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We investigated a cell-population modelling technique in which

the population is constructed from an ensemble of individual cell

models. The average value or the number distribution of any

intracellular property captured by the individual cell model can

be calculated by simulation of a sufficient number of individual

cells. The proposed method is applied to a simple model of yeast

glycolytic oscillations where synchronization of the cell popu-

lation is mediated by the action of an excreted metabolite. We

INTRODUCTION

The individual cell remains the major focus of biological and

biochemical-engineering research. While single cells are of un-

deniable importance, cell cultures actually consist of millions of

individual cells which are subject to random variations in their

internal structure and state. Therefore a property such as the

intracellular concentration of a particular metabolite is described

by a distribution function rather than a scalar value. A typical

biochemical measurement represents an average of the individual

cell properties. In some applications, it is desirable to measure

the distribution of a particular property across the cell population

using a more sophisticated technique such as flow cytometry [1].

This motivates the development of models that capture the

variations inherent in a large population of individual cells.

Single-cell models (SCMs) have been developed for several

micro-organisms, plant cells and animal cells. For simple micro-

organisms, such as Escherichia coli, where the genome has been

completely sequenced, very detailed steady-state models consist-

ing of hundreds of intracellular reactions and metabolites have

been presented [2]. The development of dynamic SCMs is more

challenging, owing to the difficulties associated with determining

the intracellular reaction rates. Dynamic models of reasonable

complexity have been presented for simple micro-organisms such

as Saccharomyces cere�isiae [3,4]. Despite their sophistication,

SCMs are not well suited for predicting average properties of

random cell populations and are completely incapable of gen-

erating cell-distribution predictions.

A modelling framework that is well suited for capturing

variations in a cell population is based on the population-balance

equation (PBE). The basic theory of cell PBE modelling was

developed over 30 years ago by Fredrickson and co-workers

[5,6]. The dynamic PBE describes the number distribution of

internal cell states as a function of time. Most models are based

on a single internal state such as cell age [7] or cell mass [8]. Even

for these relatively simple models, determination of the kernels

which represent the rates of cell growth and division, substrate

consumption and product formation is a formidable problem

even if flow-cytometric data is available [1,9]. Cell PBE models
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show that smooth one-dimensional distributions can be obtained

with ensembles comprising 1000 individual cells. Random varia-

tions in the state and}or structure of individual cells are shown

to produce complex dynamic behaviours which cannot be

adequately captured by small ensembles.

Key words: cell-ensemble model, cell population dynamics,

oscillatory dynamics, synchronization.

characterized by a vector of internal states such as intracellular

concentrations also can be constructed [10]. Nielsen and Villadsen

[11] showed that the incorporation of intracellular reactions

within the PBE framework is facilitated by utilizing a distribution

function that represents themass fraction of cells with a particular

internal state. An inherent limitation of the PBE approach is that

the incorporation of a detailed intracellular reaction network

leads to a computationally intractable model because a high-

dimensional distribution function must be computed.

Shuler and co-workers [12–15] have developed a computa-

tionally tractable alternative for modelling cell populations

subject to random variations. Rather than formulate the govern-

ing PBE, the cell population is described by an ensemble of

SCMs which differ according to key properties, such as the

division size. A key advantage of the ensemble approach is that

the number distribution function of any property captured by the

SCM can be calculated by appropriate manipulation of the

ensemble information. Ensembles with approx. 250 individual

cells have been used to predict steady-state and transient size

distributions for aerobic [14,15] and anaerobic [12] continuous

cultures of E. coli as well as plasmid stability in a genetically

modified E. coli strain [13]. Surprisingly, we have not found any

recent developments or applications of this promising approach.

The cell-ensemble approach is based on the implicit assumption

that the continuum limit represented by the PBE model can be

approximated by a sufficiently large number of individual cells.

This assumption is difficult to verify as the PBE model cannot be

solved for most problems of practical interest. In this sense, the

problem is similar to that commonly faced in the solution of

partial differential equations by spatial discretization methods

where a ‘converged’ solution is obtained by increasing the

number of discretization points until the solution remains

effectively unchanged [16]. In the present setting, the individual

cells play the role of the discretization points.

In the present paper we continue the development of the

ensemble approach for modelling cell behaviour at the population

level. Unlike previous work by Shuler and co-workers [12–15],

our focus is on the prediction of cell population synchronization

for yeast glycolytic oscillations using a comparatively large
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number of individual cell models. We use the term ‘single-cell

model ’ to represent a metabolic model capable of predicting

glycolytic oscillations at the single-cell level rather than a more

complete model which accounts for cell-cycle events such as cell

division [14,15].

The remainder of the present paper is organized as follows.

First, previous experimental and modelling work on yeast

glycolytic oscillations is reviewed. Next the cell-ensemble model

for glycolytic oscillations based on previous work by Wolf and

Heinrich [17] is presented and compared with a rigorous PBE

model. Then the main results and discussion are presented. The

paper concludes with a brief summary and a discussion of future

research directions. Computational issues such as the numerical

solution of large ensemble models and calculation of cell dis-

tribution properties are described in the Appendix.

YEAST GLYCOLYTIC OSCILLATIONS

Glycolysis is the cellular process by which glucose is metabolized

to generate energy in the form of ATP. Because of its presence in

a wide variety of organisms, this biochemical pathway has been

the subject of numerous experimental and modelling studies. A

striking feature of glycolytic-pathway behaviour is that, under

certain conditions, oscillations have been observed in various

glycolytic intermediates, coenzymes and extracellular species.

Whereas the majority of studies have focused on yeast cells,

oscillations also have been observed in algae [18], muscle [19],

heart [20] and tumour [21] cells. The biological significance of

this behaviour has long been debated. Rapp [22] argues that

oscillatory dynamics have the potential to enhance the efficiency

of energy storage as compared with stationarity. Even if they

serve no direct biological function, glycolytic oscillations rep-

resent a well characterized behaviour that is well suited for the

study of cell population dynamics.

Experimental studies

Glycolytic oscillations have been studied using cell-free extracts

of yeasts such as Saccharomyces cere�isiae [23], S. carlsbergensis

[24] and S. u�arum [25]. In some of the earliest studies by Chance

and co-workers [24,26], intracellular oscillations were observed

by continuous monitoring of the NADH concentration via

fluorimetry and by conducting assays of various glycolytic inter-

mediates. These results suggested that an autocatalytic reaction

involving the enzyme phosphofructokinase (PFK) is the main

cause of glycolytic oscillations. However, the simplistic view that

a single reaction in the glycolytic chain is solely responsible for

the oscillatory behaviour has been challenged by Metabolic

Control Analysis [27]. Additional experimental work was focused

on characterizing the cellular mechanism which causes synchroni-

zation of individual cells such that they oscillate in phase,

thereby producing oscillations which are observable at the cell

population level. Studies by Chance and co-workers [28] suggest

that an extracellular metabolite excreted by the cells mediates the

synchronization.

More recently, experiments involving intact cell populations of

S. cere�isiae have been performed. Some of the most important

studies have been conducted by Westerhoff and co-workers

[29,30]. Their experimental procedure involves harvesting of

batch-grown cells near the shift from glucose to ethanol as the

growth substrate followed by immediate quenching with meth-

anol at ®40 °C. The suspended cells are introduced to an

anaerobic stirred curvette, and oscillations are induced by adding

glucose and KCN in succession. Sustained oscillations have been

observed in the coenzyme NADH, glycolytic intermediates such

as glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-

bisphosphate and extracellular species such as ethanol and

acetaldehyde. The appearance of oscillations only after the

addition of KCN is notable because cyanide is known to react

with extracellular acetaldehyde. This observation, along with

other experimental results, strongly suggests that acetaldehyde is

the extracellular species responsible for synchronization of in-

dividual cells which leads to macroscopically observable oscilla-

tions [29,31].

Dynamic cell models

Many investigators have developed dynamic SCMs in an

attempt to rationalize the glycolytic oscillations observed in yeast

extracts and intact cells. Early models were based on different

hypothesized mechanisms, including product activation of the

enzyme PFK [32] and the autocatalytic stoichiometry of gly-

colysis [33]. Similar models have been proposed more recently

[23,34,35]. The main advantage of these models is their simplicity,

as only two or three non-linear ordinary differential equations

(ODEs) are required to qualitatively describe the oscillatory

dynamics. A shortcoming of such simple models is that they are

based on a priori assignment of the oscillatory dynamics to a

particular reaction in the glycolytic chain. Other researchers have

argued that the idea of such an ‘oscillaphore’ is not internally

consistent with the models themselves [27].

Recently, dynamic models based on more detailed descriptions

of the glycolytic reaction chain have been proposed. Perhaps the

most detailed model is that presented by Hynne et al. [3]. The

model accounts for the transport of glucose, glycogen, ethanol,

acetaldehyde and cyanide across the cell membrane, the degra-

dation of acetaldehyde by cyanide, the storage of energy as ATP,

basic cellular processes consuming ATP and eleven reactions

between the glycolytic intermediates. For the computational

studies pursued in the present paper, we have chosen to utilize

the simpler cell model proposed by Wolf and Heinrich [17]. As

discussed later, this model includes four glycolytic intermediates,

three metabolites, the coenzyme pairs NAD+}NADH (more

precisely NAD+}NADHH+) and ATP}ADP, as well as trans-

port of a combined pyruvate}acetaldehyde pool across the cell

membrane. Although not investigated here, an extended version

of this model with two additional glycolytic intermediates has

been presented by Wolf et al. [36].

Regardless of their sophistication, individual cell models are

not capable of explaining synchronization of the cell population

that produces observable oscillations. Several investigators have

developed cell-population models comprised of a small ensemble

of individual cells in an attempt to describe the synchronization

phenomenon. A common feature of most models is that the

individual cells are coupled through the exchange of a metabolite

(such as acetaldehyde) between the cells and the extracellular

environment. Qualitative models can involve as few as two

differential equations per cell [34,35]. More detailed mechanistic

models based on the glycolytic reaction network also have been

proposed [17,36]. The individual cell model and coupling mech-

anism proposed by Wolf and Heinrich [17] are used for the

computational studies presented here. As described in more

detail below, the coupling mechanism involves the transport of a

combined acetaldehyde}pyruvate pool across the cell membranes

and the degradation of extracellular acetaldehyde}pyruvate by

reaction with cyanide. A model comprised of two interacting

cells has been shown to produce complex dynamic behaviours

including synchronous and asynchronous oscillations [17]. In the

present study we utilize much larger cell ensembles to investigate

the relationship between cell distribution properties and popu-
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lation synchronization when individual cells are subject to

random variations in their structure and}or state.

CELL-ENSEMBLE MODEL

We utilize the individual cell model for yeast glycolytic oscilla-

tions presented by Wolf and Heinrich [17] to illustrate the cell-

ensemble-modelling approach. The cell model is derived from the

simplified reaction pathway shown in Scheme 1. The anaerobic

model accounts for glucose flux into the cell (J
!
), consumption of

glucose to produce intracellular glycerol, ethanol and a combined

acetaldehyde}pyruvate pool, acetaldehyde}pyruvate flux out of

the cell (J ) and degradation of extracellular acetaldehyde}
pyruvate by cyanide. Glycolytic intermediates are intracellular

glucose (S
"
), glyceraldehyde 3-phosphate}dihydroxyacetone

phosphate (S
#
), 1,3-bisphosphoglycerate (S

$
) and intracellular

acetaldehyde}pyruvate (S
%
). Co-enzyme pairs involved in the

pathway are NAD+}NADH (N
"
}N

#
) and ADP}ATP (A

#
}A

$
).

Because the pool of each co-enzyme pair is assumed to be

conserved (AMP is neglected), only the NADH and ATP

concentrations are treated as independent variables. The extra-

cellular acetaldehyde}pyruvate pool concentration is denoted

S
%,ex

. Lumped intracellular reaction rates are denoted �
"-
–�

'
,

while the acetaldehyde}pyruvate degradation rate is denoted by

�
(
.

Scheme 1 Yeast glycolytic reaction pathway for anaerobic growth proposed by Wolf and Heinrich [17]

Extracellular glucose is assumed to be transported across the cellular membrane at a constant flux to produce intracellular glucose. Intracellular glucose is converted into two molecules of

glyceraldehyde 3-phosphate (G3P)/dihydroxyacetone phosphate (DHP), and two molecules of ATP are consumed via a lumped reaction involving the enzymes hexokinase, phosphoglucoisomerase

and phosphofructokinase. Glycerol is formed from the triose phosphates via a reaction that consumes one molecule of NADH. The enzyme glyceraldehyde-3-phosphate dehydrogenase catalyses

a reaction which converts G3P/DHP into 1,3-bisphosphoglycerate (1,3-BPG) and produces one molecule of NADH. 1,3-BPG is converted into intracellular acetaldehyde/pyruvate, and two molecules

of ATP are produced via a lumped reaction involving the enzymes phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. The ATP generated by this reaction is assumed

to be consumed by non-glycolytic reactions. Ethanol is produced from the intracellular acetaldehyde/pyruvate by a reaction that consumes one molecule of NADH. Intracellular acetaldehyde/pyruvate

is transported across the cellular membrane to produce extracellular acetaldehyde/pyruvate. Extracellular acetaldehyde/pyruvate is degraded by reaction with cyanide. The following nomenclature is

used : J0, glucose flux into the cell ; J, acetaldehyde/pyruvate flux out of the cell ; Si , concentration of the i th intracellular species ; A2, concentration of ADP ; A3, concentration of ATP ; N1,

concentration of NAD+ ; N2, concentration of NADH ; vj , rate of the j th intracellular reaction ; S4,ex , concentration of extracellular acetaldehyde/pyruvate ; and v7, rate of the acetaldehyde/pyruvate

degradation reaction.

Model equations

The individual cell model derived from Scheme 1 and the

extracellular coupling equation proposed by Wolf and Heinrich

[17] are used in the subsequent computational studies. The

differential equations describing the ith cell in the population is

written as [17] :
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Figure 1 Cell-population synchronization for a 1000-cell ensemble in which the initial conditions of each cell are perturbed according to a Gaussian
distribution with zero mean and a variance of 2.25

The plot shows the evolution of NADH concentration of each cell. The cell population becomes increasingly synchronized due to the coupling action of the excreted acetaldehyde/pyruvate pool.
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where S
"
, S

#
, S

$
, S

%
, N

#
and A

$
denote the intracellular concen-

trations of the intracellular species shown in Scheme 1; A and N

denote the total concentration of the ADP}ATP and NAD+}
NADH pools respectively ; J

!
is the flux of glucose into the cell ;

and J
i
is the net flux of the acetaldehyde}pyruvate pool out of the

cell. The intracellular reaction rates �
#
–�

'
are assumed to depend

linearly on the metabolite and coenzyme involved in each

reaction. The expression for the intracellular reaction rate, �
"
,

includes an additional non-linear factor that accounts for in-

hibition by ATP.

The net flux of acetaldehyde}pyruvate from the ith cell into the

extracellular environment is modelled as [17] :

J
i
¯ κ(S

%,i
®S

%,ex
) (7)

where S
%,ex

is the extracellular acetaldehyde}pyruvate concen-

tration and κ is a coupling parameter related to the cell

permeability. A mass balance on extracellular acetaldehyde}
pyruvate is derived under the assumption that the volume fraction

of cells relative to the total medium volume (}) remains constant

as the total number of cells, M, is varied [35] :
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where k is the kinetic constant of the acetaldehyde}pyruvate

degradation reaction. The total number of differential equations

(n) in the cell-ensemble model increases linearly with the number

of intracellular species (6) and the number of individual cells

(M ) :

n¯ 6M1

Therefore a cell ensemble model has the potential to remain

computationally tractable even when a large number of in-

tracellular reactions are involved.

Model parameters

Unless stated otherwise, the model parameters used in the

subsequent simulations have the values shown in Table 1. The

parameter values are identical with those used by Wolf and
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Table 1 Nominal values of the yeast-cell-ensemble-model parameters

Parameter Value Parameter Value

J0 2.30 mM [min−1 κ 50.0 min−1

k1 100 mM−1 [min−1 q 4.00

k2 6.00 mM−1 [min−1 KI 0.520 mM

k3 16.0 mM−1 [min−1 N 1.00 mM

k4 100 min−1 A 4.00 mM

k5 1.28 min−1 } 0.1

k6 12.0 mM−1 [min−1 M 1000

k 1.30 min−1

Heinrich [17], with the exception of the glucose flux, J
!
, and the

coupling parameter, κ. Wolf and Heinrich [17] note that their

parameter values were chosen such that the metabolite concen-

trations remain in a reasonable range rather than being derived

directly from data. The values for the parameters J
!
and κ were

modified owing to the very slow synchronization that results

with the original values [17]. We have achieved considerably

more rapid synchronization consistent with that observed ex-

perimentally [28,31] by decreasing the glucose flux into each cell

(J
!
: 3.0! 2.3 mM [min−") and by increasing the coupling be-

tween cells (κ : 13! 50 min−").

Wolf and Heinrich [17] provide a very detailed investigation of

two oscillating cells (M¯ 2) which have identical kinetic para-

meters. While such analysis has theoretical value, the implications

for real cultures are debatable. In the present paper we utilize

much larger cell ensembles (ME 1000) to study the relationship

between cell distribution properties and population synchroniza-

tion when individual cells are subject to random variations in

their structure and}or state. For the nominal parameter values

listed in Table 1, the cell-ensemble model possesses a single stable

periodic solution in which all the cells oscillate in phase and with

the same amplitude regardless of the cell number. Wolf and

Heinrich [17] provide a detailed bifurcation analysis of such

synchronous oscillations when M¯ 2. Substantially more com-

plex asymptotic solutions are obtained when the cell ensemble

model is comprised of many cells, each of which is subject to

random perturbations. For this more realistic case, dynamic

simulation is the most useful tool for characterizing model

behaviour.

RESULTS AND DISCUSSION

The cell-ensemble-modelling approach is applied to the problem

of yeast glycolytic oscillations to predict transient distribution

properties of a partially synchronized cell population. The

dynamic simulations utilize the nominal parameter values listed

in Table 1. As mentioned above, for these parameters all cells

oscillate in phase and with the same amplitude regardless of the

cell number. Because all cells behave identically, the state of

the cell ensemble at a particular instant of time is completely

Table 2 A point on the oscillatory solution corresponding to the model
parameters in Table 1

Variable Value Variable Value

S1 1.023 mM N2 1.624¬10−1 mM

S2 6.696¬10−1 mM A3 1.250 mM

S3 7.194¬10−2 mM S4,ex 8.419¬10−2 mM

S4 1.094¬10−1 mM

characterized by the six glycolytic intermediate concentrations of

an individual cell and the extracellular concentration of the

acetaldehyde}pyruvate pool. Table 2 shows a point from the

periodic solution obtained with the parameter values in Table 1.

The complete periodic solution can be reconstructed by in-

tegration of the cell ensemble model with this point as the initial

condition.

We focus on NADH concentration dynamics under conditions

that result in partial synchronization or desynchronization of the

cell population. The choice is motivated by a number of experi-

mental studies where the average NADH concentration was

continuously measured by fluorimetry to identify sustained

oscillations consistent with a synchronized cell population

[28,31,37]. The ensemble model produces non-trivial number

distributions (i.e. cells with different NADH concentrations)

only if there is some source of randomness in the individual

cells. Two sources of randomness are considered in the following

simulations. An initially unsynchronized population of cells is

simulated by randomly perturbing the initial conditions. Random

perturbation of the intracellular kinetic parameters is used to

simulate a population of non-identical cells which is initially

synchronized. We study the effects of randomness on the NADH

ensemble average and number distribution. For simplicity, only

univariate NADH number distributions are computed. The gen-

eralization to multidimensional distributions is more involved,

but conceptually straightforward.

Comparison with a PBE model

The cell ensemble model is constructed under the implicit

assumption that the continuum limit represented by a PBE

model can be approximated by a sufficiently large number of

individual cells. For the sake of illustration, a PBE model based

on the glycolytic reaction network in Scheme 1 is formulated to

evaluate the relative computational demands of cell ensemble

and PBE modelling schemes. We utilize the PBE modelling

formalism presented by Nielsen and Villadsen [11] because it

allows intracellular reactions to be incorporated in a straight-

forward manner. The key distinction between this method and

the more traditional approach developed by Fredrickson and co-

workers [6] is that the transient distribution function represents

the mass fraction rather than the number fraction of cells with a

particular internal state.

The PBE is written as [11] :

UΨ(x,t)

Ut
3

L

i="

U
Ux

i

[R
i
(x,t)Ψ(x,t)]¯ [µ(x,t)®µ(t)]Ψ(x,t) (9)

where x is the internal state vector, t is time, Ψ(x,t) dx represents

the mass fraction of cells with internal state in the range [x,xdx]

at time t, L is the number of intracellular species, x
i

is the

intracellular concentration of species i and R
i
(x,t) is the net rate

of formation of species i. The function µ(x,t), which represents

the specific growth rate of cells with internal state x, is calculated

as:

µ(x,t)¯ 3
L

i="

3
J

j="

γ
ij
r
j
(x,t) (10)

where J is the number of intracellular reactions, γ
ij

is the

stoichiometric coefficient for the ith species in the jth intracellular

reaction; and r
j
(x,t) is the rate of the jth reaction. The average

specific growth rate, µ(t), is computed by integrating µ(x,t) over

the distribution:

µ(t)¯&¢

!

µ(x,t)Ψ(x,t) dx (11)
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Figure 2 Cell-population synchronization for 250- and 1000-cell ensembles in which the initial conditions are perturbed according to a Gaussian
distribution with zero mean and a variance of 2.25

Plots (a) and (b) show the evolution of the average NADH concentration for the 250- and 1000-cell ensembles respectively. The 250-cell ensemble shows slower convergence to fully developed

oscillations. Plots (c) and (d) show NADH number distributions computed from the 250- and 1000-cell ensembles respectively at 60 min with z0 ¯ 0 mM and zL ¯ 0.3 mM. Three interval widths

[∆z ¯ 0.02 mM (——), 0.01 mM ([[[[) and 0.005 mM (-- -- -- --)] are shown for each ensemble. The 250-cell ensemble does not provide satisfactory resolution of the NADH variations in

the cell population. Plots (e) and (f) show NADH number distributions computed from the 1000-cell ensemble at times t ¯ 5 and 30 min respectively with z0 ¯ 0 mM and zL ¯ 0.3 mM. Three

interval widths ∆z ¯ 0.02 mM (——), 0.01 mM ([[[[) and 0.005 mM (-- -- -- --) are shown for each time. The number distributions show the presence of two cell subpopulations which eventually

become synchronized and converge into a single population that produces fully developed oscillations.

For the yeast glycolytic pathway depicted in Scheme 1, the

number of intracellular species L¯ 6, where xT ¯ [S
"
S
#
S
$
S
%

N
#
A

$
], and the number of intracellular reactions J¯ 6 where

rT ¯ [�
"
�
#
�
$
�
%
�
&
�
'
]. Note that only the stoichiometry and the

rates of the intracellular reactions are needed to completely

specify the functions in the PBE. The model also will require a

mass balance on the extracellular acetaldehyde}pyruvate pool.

Rather than pursue a complete formulation of the PBE model,

we show that the resulting model is computationally intractable

if the internal cell state is discretized using standard procedures

such as finite differences [38], finite elements [39] or orthogonal

collocation [40]. The key point is that the internal state, x, which

characterizes the intracellular concentrations of each cell, is of

dimension six. Assume the model is to be solved numerically by

discretization in each of the six internal co-ordinates. This

procedure will yield a set of coupled non-linear ODEs with time

as the only independent variable. If the same number of

discretization points, m, is used for each co-ordinate, the total

number of ODEs derived from the PBE will be n¯m'. Even

with a very coarse discretization where m¯ 10, this procedure

results in one million ODEs. While it can be argued that more

sophisticated solution techniques are available [9,41], the di-

mension of the internal state vector clearly places severe limita-

tions on the complexity of the intracellular reaction network that

can be utilized. For example, the yeast glycolysis model described

by Hynne et al. [3] has an internal state vector of dimension 15.

The development of improved numerical solution techniques for

such high-dimensional PBE models is unlikely to be successful

with current computing technology. By contrast, the number of

ODEs in the cell-ensemble model increases linearly with the

dimension of the internal cell state.

Cells with randomized initial conditions

The first set of dynamic simulation tests involves cell ensembles

of different sizes in which the initial condition of each cell is

randomly perturbed from the nominal values in Table 2. The

initial conditions are perturbed according to a Gaussian dis-

tribution with zero mean and a variance of 2.25. Figure 1 shows

the evolution of the NADH concentration of each individual cell

in an ensemble of 1000 identical cells. While the behaviour of any

particular cell cannot be easily distinguished, the degree of

synchronization is clearly evident. Owing to the large variance

used, initially the cell population is highly disorganized and
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Figure 3 Partial cell-population desynchronization for 1000-cell ensemble with random perturbations of variance 1¬10−4 in the intracellular reaction rate
constants k1–k6

The top plot shows that these small intracellular variations have very little effect on the dynamics of the average NADH concentration. The middle plot shows the computed NADH number distributions

at 0 (——), 10 ([[[[) and 150 (– – – –) min. The discretization interval is 0.0025 mM with low and high values of 0.08 mM and 0.22 mM respectively. The random variations cause a very

substantial dispersion of the cell population. The bottom plot shows the computed NADH number distributions over a single oscillation period corresponding to the last complete cycle shown in

the top plot. The four lines represent the distributions at the bottom of the oscillation (——), in the middle of the oscillation going upward ([[[[), at the top of the oscillation (– – – –) and

in the middle of the oscillation going downward (–[–[). The distribution pairs corresponding to the two extremes and the two midpoints are symmetric.

exhibits no temporal structure indicative of a synchronized culture.

After 25 min the population becomes quite synchronized through

the coupling effect of the extracellular acetaldehyde}pyruvate.

A highly synchronized population in which the cells oscillate in

phase and with a period of approx. 1 min is observed after

60 min.

Figure 2 depicts the dynamic behaviour of the NADH con-

centration for two different ensembles consisting 250 and 1000

individual cells. For each ensemble, the initial conditions are

perturbed according to a Gaussian distribution with zero mean

and a variance of 2.25. Figures 2(a) and 2(b) show the evolution

of the average NADH concentration computed from the 250 and

1000 cell ensembles respectively. The average behaviour obtained

with 1000 cells is consistent with the full ensemble behaviour

shown in Figure 1 in that partial synchronization (as indicated by

large amplitude oscillations) is evident after 25 min and nearly

complete synchronization (as indicated by almost completely

developed oscillations) is achieved after 55 min. The relatively

slow convergence to fully develop oscillations obtained with 250

cells indicates that the synchronization effect is less pronounced

than that observed with the 1000-cell ensemble. When drawing

such conclusions it is important to recognize that different

dynamic responses are expected, both due to the difference in cell

number and the random nature of the initial conditions. Because

the same trend has been observed for a number of random initial

conditions, this result shows that the cell number can have a

strong effect on the average population dynamics, even for this

simple glycolysis model.

Figures 2(c) and 2(d) show NADH number distributions

computed from the 250 and 1000 cell ensembles respectively at

60 min. The NADH concentration is discretized into intervals of

width ∆z with minimum value z
!
¯ 0 mM and maximum value

z
L
¯0.3 mM. Three interval widths ∆z¯0.02, 0.01 and 0.005 mM

are shown for each ensemble. As compared with the 1000-cell-

ensemble results, the computed number distributions for 250

cells do not provide adequate resolution of the NADH variations

in the cell population. These comparisons demonstrate key

shortcomings of using small cell ensembles such as those studied

by Wolf and Heinrich [17] to simulate the dynamics of real

cultures.

Figures 2(e) and 2(f) show NADH number distributions

computed from the 1000-cell ensemble at times t¯ 5 and 30 min

respectively. Three interval widths ∆z¯ 0.01, 0.005 and

0.0025 mM are shown for each time. When viewed with Figure

2(d), these two Figures show the presence of two cell subpopu-

lations which eventually become synchronized and converge into
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Figure 4 Partial cell-population desynchronization for 1000 cells with random perturbations of variance 6.25¬10−4 in the intracellular reaction rate
constants k1–k6

The plot shows the evolution of the average NADH concentration and the NADH concentration of three individual cells at the end of the 150 min simulation. The average NADH value shows that

this extent of intracellular variation leads to significant desynchronization of the cell population. The three individual cells are chosen to show the oscillatory dynamics of representative cells from

three distinct subpopulations. A sufficiently large ensemble is required to populate the three subpopulations such that satisfactory predictions of average and distribution properties are obtained.

a single population that produces fully developed oscillations.

One subpopulation corresponds to a large group of cells that

quickly converges to the final periodic solution. The second

population corresponds to a smaller group of cells that initially

exhibits small amplitude oscillations before eventually converging

to the larger amplitude oscillations. Note that significant in-

formation is lost when the interval width ∆z¯ 0.01 mM (30

intervals for this case) is used. By contrast, good results are

obtained for ∆z¯ 0.005 and 0.0025 mM. Although some noise is

evident in Figure 2(e), we utilize ∆z¯ 0.0025 mM (120 intervals

for this case) for subsequent analysis because this value provides

the best resolution of the two cell subpopulations.

Although not shown here, we also have simulated the popu-

lation dynamics of a 5000-cell ensemble with randomly perturbed

initial conditions. The dynamic response of the average NADH

concentration is virtually indistinguishable from that obtained

for the 1000-cell ensemble. Distributions generated from the

5000-cell ensemble data provide slightly better resolution than

those obtained for the 1000-cell ensemble. With the exception of

some noise in the distributions for the 1000-cell ensemble, both

sets of results are equally satisfactory when ∆z¯ 0.0025 mM. On

the other hand, the dynamic simulation for the 5000-cell ensemble

requires well over 1 h of central-processing-unit (CPU) time,

while less than 10 min are necessary for the 1000-cell ensemble.

Consequently we utilized a 1000-cell ensemble and ∆z¯ 0.0025

in the subsequent simulation studies.

Cells with randomized kinetic parameters

The second set of simulation tests involves ensembles of 1000

cells in which the intracellular reaction rate constants k
"
–k

'
are

randomly perturbed from their nominal values in Table 1. The

other intracellular model parameters (K
I
, q, N and A) are held

fixed at their nominal values. These simulations are designed to

test the robustness of the synchronization mechanism to varia-

tions in individual cells which invariably exist in a real population.

Due to lack of experimental data concerning the expected amount

of variation, the intracellular kinetic parameters are randomly

perturbed to produce varying extents of desynchronization.

Actual cell populations may produce synchronization despite

significantly greater variations due to the presence of other

stabilizing effects not included in the simple glycolysis model

studied here. The dependent variable values listed in Table 2

corresponding to a point on the periodic solution for 1000

identical cells are used as the initial conditions. NADH number

distributions are computed with z
!
¯ 0.08 mM, z

L
¯ 0.22 mM

and ∆z¯ 0.0025 mM.
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Figure 5 Partial cell-population desynchronization for 1000 cells with larger random perturbations in the intracellular reaction rate constants k1–k6

The top and middle plots show the evolution of the average NADH concentration for a variance of 6.25¬10−4 and 1¬10−2 respectively. The larger perturbation overwhelms the extracellular

coupling mechanism and leads to almost complete desynchronization. The bottom plot shows computed NADH number distributions at 0 (——), 10 ([[[[) and 150 (– – – –) min when the

variance is 6.25¬10−4. The discretization interval is 0.0025 mM with low and high values of 0.08 mM and 0.22 mM respectively. The final distribution shows the existence of the three distinct

cell subpopulations.

The cell-ensemble model exhibits very little robustness to

intracellular variations when the parameter values proposed by

Wolf and Heinrich [17] are utilized. Perturbations significantly

smaller than those considered below lead to almost complete

desynchronization of the cell population.As discussed previously,

we constructed an improved model by increasing the coupling

between cells (κ : 13! 50 min−") and by decreasing the glucose

flux into each cell (J
!
: 3.0! 2.3 mM [min−"). Extensive simu-

lation results not shown here demonstrate that κ is the key

parameter that determines the degree of synchronization which

results from randomization of the intracellular kinetics. Because

increasing κ also has undesirable effects such as reducing the

amplitude of the glycolytic oscillations, the parameter value

chosen represents an acceptable balance between multiple effects.

The top plot in Figure 3 shows the evolution of the average

NADH concentration computed from a 1000-cell ensemble in

which the kinetic parameters are randomly perturbed with zero

mean and variance of 1¬10−%. From the perspective of the

average ensemble behaviour, these small intracellular variations

have very little effect. The middle plot shows the NADH number

distributions computed at t¯ 0, 10 and 150 min. Surprisingly,

the small decrease in the oscillation amplitude of the average

NADH concentration is accompanied by a very substantial

dispersion of the cell population. This result suggests that average

population measurements can provide misleading information

about the underlying population behaviour. More informative

data can be obtained via a measurement technique such as flow

cytometry [1], which provides the distribution of intracellular

properties across the population. The bottom plot shows NADH

number distributions computed over a single oscillation period

corresponding to the last complete cycle in the top plot. All four

distributions are resolved satisfactorily and the amount of noise

is very low. Relatively sharp distributions are obtained at the two

extremes of the oscillation, while more dispersed distributions

are produced at the midpoints. Symmetry of the distribution

pairs corresponding to the two extremes and the two midpoints

is clearly evident. This provides further evidence that the chosen

discretization parameters are adequate.

The next simulation test involves a 1000-cell ensemble in which

the kinetic parameters are randomly perturbed with zero mean

and variance of 6.25¬10−%. This amount of variation leads to

significant desynchronization of the cell population. While the

resulting dynamic behaviour is not easily characterized, the

random variations produce three distinct cell subpopulations.

This behaviour is depicted in Figure 4, where the dynamics of the

average NADH concentration and the NADH concentration of

three individual cells near the end of the 150 min simulation are

shown. In addition to being slightly irregular, the amplitude of

the average NADH concentration oscillations is significantly

reduced as compared with that observed for a population of
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Figure 6 Damped oscillations that occur due to a decrease in cell concentration from 0.1 to 0.02 at t¯ 0 min for 1000 cells with random perturbations
of variance 1¬10−4 in the intracellular reaction rate constants k1–k6

The top plot showing the evolution of the average intracellular NADH concentration demonstrates that the lower cell concentration does not support sustained oscillations. The bottom plot shows

computed NADH number distributions at 0 (——), 1 ([[[[) and 5 (– – – –) and 15 (–[–[) min for a discretization interval of 0.0025 mM and low and high values of 0.08 mM and 0.25 mM

respectively. The sharpening of the number distribution with time is attributable to the NADH concentration of each cell converging to a constant value.

identical cells. The three individual cells are chosen to more

explicitly show the oscillatory dynamics of representative cells

from the three subpopulations. The first cell produces sustained

oscillations of constant and relatively large amplitude. The

second cell exhibits more complex behaviour where the oscillation

amplitude periodically varies between relatively small values and

larger values similar to that of the first cell. The third cell pro-

duces sustained oscillations of constant, but relatively small,

amplitude. Each of the three subpopulations must contain a

sufficient number of cells to yield accurate predictions of

average and distribution properties. This is possible only if the

cell ensemble is relatively large.

The top and middle plots in Figure 5 show the evolution of the

average NADH concentration for a 1000-cell ensemble in which

the intracellular kinetic parameters have a variance of 6.25¬10−%

and 1¬10−# respectively. The smaller perturbation results in only

partial desynchronization of cell population, while the larger

perturbation leads to almost complete desynchronization. This

result demonstrates that the extracellular coupling mechanism

offers limited robustness to intracellular variations. The bottom

plot shows NADH number distributions computed at t¯ 0, 10

and 150 min for the 1000-cell ensemble in which the intracellular

kinetic parameters have a variance of 6.25¬10−%. The sharp

initial distribution is indicative of a highly synchronized cell

population. As random cell variations lead to partial desyn-

chronization, the NADH distribution becomes increasingly dis-

persed. The final distribution clearly shows the existence of the

three distinct cell subpopulations depicted in Figure 4. Although

not shown here, NADH number distributions computed when

the intracellular kinetic parameters have a variance of 1¬10−#

show increasing dispersion that reflects the lack of any further

temporal organization at the cell population level.

Further tests with randomized cells

The final simulation tests are designed to examine cell population

behaviour under environmental conditions investigated in pre-

vious experimental studies [28,31,37]. We consider ensembles of

1000 cells in which the reaction rate constants k
"
–k

'
are randomly

perturbed with zero mean and variance of 1¬10−% from their

nominal values in Table 1. For each test, the initial condition

represents a point on the oscillatory solution that results when

the cell-ensemble model with randomized parameters is integ-

rated until the asymptotic solution is achieved. Unless explicitly

stated otherwise, the same set of initial conditions and random-

ized model parameters are used for each test. As before,

NADH number distributions are computed with z
!
¯ 0.08 mM,

z
L
¯ 0.22 mM and ∆z¯ 0.0025 mM.
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Figure 7 Damped oscillations that occur due to a 0.1 mM acetaldehyde/pyruvate pulse at t¯ 2 min for 1000 cells with random perturbations of variance
1¬10−4 in the intracellular reaction rate constants k1–k6 and a cell concentration of 0.02

The top plot shows the evolution of the average S1 (——), S2 ([[[[) and A3 (– – – –) concentrations. The bottom plot shows the evolution of the average S3 (——), S4 ([[[[) and N2

(– –) concentrations and the S4,ex (–[–[) concentration. The oscillations are not sustained because the extracellular acetaldehyde/pyruvate concentration converges to a constant value.

Figure 6 shows the damped oscillations that result when the

cell concentration, }, is reduced from 0.1 to 0.02 at t¯ 0. The

value }¯ 0.02 is slightly smaller than the critical cell con-

centration required for sustained oscillations. The evolution of

the average NADH concentration shown in the top plot suggests

that the cell population is becoming increasingly desynchronized.

This result is consistent with experimental data [37]. The bottom

plot shows the computed NADH distributions at t¯ 0, 1, 5 and

15 min. When viewed in isolation, the increasingly sharp distribu-

tions seem to indicate that the cell population is becoming

synchronized. However, the sharpening actually is attributable

to the NADH concentration of each cell converging to a constant

value. This result shows the danger involved in interpreting

snapshots of the number distribution for a transient cell popu-

lation.

Figure 7 shows the onset and eventual damping of oscillations

that result from a 0.1 mM pulse in the extracellular acetaldehyde}
pyruvate concentration at t¯ 2 min. The initial conditions used

are consistent with the perturbed model parameters and a cell

concentration }¯ 0.02. While they are readily computed, the

distribution properties are not particularly illustrative in this

case. Instead, the ensemble average concentration of each in-

tracellular species and the extracellular acetaldehyde}pyruvate

pool are shown as a function of time. The dynamic response of

the average NADH concentration is very similar to that observed

experimentally [31] for the same perturbation. The lack of

oscillations in the extracellular acetaldehyde}pyruvate concen-

tration is accompanied by damped oscillations in the intracellular

concentrations. This result demonstrates the importance of the

coupling agent on the oscillatory dynamics of the cell population.

The final test involves mixing of two populations of 500 cells

which are oscillating 180 degrees out of phase. Each 500-cell

ensemble has a consistent set of model parameters and initial

conditions in the sense discussed above. The top plot of Figure

8 shows the evolution of the average NADH concentrations of

the two cell populations prior to mixing. The average NADH

concentration response of the mixed population of 1000 cells

shown in the middle plot suggests that synchronization is

essentially complete within 25 oscillation periods. Experimental

studies [28,31] have shown that synchronization of such a mixed

cell population is complete in less than ten oscillation periods.

On the other hand, the simulated mixing dynamics are much

faster than those obtained previously by Wolf and Heinrich with

the same yeast glycolysis model but different model parameter

values [17]. The faster mixing dynamics obtained here are mainly

attributable to an increased value of the coupling parameter κ.

The bottom plot shows computed NADH number distributions

at t¯ 0, 11.25, 30 and 45 min. The initial distribution clearly

shows the presence of two distinct cell subpopulations. Syn-

chronization is reflected by the confluence of the two sub-
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Figure 8 Cell-population synchronization following the mixing of two populations of 500 cells with random perturbations of variance 1¬10−4 in the
intracellular reaction rate constants k1–k6

The top plot showing the evolution of the average NADH concentrations of the two cell populations prior to mixing demonstrates that the populations are oscillating 180 degrees out of phase.

The middle plot showing the evolution of the average intracellular NADH concentration of the mixed cell population consisting of 1000 cells demonstrates that synchronization is essentially complete

within 25 oscillation periods. The bottom plot shows the computed NADH number distributions at 0 (——), 11.25 ([[[[), 30 (– – – –) and 45 (–[–[) min. The discretization interval is

0.0025 mM with low and high values of 0.08 mM and 0.22 mM respectively. Synchronization of the mixed cell population is reflected by the confluence of the two subpopulations as time progresses.

populations as time progresses. The final distribution reflects a

highly synchronized population in which phase variations be-

tween individual cells are very small.

SUMMARY AND FUTURE WORK

We have developed dynamic cell population models for yeast

glycolysis using large ensembles of individual cell models. As

compared with the more traditional PBE modelling approach,

the major advantage of the cell-ensemble method is that in-

tracellular reactions can be incorporated within a computa-

tionally tractable model. The problem of glycolytic oscillations

has been used to demonstrate that the average value and the

number distribution of any intracellular property captured by

the individual cell model can be computed directly from the cell

ensemble. We have shown that satisfactory one-dimensional

NADH distributions can be obtained with 1000 individual cells.

Another important conclusion is that random variations in the

state and}or structure of individual cells can lead to complex

population dynamics which cannot be adequately captured by

small ensembles. Calculation of distribution properties involves

discretization of the internal cell state under the assumption that

the continuum limit represented by the PBE model can be

approximated by a sufficiently large number of individual cells.

A shortcoming of the proposed method is that the achievable

resolution is limited by the number of cells included in the

ensemble.

This paper represents our initial work on using large ensembles

of individual cell models to predict cell population behaviour.

Considerable research is necessary to make the cell-ensemble

approach a practical tool for biochemical reactor modelling and

simulation. We plan to apply the method to a rather detailed

metabolic model of cell cycle related oscillations in yeast which

is based on a previously published model of central carbon

metabolism [4]. The construction of large cell ensembles com-

prised of complex individual cell models will require the de-

velopment of more sophisticated computational strategies for

model solution. In addition, there is need to develop more

systematic methods for computing distribution properties from

the cell ensemble data.

M.A.H. acknowledges the Alexander von Humboldt Foundation (Germany) for
financial support. This work was completed while M.A.H. was on sabbatical leave
at the Institute of Biochemical Engineering, University of Stuttgart, Stuttgart,
Germany.
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APPENDIX
Numerical solution of the cell ensemble model

Efficient numerical solution of the cell-ensemble model is an

important issue when a large number of individual cell models is

used. The model is comprised of n¯ 6M1 coupled non-linear

ODEs, where M is the number of individual cell models in the

ensemble. A typical simulation involves 1000 cells (n¯ 6001),

while some simulations involve as many as 5000 cells (n¯
30001). Because we are interested in periodic solutions and the

model is numerically stiff, a considerable amount of computa-

tional effort can be required to integrate the model equations

over the time horizon of interest. Consequently, the dynamic

simulation code should be constructed to be as efficient and

robust as possible.

The simulation code was developed in FORTRAN using the

variable step ODE solver DVODE [42]. Because the period of the

glycolytic oscillations is approx. 1 min, a sampling time (∆t) of

0.05 min was used to achieve satisfactory signal resolution. We

found that code efficiency and robustness were enhanced if the

Jacobian matrix was computed analytically rather than nu-

merically by finite difference. These calculations were straight-

forward given the simplicity of the model equations.

The key idea that allowed efficient solution of large cell

ensembles was to approximate the full Jacobian matrix with a

highly banded Jacobian matrix. The Jacobian matrix is said to be

banded with lower half bandwidth m
l
and upper half bandwidth

m
u

if the ith model equation can be written as:

dy
i

dt
¯ f

i
(y

i−ml

, y
i−ml

1, …, y
i
, …, y

i+mu

®1, y
i+mu

) (A1)

where y
i

is the ith dependent variable. The actual Jacobian

matrix of the cell-ensemble model is not banded, owing to the

presence of the acetaldehyde}pyruvate flux J
i
in eqns (4) and (8)

of the main paper. When these flux terms are neglected from the

Jacobian calculation, the problem becomes highly banded with

m
l
¯m

u
¯ 5. We found that this simplification reduced com-

putation time by at least an order of magnitude with no

discernable effect on solution accuracy. A typical 1 h dynamic

simulation with 1000 cells required less than 10 min of CPU time

on a Pentium III 700 MHz processor.

Calculation of cell-distribution properties

Numerical integration of the cell-ensemble model produces a

data matrix which contains the intracellular concentrations of

each cell and the extracellular acetaldehyde}pyruvate concen-

tration at each sampling point in time. This cell-ensemble data

can be used to compute the average value and the number

distribution of any intracellular variable. This problem was

investigated previously by Shuler and Domach [14,15] in the

context of computing size distributions for the binary fission

organism E. coli. Their approach involves a number of discrete

cell size classes that are chosen to provide adequate resolution of

the size distribution. Each size class was populated with a

number of individual cells subject to random variations in model

parameters that affect the fission size. The cell-ensemble model

was integrated through a number of cell cycles to yield the

number of cells in each size class as a function of time. This

information was used to compute steady-state and}or transient

cell size distributions. However, the necessary calculations were

not discussed.

Below we present a simple algorithm for computing the number

distribution for any single intracellular variable such as the

NADH concentration. Let z(t) represent the intracellular variable

for which the transient cell number distribution function N(z,t)

is to be computed. Consider discretization of the internal co-

ordinate z into L intervals of width ∆z
l
¯ z

l
®z

l−"
where z

!
¯ z

min

and z
L
¯ z

max
. By definition of the distribution function:

&¢

!

N(z,t) dzF 3
L

l="

N
l
(t)∆z

l
¯ 1 (A2)

where N
l
(t) represents the average value of N(z,t) over the

interval ∆z
l
.

Denote zh
m
(t

k
) as the value of the intracellular variable z

produced by the mth cell at the discrete time t
k
. For an ensemble

consisting of M individual cells, the mean value of the in-

tracellular variable z at time t
k

is :

zh (t
k
)¯

1

M
3
M

m="

zh
m
(t

k
) (A3)

An approximate distribution function is computed by par-

titioning the cell ensemble into the discrete intervals as follows:

nh
l
(t

k
)¯ 3

M

m="

²S[zh
m
(t

k
)®z

l−"
]®S[zh

m
(t

k
)®z

l
]´, l ` [1,L] (A4)

where nh
l
(t

k
) represents the number of cells with intracellular state

z in the range [z
l−"

, z
l
] and the unit step function is defined as:

S(x)¯
1

2
3

4

0 if x! 0

1 if x&0

5

6
7

8

(A5)

The discretized approximate number distribution function is

calculated as:

N�
l
(t

k
)¯

nh
l
(t

k
)

M∆z
l

, l ` [1,L] (A6)

If the discretization interval is sufficiently small, then a smooth

continuous number distribution N� (z,t
k
) can be computed from

the discrete distribution values N�
l
(t

k
) by polynomial interpolation

[16]. All the distribution calculations were performed using

MATLAB.

Resolution is determined primarily by the number of cells, M,

in the ensemble. As M is increased, the number of intervals, L,

also can be increased such that each interval is populated with a

sufficient number of cells to produce a smooth distribution

function N� (z,t
k
). If L is chosen too small relative to M, resolution

is unnecessarily lost. On the other hand, the distribution function

will be noticeably non-smooth if L is chosen too large relative to

M. Unfortunately, systematic guidelines for selecting the two

parameters are difficult to develop. In the present paper, dynamic

simulation studies have been used to select these parameters to

yield acceptable results.
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