As compared to completely unstructured models, the major
advantage of the proposed model is that predictions of extracellular variables can be
compared directly to experimental data. Consequently, the model structure is well
suited for the application of estimation techniques aimed at determining unknown
model parameters from available extracellular measurements. A steady-state param-
eter selection method developed in our group is extended to oscillatory dynamics to
determine the parameters that can be estimated most reliably. The chosen parameters
are estimated by solving a nonlinear programming problem formulated to minimize
the difference between predictions and measurements of the extracellular variables.
The efficiency of the parameter estimation scheme is demonstrated using simulated
and experimental data.

1. Introduction

Saccharomyces cerevisiae is an essential microorgan-
ism in industries such as brewing, baking, and food
manufacturing. Yeasts such as S. cerevisiae also are
important in genetic engineering applications. Under
certain environmental conditions, continuous cultures of
S. cerevisiae exhibit sustained oscillations in extracellular
variables such as carbon dioxide evolution rate; oxygen
uptake rate; glucose, ethanol, and acetic acid concentra-
tions; pH controller action; and intracellular variables
such as biomass concentration, cell size distribution,
protein content, and storage carbohydrate concentrations
(1-12). Three types of oscillations have been reported in
the literature (13, 14): cell cycle dependent oscillations,
glycolytic oscillations and short-period sustained oscil-
lations. A marked cell cycle synchronization of the yeast
population is observed in association with cell cycle
dependent oscillations, and strong interactions between
synchronized cell cycle events and oscillating metabolic
signals have been reported (5, 7, 8, 10-12). Cell cycle
dependent oscillations are observed under aerobic growth
conditions and in glucose limited environments. Oscilla-

tions appear at intermediate dissolved oxygen levels (3,
5, 10) and for a wide range of dilution rates (typically
0.09-0.25 h-1) (9). They are particularly difficult to
suppress in high performance chemostats at dilution
rates between 0.13 and 0.2 h-1 (11). The period of
oscillation varies from 2 to 45 h depending on the strain
and culture conditions (3).

A number of mathematical models have been proposed
to rationalize the sustained oscillations observed in
continuous cultures of S. cerevisiae. Existing models can
be classified into three general categories: structured and
unsegregated (15), unstructured and segregated (16), and
structured and segregated (11). Structured unsegregated
models are based on the assumption that sustained
oscillations are attributable to cell metabolism rather
than cell population dynamics. A shortcoming of such
models is that they cannot adequately explain cell cycle
synchronization, which plays a critical role in oscillatory
yeast dynamics (8). Unstructured segregated models are
based on the assumption that oscillations arise as a result
of interactions between the cell population and the
extracellular environment. A key feature of these models
is the population balance equation (PBE) that describes
the time evolution of the distribution of states (e.g., cell
age or cell mass distributions). While they are capable
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of predicting cell cycle synchrony, these models cannot
capture the interplay between cell metabolism and oscil-
latory dynamics. Structured segregated models have been
developed to address the limitations of the simpler
models described above. While such models provide the
most rigorous description of cell growth, they are math-
ematically complex and require the availability of so-
phisticated intracellular measurement technology such
as flow cytometry (17) for validation.

Although unstructured segregated models can capture
the qualitative behavior of cell growth, the absence of
easily measured variables renders these models unsuit-
able for direct comparison with experimental data. On
the other hand, these models are easier to formulate and
more computationally efficient than structured segre-
gated models. In this paper, we pursue a different
modeling approach in which an unstructured cell popula-
tion model is coupled to a simple structured description
of the extracellular environment. The extracellular model
is structured in the same sense that intracellular models
are structured: multiple reaction products and their
interactions in the extracellular environment are cap-
tured. Clearly the resulting model is not a substitute for
segregated yeast models that include a detailed descrip-
tion of the intracellular reactions. Rather the structured
medium description is an extension that allows model
predictions to be directly compared with available extra-
cellular measurements.

Our previous modeling work has been aimed at cap-
turing qualitative dynamic behavior that is observed
experimentally. The proposed model provides an op-
portunity to systematically estimate key model param-
eters to achieve quantitative agreement with experimen-
tal data. The model structure and the type of extracellular
measurements limit the number of parameters that can
be estimated reliably. We present a method that utilizes
the available model to determine the parameters that are
most readily estimated from a particular set of steady-
state or oscillatory measurements. Based on these re-
sults, estimates of the model parameters are found by
solving a suitably formulated nonlinear programming
problem.

The remainder of the paper is organized as follows: In
section 2, the cell population model with structured
medium is described. In section 3, a steady-state param-
eter selection procedure previously developed in our
group is extended to oscillatory data sets. Parameter
estimation results using simulated and experimental
data also are presented. Section 4 summarizes the paper
and presents the major conclusions.

2. Cell Population Model with Structured
Medium

The proposed model consists of a segregated descrip-
tion of the cell population and a simple structured
description of the growth medium. This section focuses
on development of the dynamic equations governing the
extracellular environment. The segregated cell model is
outlined below with an emphasis on the modifications
required to accommodate the structured medium descrip-
tion. Our previous work (18) should be consulted for
details on the segregated yeast model.

2.1. Cell Population Model. Cell division in the
budding yeast cell cycle is asymmetric. The smaller of
the newborn cells generated by division is referred to as
a daughter cell and the larger cell is called a mother cell.
Newborn daughter cells must grow to attain the size
characteristic of newborn mother cells (characterized here

by the cell transition mass) before starting a budding
cycle, while newborn mother cells bud shortly after being
born. After budding has occurred, the bud grows while
the mass of the mother cell remains essentially constant.
Cell division (characterized here by the cell division mass)
produces a newborn daughter cell and a newborn mother
cell that subsequently progress through the cell cycle.
Based on this simple cell cycle model, a population
balance equation (PBE) that describes the evolution of
the cell mass distribution is formulated as follows (19):

where m is the cell mass; W(m, t) is the distribution of
cell mass; K(S′) is the overall single cell growth rate,
which is the sum of the growth rates due to three
metabolic pathways introduced below; S′ represents the
intracellular substrate concentration, which is the sum
of the intracellular concentrations of glucose and ethanol
(explained later); p(m, m′) is the newborn cell mass
distribution function; Γ(m, S′) is the division intensity
function; and D is the dilution rate.

The division intensity function is introduced to account
for the probabilistic nature of cell division:

where mt
/ is the cell transition mass, mo is the ad-

ditional mass beyond mt
/ that mother cells must attain

before division is possible, md
/ is the division mass, and ε

and γ are constant parameters. The newborn cell mass
distribution function has the form

when m < m′ and m′ > mt
/ + mo; the function is

identically zero otherwise. Here A and â are constant
parameters. This function yields two Gaussian peaks in
the cell number distribution, one centered at mt

/ corre-
sponding to mother cells and one centered at mt

/ - m′
corresponding to daughter cells.

Sustained oscillations are generated through an induc-
tion synchrony mechanism (20) in which the transition
and division masses are functions of the nutrient con-
centration. The following saturation functions are used:

where Sl, Sh, mto, mdo, Kt and Kd are constants. For the
nominal parameter values used subsequently, these
functions are consistent with experimental observations
that the ratio of the division mass to the transition mass
increases with increasing nutrient concentration (1, 5).

∂W(m, t)
∂t

+
∂[K(S′)W(m, t)]

∂m
)

∫0

m′
2p(m, m′)Γ(m′, S′)W(m′, t)dm′ -

[D + Γ(m)]W(m, t) (1)

Γ(m, S′) ) {0 m e mt
/ + mo

γe-ε(m-md
*)2 m ∈ [mt

/ + mo, md
/]

γ m g md
/

(2)

p(m, m′) ) A exp[- â(m - mt
/)2] +

A exp[- â(m - m′ + mt
/)2] (3)

mt
/(S′) ) {mto + Kt(Sl - Sh) S′ < Sl

mto + Kt(S′ - Sh) S′ ∈ [Sl, Sh]
mto S′ > Sh

(4)

md
/(S′) ) {mdo + Kd(Sl - Sh) S′ < Sl

mdo + Kd(S′ - Sh) S′ ∈ [Sl, Sh]
mdo S′ > Sh

(5)
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2.2. Structured Medium Model. Oscillatory yeast
dynamics are observed in glucose-limited growth envi-
ronments. Under such conditions, both glucose and the
excreted product ethanol can serve as substrates for cell
growth. The following reaction sequence accounts for the
relevant metabolic pathways, glucose fermentation, glu-
cose oxidation, and ethanol oxidation:

The glucose fermentation rate (Kgf) is assumed to follow
Monod kinetics with respect to the substrate glucose. The
glucose oxidation rate (Kgo) and the ethanol oxidation rate
(Keo) are assumed to follow Monod kinetics with respect
to both substrate and dissolved oxygen. Experiments
show that glucose is preferentially consumed when both
substrates are available (21). This effect is modeled by
introducing a glucose inhibitory term in the ethanol
oxidation rate. The resulting rate expressions are

where G′ and E′ represent intracellular glucose and
ethanol concentrations, respectively; O is the dissolved
oxygen concentration; µmgf, µmgo, and µmeo are maximum
consumption rates; Kmgf, Kmgo, Kmgd, Kmeo and Kmed are
saturation constants; and Kinhib is a constant that char-
acterizes the inhibitory effect of glucose on ethanol
oxidation. Note that the rate expressions do not account
for the so-called Crabtree effect, which causes repression
of glucose oxidation under high glucose concentrations
commonly observed during batch growth (11). While the
Crabtree effect is easily incorporated into the model,
there is little motivation to introduce this additional
complication since the focus of this study is oscillatory
dynamics where the glucose concentration is compara-
tively low.

The substrate mass balance equations are

where G and E are the extracellular glucose and ethanol
concentrations, respectively; Gf and Ef are the feed
glucose and ethanol concentrations, respectively; Ygf, Ygo,
and Yeo are constant yield coefficients; and the ratio 92/
180 represents the mass of ethanol produced per mass
of glucose fermentatively consumed. Experimental data
suggests that key products such as ethanol are excreted

primarily by budded cells (1, 22). The function f(m) in eq
13 is used to model this behavior:

where γe, εe, and me are constant parameters.
The transport of substrates from the extracellular

environment into the yeast cells does not occur instan-
taneously. Rather than utilize rather complex mecha-
nistic models (23), we have chosen to pursue a simpler
phenomenological approach in which the uptake of each
substate is modeled as a first-order process:

where G and E are extracellular concentrations; G′ and
E′ are intracellular concentrations; and Rg and Re are time
constants for the glucose and ethanol substrate uptake
processes, respectively. While they are included to make
the dynamic model more realistic, these equations are
not necessary to generate sustained oscillations.

The liquid-phase oxygen balance is written as

where O* is the saturation oxygen concentration; Klo is
the oxygen mass transfer coefficient; a is the interfacial
area per unit liquid volume; the ratio 192/180 represents
the mass of oxygen consumed per mass of glucose
oxidatively metabolized; and the ratio 96/46 represents
the mass of oxygen consumed per mass of ethanol
metabolized. The oxygen solubility is assumed to be
governed by Henry’s law:

where Ho is the Henry’s rate constant for oxygen; Oout is
oxygen partial pressure in the gas exhaust stream; T is
the absolute temperature; and R is the gas constant. The
gas-phase oxygen balance is

where Vg and Vl are the gas phase and liquid-phase
volumes, respectively; F is the volumetric air feed flow
rate; and Oin is the oxygen partial pressure in the air
feed stream.

The liquid-phase carbon dioxide balance is

where C is the liquid-phase carbon dioxide concentration;
C* is the saturation carbon dioxide concentration; Klc is

C6H12O6 f 2C2H5OH + 2CO2 (6)

C6H12O6 + 6O2 f 6CO2 + 6H2O (7)

C2H5OH + 3O2 f 2CO2 + 3H2O (8)

Kgf(G′) )
µmgfG′

Kmgf + G′ (9)

Kgo(G′, O) )
µmgoG′

Kmgo + G′
O

Kmgd + O
(10)

Keo(G′, E′, O) )
µmeoE′

Kmeo + E′
O

Kmed + O
Kinhib

Kinhib + G′ (11)

dG
dt

) D(Gf - G) - ∫0

∞ [Kgf(G′)
Ygf

+
Kgo(G′)

Ygo
]W(m, t)dm

(12)

dE
dt

) D(Ef - E) + 92
180 ∫0

∞
f(m)

Kgf(G′)
Ygf

W(m, t)dm -

∫0

∞ Keo(E′)
Yeo

W(m, t)dm (13)

f (m) ) {0 m e mt
/

γe exp[-εe(m - mt
/ - me)

2] m > mt
/ (14)

dG′
dt

) Rg(G - G′) (15)

dE′
dt

) Re(E - E′) (16)

dO
dt

) Kloa(O* - O) -

∫0

∞ [192
180

Kgo(G′)
Ygo

+ 96
46

Keo(E′)
Yeo

]W(m, t)dm (17)

O* ) HoRTOout (18)

dVgOout

dt
) F(Oin - Oout) - Kloa(O* - O)Vl (19)

dC
dt

) Klca(C* - C) +

∫0

∞ [264
180

Kgo(G′)
Ygo

+ 88
46

Keo(E′)
Yeo

]W(m, t)dm +

∫0

∞ [f(m) 88
180

Kgf(G′)
Ygf

]W(m, t)dm (20)

1012 Biotechnol. Prog., 2002, Vol. 18, No. 5



the carbon dioxide mass transfer coefficient; the ratio 264/
180 represents the mass of carbon dioxide produced per
mass of glucose oxidatively metabolized; the ratio 88/46
represents the mass of carbon dioxide produced per mass
of ethanol metabolized; and the ratio 88/180 represents
the mass of carbon dioxide produced per mass of glucose
fermentatively metabolized. The carbon dioxide solubility
is modeled as

where Hc is the Henry’s constant for carbon dioxide
evaluated at a pH of 5.0; and Cout is the carbon dioxide
partial pressure in the exhaust gas stream. The gas-
phase carbon dioxide balance is

where Cin is the carbon dioxide partial pressure in the
air feed stream.

2.3. Model Parameters and Numerical Solution.
The dynamic yeast model contains 41 parameters that
must be specified. Values of parameters such as yield
coefficients and maximum growth rates are available in
the literature (21, 24). Glucose saturation constants are
chosen such that glucose fermentation occurs primarily
when the glucose concentration is high (.1 g/L) and
glucose oxidation predominates at low glucose concentra-
tions (≈1 g/L). It has been observed that ethanol oxida-
tion occurs primarily when the glucose concentration is
lower than 0.1 g/L (21). Therefore Kinhib is chosen such
that the effect of glucose inhibition on the ethanol
oxidation rate is prominent at concentrations higher than
0.1 g/L. Values of operating parameters such as the
dilution rate and air flow rate are chosen to match the
experimental conditions used in our laboratory (25). The
“known” parameters and their values are listed in Table
1. Unfortunately, there is no simple basis to select the
parameter values in the segregated model functions.
Table 2 shows nominal values for these “unknown”
parameters, which have been chosen to obtain qualitative
agreement between the model and experimental data
with respect to the period, amplitudes, and dilution rate
range of the oscillatory signals.

The proposed dynamic model consists of a partial
differential-integro equation for the cell mass distribution
coupled to ordinary differential-integro equations repre-
senting the extracellular environment. We have found
that orthogonal collocation on finite elements allows
efficient and robust solution of such cell population
models (18). The mass domain is discretized such that
the population balance equation is approximated by a set
of nonlinear ordinary differential equations in time.
Integral expressions are approximated using Gaussian
quadrature. The resulting nonlinear ordinary differential
equation model is integrated using the MATLAB code
ode15s.

3. Model Parameter Estimation
The parameter values in Table 2 were adjusted by

hand to achieve qualitative agreement with experimental
observations. The problem of determining “optimal”
parameter values is nontrivial since their effect on model
behavior is complex. Because the proposed model pro-
vides predictions of readily measurable extracellular
variables such as dissolved oxygen and evolved carbon
dioxide concentrations, experimental data can be used
to estimate unknown model parameters in an attempt

to achieve quantitative agreement. In section 3.1, a
model-based method for determining which unknown
parameters can be estimated most reliably for a given
set of oscillatory measurements is presented. An optimi-
zation based strategy for estimating the chosen param-
eters from dynamic data is discussed in section 3.2.

3.1. Parameter Selection. The model parameters
best suited for estimation are determined by the model
structure, the available measurements and the experi-
mental data. Below we present a parameter selection
method in which the first two factors are considered
explicitly. As discussed below, the effect of the available
experimental data must be evaluated numerically. The
objective is to select a subset of the unknown model
parameters that have the strongest influence on model
behavior. The discretized yeast model is represented as

where x̂ is the state vector, which consists of cell number
distribution values at the collocation points and the
extracellular variables; ŷ is the vector of measured output
variables to be defined below; u is a vector of input
variables; θfix is a vector containing the “known” model
parameters listed in Table 1 that are fixed at constant
values and not used for estimation; and θest is a vector
containing the “unknown” parameters listed in Table 2
that are available for estimation.

Two issues must be considered in selecting the model
parameters to be estimated. First, the parameters should
have a strong effect on the output measurements. Oth-
erwise large changes in parameter values are required
to fit the data. Second, the effect of each parameter on
the measured outputs should be unique. Parameters
whose effects are strongly collinear lead to nonunique
values when estimation is performed with limited plant
data. The parameters chosen for estimation should
provide an appropriate balance between these two objec-
tives. Below we introduce the concept of “parameter
identifiability” as a measure of the potential to uniquely
determine a particular parameter from a given set of
measurements.

C* ) Hc(pH)RTCout (21)

dVgCout

dt
) F(Cin - Cout) - Klca(C* - C)Vl (22)

Table 1. Experimentally Derived Model Parameters

variable value variable value

Ygf 0.15 g/g µmgf 30 × 10-13 g/h
Ygo 0.65 g/g µmgo 3.25 × 10-13 g/h
Yeo 0.5 g/g µmeo 7 × 10-13 g/h
Kmgf 40 g/l Kmgo 2 g/L
Kmeo 1.3 g/L Kinhib 0.4 g/L
Kmgd 0.001 g/L Kmed 0.001 g/L
Ho 0.0404 g/L/atm Hc 1.48 g/L/atm
Vg 0.9 l Vl 0.1 l
Kla 1500 h-1 Klc 1500 h-1

D 0.15 h-1 Gf 30 g/L
Ef 0 g/L F 90 L/h
T 298 K Oin 0.21 atm
Cin 0.0003 atm

Table 2. Other Model Parameters

variable value variable value

γ 400 ε 7
γe 8 εe 20
mo 1 × 10-13 g me 1.54 × 10-13 g
A x(10/π) â 40
Sl 0.1 g/L Sh 2.0 g/L
Kt 0.01 g/g‚L Kd 3.83 g/g‚L
mto 4.55 × 10-13 g mdo 10.25 × 10-13 g
Rg 20 Re 20

ẋ̂ ) f(x̂, u, θfix, θest) (23)

ŷ ) h(x̂, u, θfix, θest) (24)
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While other methods are available (26-28) we utilize
a parameter selection procedure developed in our group
(29) that accounts for output sensitivities to parameter
variations and collinearities between parameter effects.
First the procedure is described for steady-state analysis.
The model is used to compute steady-state output values
for nominal and perturbed values of each parameter in
the set θest. Elements of the parameter-output sensitivity
matrix K are calculated as

where θest,j is the nominal value of the j-th adjustable
parameter; ∆θest,j is the difference between the perturbed
and nominal values of the j-th adjustable parameter; yĵni
is the steady-state value of the i-th measured out-
put obtained with the nominal parameter values; and
∆yĵi is the difference between the perturbed and nominal
steady-state values of the i-th measured output.

Principle component analysis (PCA) (30, 31) is per-
formed on the sensitivity matrix to evaluate the overall
effect of each parameter on the measured outputs. The
principle components are the eigenvectors of the covari-
ance matrix KKT. The weighted sum of the principal
components and their associated eigenvalues is a mea-
sure of the overall parameter effect:

where m is the number of measurements; Pij is the j-th
element of the i-th principle component; and λi is the i-th
eigenvalue. Absolute values are used because the sign
of each individual effect is not relevant. The highest
ranked parameter has the largest overall effect wj. The
remaining parameters are ranked to provide a suitable
compromise between their overall effect and their col-
linearity with higher ranked parameters. The sine of the
angle between the sensitivity vectors of two parameters
is a measure of their collinearity:

where Ki is the sensitivity vector of parameter θi; < ‚,‚ >
denotes the inner product; ||‚|| denotes the 2-norm; and
R ∈ [0, π]. If the sensitivity vectors are orthogonal, then
sin Rθi,θj ) 1 and the effects of the two parameter are
easily distinguished. Conversely, sin Rθi,θj ) 0 when the
sensitivity vectors are parallel and the parameter effects
cannot be distinguished.

The identifiability of a particular parameter is defined
as its overall effect weighted by its collinearity with
higher ranked parameters:

where n is the number of parameters; and JN,i is the
identifiability of the i-th parameter when N parameters
are ranked higher. These calculations can be used
iteratively to generate a ranking of adjustable param-
eters (29).

As described above, the parameter selection procedure
is suitable only for steady-state analysis. Consequently,
this method may rank highly parameters that strongly

affect steady-state behavior but have little effect on
dynamic behavior such as sustained oscillations. The
parameter ranking procedure can be extended to limit
cycle behavior by characterizing the periodic solution
with the amplitude and mean value of each measured
variable as well as the oscillation period. Then the
sensitivity of a given parameter is defined as the normal-
ized difference between the mean, amplitude and period
of fully developed oscillations for perturbed and nominal
values of the parameter. Based on this modified sensitiv-
ity matrix, the same iterative procedure can be used to
determine parameter rankings which are better suited
for fitting oscillatory data.

The ranking determines which parameters should be
estimated given that the number of estimated param-
eters has been chosen. The appropriate number of
estimated parameters is affected by the quantity and
quality of the available data. If the number of parameters
selected is too small, the model will produce unsatisfac-
tory predictions. The use of too many parameters leads
to nonuniqueness of the estimates for different initial
parameter values. Both situations are undesirable and
should be avoided. Below we show that the appropriate
number of estimated parameters can be determined by
limited simulation studies.

Because the sensitivity matrix is constructed by per-
turbing a nominal steady-state or oscillatory solution, the
analysis is inherently local. We have found that the
parameter ranking usually is weakly dependent on the
perturbation as long as the perturbation magnitude is
sufficiently small. By contrast, the nominal parameter
values can have a strong effect on the ranking procedure.
This emphasizes the need to specify “good” initial values
for the adjustable parameters and to exercise engineering
judgment in interpreting the results.

In the subsequent simulation studies, the measured
variables are assumed to be percent carbon dioxide and
percent oxygen in the gas exhaust stream, the percent
dissolved oxygen, and the glucose, ethanol, and cell
number concentrations in the liquid phase. Steady-state
data for parameter sensitivity analysis are generated at
a dilution rate of 0.1 h-1 and an air flow rate of 90 L/h.
The “unknown” parameters in Table 2 are perturbed by
1% from their nominal values, while the “known” pa-
rameters in Table 1 remain fixed at their nominal values.
In the dynamic case, sustained oscillations at a dilution
rate of 0.15 h-1 and an air flow rate of 90 L/h represent
the nominal state. The “unknown” parameters are varied
by one percent to generate perturbed limit cycles.

Results of the parameter ranking procedure for steady-
state analysis are shown in the first column of Table 3.
Saturation values of the division mass (mdo) and the
transition mass (mto) are ranked first and second, re-
spectively. Because they determine the cell mass that
mother and daughter cells attain, these two parameters
have strong effects on the amount of substrate consumed
and the output signals produced. The parameter me
ranked third has the largest effect on the steady-state
ethanol concentration. Because the nominal substrate
concentration is much greater than the lower limit in the
transition and division mass functions, Sl is identified
as the third least important parameter. The filter pa-
rameters (Rg, Re) are ranked last because they have no
steady-state effect on the measurements.

Results of the parameter ranking procedure for dy-
namic analysis are shown in the second column of Table
3. As before, mdo is ranked as the most important
parameter. The ethanol production parameter me is
chosen as the second most important parameter, and the

Kij )
∆yĵi/yĵn,i

∆θest,j/θest,j
(25)

wj ) ∑
i)1

m

|λiPij| (26)

sin Rθi,θj
)

〈 Ki, Kj 〉
||Ki||‚||Kj||

(27)

JN,i ) wi ∏
j)1

N

sin Rθj,θi
; i ) 1, ..., n; i * j (28)
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slope of the division mass function Kt is ranked third.
These results can be explained by noting that oscillations
are attributable to synchrony in the cell mass distribu-
tion. The parameter me determines the overlap of the
ethanol production function with the cell mass distribu-
tion, thereby determining the amount of ethanol excreted
during each cell cycle. The slope Kt determines the values
between which the transition mass mt

/ varies. There-
fore, this parameter has stronger effect on oscillation
amplitudes than does the saturation value mto. Note that
the parameter A in the newborn probability distribution
function is considered to be much more important than
in the steady-state case. This can be explained by noting
that A determines the dispersive effect of the probability
function, thereby influencing the oscillatory behavior. The
effect of the ethanol production function slope εe is found
to be highly collinear with that of me; therefore εe is
ranked as the third least important parameter. The
parameters Rg and Re are ranked last because they have
little influence on the means, amplitudes and period of
the sustained oscillations.

In our laboratory, the glucose and cell number concen-
trations must be measured off-line. These measurements
were unavailable at the time experimental data was
collected. Furthermore, the on-line measurement of
liquid-phase ethanol concentration was not sufficiently
sensitive to provide reliable data during sustained oscil-
lations. Therefore, the ranking procedure was repeated
with these three measurements excluded from the set of
available measurements. Results for dynamic analysis
are shown in the third column of Table 3. The first two
parameters are the same as those obtained when the
additional three measurements are available (second
column of Table 3). The parameter previously ranked
third (Kt) is unimportant as a result of the lack of the
cell number concentration measurement. Instead, mto is
ranked third because it has a relatively large effect on
the mean values of the available measurements.

3.2. Parameter Estimation from Simulated Steady-
State Data. The parameter selection method yields a
ranking of the adjustable parameters in terms of their
identifiability. The number of parameters that can be
estimated reliably is not known a priori from the ranking.
For this purpose, limited simulation tests are conducted
to determine the number of parameters that can be
estimated from the available data. The primary motiva-
tion for such simulation tests is to provide the necessary
analysis for the parameter selection and estimation
methods. Otherwise, parameter estimates subsequently
derived from experimental data will be rather dubious.

Values of the parameters θfix listed in Table 1 are
assumed to be known. The model with the nominal values
for the parameters θest listed in Table 2 is termed the
“plant” and is used to generate steady-state simulation
data at different operating conditions. The unknown
parameter set θest is divided into two subsets. The first
subset θ1 consists of the unknown parameters that are
actually estimated, while the second subset θ2 contains
the remaining unknown parameters that are not esti-
mated. Parameters in θ1 are selected on the basis of the
ranking generated by the parameter selection method.
Only the parameters θ1 are used as decision variables in
the optimization-based parameter estimation strategy
described below.

To test the parameter estimation method, initial values
of the unknown parameters θ1 used in the model are
chosen to be significantly different than the values listed
in Table 2. Values of the other unknown parameters θ2
used in the model are obtained by randomly perturbing
the plant values listed in Table 2 using a Gaussian
distribution with zero mean and variance of 0.3. Table 4
shows values of the plant and perturbed parameters θ2
for 1-4 estimated parameters. The objective is to uniquely
determine values of the parameters θ1 such that the error
between the model predictions and plant outputs is
minimized. Because the unknown parameters θ2 are
perturbed from their nominal plant values, the estimated
values of the parameters θ1 are not expected to converge
to the plant values.

Steady-state values of the dissolved oxygen, evolved
carbon dioxide, evolved oxygen, ethanol, glucose, and
total cell number concentrations at different air flow rates
and dilution rates are used as the data set for parameter
estimation. Data are generated at two air flow rates (60
and 90 L/h) and two dilution rates (0.1 and 0.22 h-1)
chosen to be below and above the range where sustained
oscillations occur. The complete data set consists of the
six measurement at four different steady-state operating
conditions.

A constrained least-squares optimization problem is
formulated to generate the parameter estimates. The

Table 3. Parameter Rankings

simulation
steady-state

simulation
dynamic

experimental
dynamic

para-
meter Ji

para-
meter Ji

para-
meter Ji

mdo 9.1 × 10-1 mdo 9.2 × 10-1 mdo 8.2 × 10-1

mto 3.9 × 10-1 me 3.5 × 10-1 me 3.3 × 10-1

me 9.2 × 10-2 Kt 1.2 × 10-1 mto 1.5 × 10-1

γe 1.1 × 10-3 Kd 3.4 × 10-2 γe 4.31 × 10-2

Sh 8.5 × 10-4 mto 2.2 × 10-2 Kd 3.6 × 10-2

ε 2.7 × 10-4 ε 3.6 × 10-3 εe 1.75 × 10-2

εe 4.9 × 10-5 mo 1.5 × 10-3 ε 9.7 × 10-3

Kd 1.8 × 10-5 γ 1.2 × 10-3 Sl 9.85 × 10-4

γ 7.2 × 10-6 A 1.1 × 10-3 γ 5.36 × 10-5

Kt 6.7 × 10-6 Sl 9.5 × 10-4 A 3.69 × 10-6

A 9.4 × 10-7 Sh 4.0 × 10-4 Kt 1.21 × 10-6

mo 6.1 × 10-7 γe 6.0 × 10-5 mo 3.48 × 10-8

Sl 5.4 × 10-8 εe 3.2 × 10-6 Sh 1.09 × 10-8

Rg,Re 3.8 × 10-13 Rg,Re 1.9 × 10-8 Rg,Re 1.6 × 10-9

Table 4. Plant and Perturbed Parameters θ2 for
Steady-State Analysis

parameters

parameter plant value 1 2 3 4

mdo 10.25
mto 4.55 5.25
me 1.54 2.54 2.54
γe 1.25 1.55 1.55 1.55
Sh 2 2.3 2.3 2.3 2.3
εe 20 27 27 27 27
ε 7 10.94 10.94 10.94 10.94
Kd 3.83 3.95 3.95 3.95 3.95
γ 400 136.78 136.78 136.78 136.78
Kt 0.01 0.021 0.021 0.021 0.021
A 10 6.77 6.77 6.77 6.77
mo 1 0.65 0.65 0.65 0.65
Sl 0.1 0.2 0.2 0.2 0.2
Rg 20 27.23 27.23 27.23 27.23
Re 20 15.11 15.11 15.11 15.11

Table 5. Initial and Final Parameters θ1 Estimated from
Steady-State Data

parameters

1 2 3

parameter plant initial final initial final initial final

mdo 10.25 10.5 10.89 10.5 10.89 11.1 10.68
mto 4.55 4.75 4.97 5 4.58
me 1.54 1.8 1.63
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objective function is written as

where f s is the objective function for steady-state opti-
mization; n ) 4 is the number of data points; m ) 6 is
the number of measurements; wij

s is the weighting factor
for the j-th measurement in the i-th data set; yĵij is the
steady-state prediction of the j-th measurement in the
i-th data set; and yjij is the corresponding plant measure-
ment. The steady-state plant values are used as scaling
factors:

The decision variables in the optimization problem are
the parameters θ1 to be estimated. While only the
measured variables are matched to plant data, the other
state variables are constrained by the model. Therefore,
the model equations form the equality constraints of the
optimization problem:

Inequality constraints arise from nonnegativity restric-
tions on the estimated parameters (θ1 g 0). The resulting
nonlinear programming problem is solved using the
routine fmincon in MATLAB.

Initial and optimized values for 1-3 estimated param-
eters are listed in Table 5. Although not shown here for
the sake of brevity, a single estimated parameter (mdo)
is insufficient to match the plant outputs. As shown in
Table 6, significant prediction errors also are observed
when a second parameter (mto) is estimated. The most
significant error occurs in the ethanol concentration. The
prediction errors result in a relatively large normalized
squared sum of errors (SSE) between the plant and model
outputs. The parameter ranked third (me) has a strong
effect on the predicted ethanol concentration. Conse-
quently, three estimated parameters significantly im-
prove the model predictions as reflected by the compara-
tively low SSE value in Table 7. The predicted outputs
are sufficiently close to the plant outputs that the two
sets would be almost indistinguishable by measurement.

Because the nonlinear optimization problem is non-
convex and has local minima, there is a range of initial
values that produce a unique set of parameter estimates.
Increasing the number of estimated parameters from two
to three reduces this range roughly by 50%. The intro-
duction of a fourth estimated parameter (γe) shrinks the
range even further. As shown in Table 8, different values
of the estimated parameters are obtained even with
marginally different initial guesses. This occurs because
γe is highly collinear with mto and there is insufficient
data to resolve their individual effects. Even though the
SSE is reduced when the first set of optimized param-
eters in Table 8 is used to generate predictions (see Table
9), the nonuniqueness problem precludes the use of four

Table 6. Prediction Results for Two Parameters Estimated from Steady-State Data

D ) 0.1, F ) 90 D ) 0.1, F ) 60 D ) 0.22, F ) 90 D ) 0.22, F ) 60

measurement plant model plant model plant model plant model

dissolved O2 [%] 72.5 63.84 71.02 75.73 42.15 48.79 39.95 44.98
evolved CO2 [%] 0.78 0.88 1.11 0.95 1.52 1.36 2.18 2.0
evolved O2 [%] 20 20 19 19.01 17.88 17.9 17.05 17.07
ethanol [g/L] 0.008 0.017 0.008 0.017 0.161 0.0937 0.172 0.116
glucose [g/L] 0.23 0.24 0.23 0.23 0.8 0.8 0.82 0.82
cell concentration [1010/L] 2061 2040 2056 2030 1390 1380 1365 1360
SSE 2.745

Table 7. Prediction Results for Three Parameters Estimated from Steady-State Data

D ) 0.1, F ) 90 D ) 0.1, F ) 60 D ) 0.22, F ) 90 D ) 0.22, F ) 60

measurement plant model plant model plant model plant model

dissolved O2 [%] 72.5 74.8 71.02 73.45 42.15 41.67 39.95 39.47
evolved CO2 [%] 0.78 0.73 1.11 1.03 1.52 1.54 2.18 2.2
evolved O2 [%] 20.15 20.11 20.03 20.01 19.87 19.9 19.35 19.07
ethanol [g/L] 0.008 0.004 0.008 0.004 0.161 0.17 0.172 0.182
glucose [g/L] 0.23 0.23 0.23 0.23 0.8 0.8 0.82 0.82
cell concentration [1010/L] 2061 2040 2056 2030 1390 1380 1365 1360
SSE 0.54

Table 8. Initial and Final Parameters θ1 for Four
Parameters Estimated from Steady-State Data

first set second set

parameter plant values initial final initial final

mdo 10.25 10.5 10.68 10.75 10.66
mto 4.55 4.7 4.58 4.3 4.35
me 1.54 1.5 1.63 1.7 1.65
γe 1.25 1.4 1.31 1.1 1.21

Table 9. Prediction Results for Four Parameters Estimated from Steady-State Data

D ) 0.1, F ) 90 D ) 0.1, F ) 60 D ) 0.22, F ) 90 D ) 0.22, F ) 60

measurement plant model plant model plant model plant model

dissolved O2 [%] 72.5 72.91 71.02 72.02 42.15 44.69 39.95 41.51
evolved CO2 [%] 0.78 0.78 1.11 1.13 1.52 1.48 2.18 2.03
evolved O2 [%] 20.15 20.1 20.03 20.04 19.87 19.89 19.35 19.08
ethanol [g/L] 0.008 0.007 0.008 0.007 0.161 0.134 0.172 0.153
glucose [g/L] 0.23 0.22 0.22 0.22 0.8 0.8 0.82 0.82
cell concentration [1010/L] 2061 2060 2056 2059 1390 1380 1365 1360
SSE 0.11

f s ) ∑
i)1

n

∑
j)1

m

wij
s (yĵij - yjij)

2 (29)

wij
s ) 1/ yjij

2 (30)

ẋ̂ ) f(x̂, u, θfix, θ1, θ2) (31)

ŷ ) h(x̂, u, θfix, θ1, θ2) (32)
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estimated parameters. In this case, the structure of the
model allows only three parameters to be estimated from
the available steady-state data.

Next the parameter estimates derived from steady-
state data are evaluated for their ability to predict
dynamic behavior. The simulated dynamic data used for
analysis represents batch startup followed by a switch
to continuous operation. Because sustained oscillation are
observed in the plant following the switch, this data set
tests the ability of the model parameters to support
periodic solutions. The values of the parameters θ2 and
θ1 used are listed in Tables 4 and 5, respectively. As
shown in Figure 1, the model predictions are surprisingly
good for the batch growth phase given that the dynamic
model is not designed for this purpose. However, the
model does not predict sustained oscillations following
the switch to continuous operation at t ) 20 h. This
motivates the need to select and estimate model param-
eters based on dynamic considerations.

3.3. Parameter Estimation from Simulated Dy-
namic Data. Dynamic parameter estimation requires a
data set that is rich in transient information including
sustained oscillations. The optimization strategy used to

solve the dynamic parameter estimation problem imposes
computational restrictions on the data set. More specif-
ically, the parameter estimates are obtained by iterating
between a constrained nonlinear optimizer that mini-
mizes the least-squares difference between the plant and
model outputs over the dynamic data set and an integra-
tor that computes dynamic model predictions for the
current set of parameter estimates. Computational ef-
ficiency requires an information-rich data set that is
collected over a relatively small time window. We have
found that batch operation followed by a switch to
continuous operation satisfies these requirements be-
cause the resulting data set contains information on the
transient approach to sustained oscillations as well as
the fully developed oscillations.

On-line measurements of the dissolved oxygen concen-
tration and the evolved oxygen and carbon dioxide
concentrations are assumed to be available every minute.
Off-line measurements of the glucose, ethanol, and cell
number concentrations are assumed to be available every
6 min. Therefore, the dynamic data set is generated by
sampling the plant outputs at 6-min intervals. The model
is sampled at the same frequency to obtain the output
predictions. The least-squares objective function is for-
mulated as

where f d is the objective function for dynamic optimiza-

Figure 1. Simulation results for three parameters estimated from steady-state data (parameter values in Tables 4 and 5).

Table 10. Plant and Perturbed Parameters θ2 for
Dynamic Analysis

parameters

parameter plant 1 2 3

mdo 10.25
me 1.54 2.54
Kt 0.01 0.021 0.021
Kd 3.83 3.95 3.95 3.95
mto 4.55 5.25 5.25 5.25
ε 7 10.94 10.94 10.94
mo 1 0.65 0.65 0.65
γ 400 136.78 136.78 136.78
A 10 6.77 6.77 6.77
Sl 0.1 0.2 0.2 0.2
Sh 2 2.3 2.3 2.3
γe 1.25 1.55 1.55 1.55
εe 15 20.98 20.98 20.98
Rg 20 27.23 27.23 27.23
Re 20 15.11 15.11 15.11

Table 11. Initial and Final Parameters θ1 Estimated
from Simulated Dynamic Data

parameters

1 2 3

parameter initial final initial final initial final

mdo 11 12.1688 11 11.75 11 10.813
me 1.8 1.6 1.8 1.52
Kt 0.02 0.585

f d ) ∑
i)1

m

wi
d ∑

j)1

N

wj
d[ŷi(j∆t) - yi(j∆t)]2 (33)
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tion; m is the number of measurements; N is the number
of samples; ∆t is the sampling time; ŷi(j∆t) is the model
prediction of the i-th variable at the j-th sampling time;
yi(j∆t) is the corresponding plant value; wi

d is a scaling
weight the i-th variable chosen as in the steady-state
case; and wj

d is a dynamic weight that varies with the
sample number. The dynamic weights are chosen as wj

d

) j2 to place greater emphasis on matching the fully
developed oscillations during continuous operation at the
expense of the batch growth predictions. The Matlab
functions fmincon and ODE15s are used for constrained

optimization and integration, respectively. Iterations
between the two subproblems are continued until the
successive difference in the objective function is below a
tolerance of 10-4.

Values of the unknown model parameters θ2 are
generated from the plant values as in the steady-state
case (see Table 10). The need for parameter estimation
is demonstrated by simulating the model with the initial
parameter values where mdo ) 11 ×10-13 g and the
remaining values are listed in the third column of Table
10. As shown in Figure 2, these values do not support

Figure 2. Simulation results for nominal parameter values in Table 10.

Figure 3. Simulation results for single parameter estimated from simulated dynamic data (parameter values in Tables 10 and 11).
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sustained oscillations following the switch to continuous
operation. Steady-state predictions of the measured

outputs also are significantly different than the mean
plant values.

Figure 4. Simulation results for two parameters estimated from simulated dynamic data (parameter values in Tables 10 and 11).

Figure 5. Simulation results for three parameters estimated from simulated dynamic data (parameter values in Tables 10 and 11).

Table 12. Steady-State Prediction Results for Three Parameters Estimated from Simulated Dynamic Data

D ) 0.1, F ) 90 D ) 0.1, F ) 60 D ) 0.22, F ) 90 D ) 0.22, F ) 60

measurement plant model plant model plant model plant model

dissolved O2 [%] 72.5 71.44 71.02 69.9 42.15 42.18 39.95 40.01
evolved CO2 [%] 0.78 0.81 1.11 1.15 1.52 1.52 2.18 2.18
evolved O2 [%] 20.15 20.03 20.03 20.07 19.87 19.91 19.35 19.12
ethanol [g/L] 0.008 0.01 0.008 0.011 0.161 0.167 0.172 0.178
glucose [g/L] 0.23 0.23 0.22 0.23 0.8 0.81 0.82 0.83
cell concentration [1010/L] 2061 2060 2056 2059 1390 1380 1365 1360
SSE 0.12
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Initial and optimized values for 1-3 estimated param-
eters are shown in Table 11. Figure 3 shows that
estimation of a single parameter (mdo) does not produce
sustained oscillations. However, the steady-state predic-
tions are closer to the mean plant values than is achieved
without estimation (see Figure 2). As shown in Figure 4,
two estimated parameters (mdo, me) produce sustained
oscillations. The second parameter me has a strong effect
on the amount of ethanol produced. Because the ethanol
concentration affects both the dissolved oxygen and
carbon dioxide concentrations, these two variables are

predicted accurately. By contrast, the glucose and cell
number concentration predictions are poor because they
are largely independent of the two estimated parameters.
Figure 5 shows that three estimated parameters (mdo,
me, Kt) produce a very good match of the plant data. This
improvement is attributable to the inclusion of a third
parameter Kt, which determines the amount of substrate
consumed and therefore has a strong effect on the total
cell number concentration.

Next the parameters estimated from dynamic data are
evaluated for their ability to predict steady-state behav-

Figure 6. Comparison of plant and model oscillations at D ) 0.18 h-1 using one parameter estimated from simulated dynamic data
(parameter values in Tables 10 and 11).

Figure 7. Comparison of plant and model oscillations at D ) 0.18 h-1 using two parameters estimated from simulated dynamic
data (parameter values in Tables 10 and 11).
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ior. Table 12 shows that three parameters (mdo, me, Kt)
estimated from reactor startup data predict the steady-
state plant outputs more accurately than three param-
eters (mdo, mto, me) estimated from steady-state data (see
Table 7) as reflected by their relative SSE values.
Apparently the dynamic data for batch and continuous
operation provides more useful information about plant
behavior than the steady-state data alone.

Thus far, prediction accuracy has been evaluated only
for the training data set used in parameter estimation.
To access extensibility of the model parameters, it is
necessary to generate predictions for a different valida-

tion data set. For this purpose, the estimated parameters
are evaluated for their ability to predict sustained

Figure 8. Comparison of plant and model oscillations at D ) 0.18 h-1 using three parameters estimated from simulated dynamic
data (parameter values in Tables 10 and 11).

Figure 9. Comparison of simulated and experimental responses using nominal model parameter values in Tables 1 and 2.

Table 13. Initial and Final Parameters θ1 Estimated
from Experimental Data

parameters

3 4

parameter initial final initial final

mdo 10.25 11.43 10.25 12.45
me 1.54 0.62 1.54 0.8
mto 4.55 4.95 4.55 7.15
γe 1.25 1.81
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oscillations at D ) 0.18 h-1 rather than D ) 0.15 h-1 used
in the training data set. As shown in Figure 6, a single
estimated parameter (mdo) leads to sustained oscillations
with significantly different mean values and amplitudes
than observed in the plant. Figure 7 shows that two
estimated parameters (mdo, me) yield improved predic-
tions with respect to the evolved carbon dioxide, evolved
oxygen, dissolved oxygen and ethanol concentrations. As
observed with the training data set, the glucose and cell
number concentrations are not well matched. Figure 8

shows that three estimated parameters (mdo, me, Kt) yield
predictions that are in good agreement with the plant.

3.4. Estimation from Experimental Dynamic Data.
The final and most important test of the parameter
estimation strategy is the ability to match actual data
collected in our laboratory. Figure 9 shows a comparison
between model predictions generated using the nominal
parameter values in Tables 1 and 2 and experimental
data for a switch from batch to continuous operation.
Although the amplitudes and mean values of the pre-

Figure 10. Comparison of simulated and experimental responses using three parameters estimated from experimental data
(parameter values in Tables 10 and 13).

Figure 11. Comparison of simulated and experimental responses using four parameters estimated from experimental data (parameter
values in Tables 10 and 13).
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dicted variables are reasonably close to the experimental
values, the predicted period is significantly too large. This
motivates the need for parameter estimation to reduce
the plant-model mismatch.

Formulation of the constrained nonlinear optimization
problem is identical to that presented earlier for simu-
lated dynamic data except that only three measured
outputs (dissolved oxygen, evolved carbon dioxide, and
evolved oxygen concentrations) are available. The previ-
ous simulation tests suggest that at least three param-
eters must be estimated to capture oscillatory dynamics.

In this case, the parameter rankings for experimental
dynamic data (see Table 3) are used to select the
estimated parameters θ1. The parameters θ2 are fixed at
the values listed in the second column of Table 10. Initial
and optimized values for three and four estimated
parameters are listed in Table 13.

As shown in Figure 10, three estimated parameters
(mdo, me, mto) do not produce sustained oscillations
following the switch from batch to continuous operation.
Furthermore, the steady-state prediction of the evolved
oxygen concentration is significantly different from the

Figure 12. Comparison of simulated and experimental oscillations for nominal parameter values in Tables 1 and 2.

Figure 13. Comparison of simulated and experimental oscillations for four parameters estimated from experimental data (parameter
values in Tables 10 and 13).
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mean experimental value. The inability to satisfactorily
predict the experimental data using three estimated
parameters may be attributable to structural limitations
of the model. To address this problem, the parameter γe
ranked fourth is included in the set θ1 of estimated
parameters. While some improvement in the batch
growth phase are evident in Figure 11, the model
dynamics are considerably slower than the dynamics of
the real system. As a result, the predicted oscillations
take much longer to become fully developed. To evaluate
the ability of the model to capture fully developed
oscillations, model predictions generated with the nomi-
nal parameter values and with the four estimated
parameter values are compared with experimental data
in Figures 12 and 13, respectively. The predicted oscil-
lations are initiated to be in phase with the experimental
oscillations. The results demonstrate that estimation of
four parameters yields significant improvements in the
model predictions.

The transient response of the evolved carbon dioxide
concentration for a series of dilution rate changes is used
to evaluate extensibility of the estimated model param-
eters to other operating conditions. The dilution rate is
ramped sufficiently slowly that the fermenter remains
in a quasi-steady state (25). Experimental data is gener-
ated by setting D ) 0.13 h-1 for the first 20 h, followed
by a 24-h ramp down to D ) 0.1 h-1, operation at D )
0.1 h-1 between 44 and 96 h, followed by a 24-h ramp up
to D ) 0.13 h-1 and subsequent operation at D ) 0.13
h-1 until t ) 160 h. The experimental data shown in
Figure 14 suggests the existence of both stable stationary
and oscillatory states at D ) 0.13 h-1. The four estimated
parameters do not support sustained oscillations at this
dilution rate. However, sustained oscillations are pre-
dicted at D ) 0.134 h-1, which is very close to the
experimental value. Therefore, dynamic model simulation
is performed using D ) 0.134 h-1 as the upper value of
the dilution rate; otherwise the dilution rate sequence is
identical to that used experimentally. Figure 14 shows
that the model captures the damping behavior at lower

dilution rates and the very small decaying oscillations
when the dilution rate is returned back to the oscillatory
range. These results demonstrate that the proposed
model combined with parameter estimation can satis-
factorily predict the dynamic behavior of S. cerevisiae.

4. Summary and Conclusions

A cell population model with a simple structured
description of the extracellular environment has been
presented for the microorganism S. cerevisiae. As com-
pared to completely unstructured models, the major
advantage of the proposed model is that it contains
extracellular variables that can be compared directly to
readily available laboratory measurements. This facili-
tates the development of model parameter estimation
techniques that allow quantitative prediction of experi-
mental data. A parameter selection method previously
developed in our group is shown to be useful for identify-
ing subsets of parameters that can be estimated reliably
from steady-state measurements. The method does not
directly determine the number of parameters that can
be uniquely determined from a given data set. Tests with
simulated steady-state data reveal that three model
parameters can be estimated reliably, while the inclusion
of a fourth parameter leads to collinearity and conver-
gence problems. Parameter estimation from steady-state
data is shown to be inadequate for predicting oscillatory
yeast dynamics.

The parameter selection method has been extended to
fully developed oscillations where model behavior is
characterized by the mean, amplitude and period of each
measured variable. Parameter estimation with simulated
dynamic data improves the prediction of oscillatory
dynamics as compared to the steady-state case. Three
parameters are shown to be sufficient to capture the
plant behavior. Application of the proposed methodology
to experimental data collected in our laboratory leads to
significant improvements in the prediction of dynamic
behavior including fully developed oscillations. This work

Figure 14. Comparison of simulated and experimental dilution rate ramp tests using four parameters estimated from experimental
data (parameter values in Tables 10 and 13).
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demonstrates the utility of simple segregated model for
describing the essential features of yeast culture dynam-
ics.

Notation
C dissolved carbon dioxide concn [g/L]
C* saturation carbon dioxide concn [g/L]
Cin carbon dioxide partial pressure in air feed stream

[atm]
Cout carbon dioxide partial pressure in gas exhaust

stream [atm]
D dilution rate [h-1]
E ethanol concn [g/L]
E′ intracellular ethanol concn [g/L]
Ef ethanol feed concn [g/L]
F volumetric flow rate of air [L/h]
G glucose concn [g/L]
G′ intracellular glucose concn [g/L]
Gf glucose feed concn [g/L]
Ho Henry’s law constant for oxygen [g/L/atm]
Hc Henry’s law constant for carbon dioxide [g/L/atm]
Kd slope of division mass with respect to substrate

concn in saturation function [L]
Keo ethanol oxidation rate [g/h]
Kgf glucose fermentation rate [g/h]
Kgo glucose oxidation rate [g/h]
Kinhib inhibition constant for ethanol oxidation [g/L]
klc carbon dioxide mass transfer coefficient [m/h]
Klo oxygen mass transfer coefficient [m/h]
Kmeo ethanol saturation constant for ethanol oxidation

[g/L]
Kmgf glucose saturation constant for glucose fermen-

tation [g/L]
Kmgo glucose saturation constant for glucose oxidation

[g/L]
K overall single cell growth rate [g/h]
Kt slope of transition mass with respect to substrate

concn in saturation function [L]
O dissolved oxygen concn [g/L]
O* saturation dissolved oxygen concn [g/L]
Oout oxygen partial pressure in gas exhaust stream

[atm]
Oin oxygen partial pressure in the feed stream [atm]
R gas constant [L atm/mol/K]
Sl, Sh substrate concn limits in the saturation functions

[g/L]
S′ intracellular substrate concn [g/L]
T absolute temperature [K]
Vg reactor gas-phase volume [L]
Vl reactor liquid-phase volume [L]
W distribution of cell mass [no./g]
x̂ model state vector
Yeo yield coefficient for ethanol oxidation [g/g]
Ygf yield coefficient for glucose fermentation [g/g]
Ygo yield coefficient for glucose oxidation [g/g]
a interfacial area per unit liquid volume [m-1]
f ethanol production function
fd objective function for parameter estimation from

dynamic data
fs objective function for parameter estimation from

steady-state data
kgo dissolved oxygen saturation constant for glucose

oxidation [g/L]
keo dissolved oxygen saturation constant for ethanol

oxidation [g/L]

me mass cells must attain to produce ethanol [g]
md

/ cell division mass [g]

mt
/ cell transition mass [g]

mo mass above mt
/ a mother cell must gain before

division is possible [g]
mdo saturation value for division mass [g]
mto saturation value for transition mass [g]
p newborn cell mass distribution function
u input vector
y measured variables in plant
ŷ measured variables as predicted by model
Re filter constant for ethanol [h-1]
Rg filter constant for glucose [h-1]
Γ division intensity function
γ preexponential factor in division intensity func-

tion
γe preexponential factor in ethanol production func-

tion
ε division intensity function slope
εe ethanol production function slope
θ1 unknown parameter values that are estimated
θ2 unknown parameter values that are not esti-

mated
θfix parameter values derived from literature
θest parameter values available for estimation
λ eigenvalues of the principle component matrix
µmeo maximum ethanol oxidation rate [g/h]
µmgo maximum glucose oxidation rate [g/h]
µmgf maximum glucose fermentation rate [g/h]
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