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Selection of Model Parameters for
Off-Line Parameter Estimation

Rujun Li, Michael A. Henson, and Michael J. Kurtz

Abstract—Mechanistic dynamic models often contain unknown
parameters whose values are difficult to determine even with
highly specialized laboratory experiments. A practical approach
is to estimate such parameters from available process data.
Typically only a subset of the parameters can be estimated due
to restrictions imposed by the model structure, lack of measure-
ments, and limited data. We present a simple parameter selection
method which accounts for the first two factors independent of
the data available for parameter estimation. The magnitude of
each parameter effect on the measured variables is quantified by
applying principal-component analysis to the steady-state param-
eter-output sensitivity matrix. The uniqueness of each parameter
effect is determined by computing the minimum distance between
the sensitivity vector of the particular parameter and the vector
spaces spanned by sensitivity vectors of the parameters already
selected for estimation. A recursive algorithm that provides a
tradeoff between the magnitude and linear independence of
parameter effects yields a ranking of the parameters according to
their inherent ease of estimation. The parameter-selection proce-
dure is applied to the problem of kinetic parameter estimation for
an industrial model of a polymerization reactor. For this specific
example, the proposed method yields superior estimation results
than those obtained with a parameter-selection technique based
on the Fisher information matrix (FIM).

Index Terms—QOptimization, parameter estimation, polymer re-
actors.

1. INTRODUCTION

ONLINEAR dynamic models derived from basic princi-

ples of physics and chemistry often contain parameters
whose values cannot be accurately predicted from theory. Some
parameter values are not available in the literature and special-
ized lab experiments aimed at determining these values often
are infeasible. In this case, parameter values must be determined
from process data. Systematic design of experiments to generate
data well suited for estimating unknown parameters is an impor-
tant research area [1], [2]. In chemical manufacturing plants, de-
signed experiments often are impractical due to manufacturing
constraints on product quality and throughput. Consequently,
the development of parameter-estimation techniques which uti-
lize readily available plant data is necessary.

Manuscript received April 1, 2002; revised May 9, 2003. Manuscript received
in final form July 21, 2003. Recommended by Editor F. Doyle. This work was
supported by the ExxonMobil Chemical Company.

R. Li is with the Department of Chemical Engineering, Louisiana State Uni-
versity, Baton Rouge, LA 70803-7303 USA.

M. A. Henson is with the Department of Chemical Engineering,
University of Massachusetts, Amherst, MA 01003-9303 USA (e-mail:
henson@ecs.umass.edu).

M. J. Kurtz is with the ExxonMobil Chemical Company, Baton Rouge, LA
70805-3359 USA.

Digital Object Identifier 10.1109/TCST.2004.824799

The off-line parameter-estimation problem often is formu-
lated as an optimization problem in which the unknown param-
eters are the decision variables and the least-squares difference
between the measurements and the model predictions is min-
imized subject to constraints imposed by the model equations
and known bounds on the parameters [3], [4]. Due to the model
structure and possible lack of measurements, estimation of some
parameters may be impossible regardless of the amount of data
available. A nonlinear system is said to be structurally identi-
fiable if each set of parameter values yields unique output tra-
jectories [5]. Structurally unidentifiable parameters must be re-
moved from the estimation problem because they have no ef-
fect on the measured outputs. However, structural identifiability
only is a necessary condition for successful parameter estima-
tion from limited data sets. Two additional problems are com-
monly encountered in practice.

1) A parameter has a very weak effect on the measured out-
puts. Successful estimation of such a weakly identifiable
parameter is unlikely because its effect cannot be accu-
rately quantified.

2) The effects of certain parameters on the measured out-
puts are nearly linearly dependent. Successful estimation
of such parameter sets is unlikely because the individual
parameter effects cannot be distinguished.

The presence of parameters with weak and/or nearly linearly de-
pendent effects is manifested by the lack of a unique solution to
the optimization problem for different initial parameter values.
Estimation of such parameters can lead to significant degrada-
tion in the predictive capability of the model.

The development of an effective solution to the parameter
selection problem requires establishing an acceptable tradeoff
between the magnitude and linear independence of parameter
effects. A parameter is said to be practically identifiable if a
unique estimate can be obtained from different initial values
using the available data [6]. Most methods to access practical
identifiability are based on scalar measures derived from the
Fisher information matrix (FIM) [5], [7], which can be com-
puted from the parameter-output sensitivity coefficients. Con-
sider a continuous-time, state-space model with discrete outputs

PO _ o). u(e). 0
(k) = ha() n

where: ¢ and k£ denote continuous and discrete time, respec-
tively, and z, u, y, and 6 are the state, input, output, and pa-
rameter vectors, respectively. The parameter-output sensitivity
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coefficient S;; of the 4th output with respect to the jth param-
eter is defined as [8]

yi(k)
Sii(k) = . 2
Under the assumption that the measurements are corrupted by
zero-mean white-Gaussian noise, the FIM (F') can be computed
as [9]

M
F =Y ST(k)Q *(k)S(k) 3)
k=1
where M is the total number of discrete samples,

S(k) = {Si;(k)} is the sensitivity matrix, and Q(k) is
the measurement covariance matrix. The inverse of the FIM
provides a lower bound on the parameter error covariance
matrix [2].

Several scalar measures of the FIM have been proposed to
select parameters best suited for estimation [10], [11]. Several
investigators have proposed the use of multiple objectives to
achieve better results. For example, a parameter selection proce-
dure which utilizes both the FIM determinant and the FIM con-
dition number has been applied to a standard model of the acti-
vated sludge process [12]. First the parameter-sensitivity matrix
is computed to identify insensitive parameters that are elimi-
nated from the subsequent analysis. Then the FIM is calculated
for all possible permutations of the remaining n parameters for
subsets between 2 and n parameters. For each subset size, all
permutations are ranked according to the values obtained for
FIM determinant and the FIM condition number. The user is re-
quired to heuristically analyze the two rankings to determine the
“best” combination of parameters for each subset size. Finally
the estimation results achievable with the candidate parameter
sets are analyzed via simulation. In addition to being computa-
tionally inefficient, this combined FIM approach suffers from
the heuristic nature of the parameter selection process.

In this paper, a simple method for selecting estimated pa-
rameters from a set of unknown parameters is presented. Prin-
cipal component analysis (PCA) [13] is performed on a dimen-
sionless version of the parameter-output sensitivity matrix. The
overall steady-state effect of each parameter on the measured
outputs is determined from the principal components and the
associated eigenvalues computed from the sensitivity matrix.
The uniqueness of each parameter effect is determined by com-
puting the minimum distance between the sensitivity vector of
the particular parameter and the vector spaces spanned by sensi-
tivity vectors of the parameters already selected for estimation.
The parameters are ranked recursively to achieve an acceptable
tradeoff between the magnitude and linear independence of their
effects. The proposed method is applied to the problem of ki-
netic parameter estimation for an industrial model of an ethy-
lene-propylene-diene terpolymer reactor. Simulation tests are
used to determine the number of parameters that can be deter-
mined uniquely from dynamic data.

The proposed method has been extended to periodic dy-
namics by considering the amplitude and mean value of each
measurement as well as the oscillation period as output vari-
ables in the sensitivity calculations [14]. Instead of checking

linear independence of parameter sets, a simple collinearity
measure restricted to parameter pairs was used to identify
linearly dependent effects. This modified-parameter selection
method has been applied successfully to the selection of
estimated parameters in a cell population balance equation
model used to describe oscillatory dynamics in continuous
yeast cultures.

II. CHEMICAL PROCESS EXAMPLE

A. EPDM Reactor Dynamic Model

Ethylene-propylene (EPM) copolymers and ethylene-propy-
lene-diene (EPDM) terpolymers are used in the manufacturing
of automotive components, cable and wire, appliances, building
and construction materials, and agricultural equipment [15].
Major US producers of EPM and EPDM include ExxonMobil
Chemical, DuPont, Uniroyal Chemical, and DSM Copolymer.
The annual domestic production of these polymers in 1995 was
almost 400 000 metric tons [16]. Product quality is determined
primarily by the relative amounts of the ethylene, propylene,
and diene monomers in the polymer and the Mooney viscosity
(a commonly measured quantity related to the molecular
weight). EPDM plants are used to manufacture a large number
of distinct polymer grades that cover a wide range of product
quality specifications.

EPDM typically is manufactured via a solution polymeriza-
tion process which utilizes Ziegler—Natta catalyst technology.
The core of the EPDM process is a continuous stirred tank
reactor which is fed the three monomers, solvent (hexane or
methyl chloride), catalysts (a transition metal halide catalyst
and an aluminum alkyl co-catalyst), and chain-transfer agent
(hydrogen). Stable reactor operation is essential to mini-
mize off-specification product and to maximize production
rates. Current industrial practice is to establish reactor op-
erating conditions that are expected to maintain the product
quality measures within their specifications. When statistical
quality-control tests indicate the polymer is off-specification,
manual adjustments are made to various feed flow rates in
an attempt to achieve the target product properties. Because
EPDM reactors are highly nonlinear and interacting, nonlinear
model-based control strategies offer the potential for signifi-
cantly improved performance.

A mechanistic-reactor model is based on an assumed-kinetic
scheme that describes the major reactions that produce the
polymer chains. Several EPDM kinetic models have been pre-
sented in the open literature [17]-[19]. In this paper, we utilize
the kinetic model of Cozewith [17] shown in Table I. The basic
reaction steps are: i) formation of an active catalyst species (C5)
from the catalyst (C7) and co-catalyst (Al); ii) deactivation of
the catalyst with various poisons such as diene monomer (M3)
to form dead catalyst species (D); iii) initiation of a growing
polymer chain by reaction of an active catalyst species with
ethylene monomer (Mj) or propylene monomer (Ms); iv)
propagation of a polymer chain by the addition of a monomer
unit to the growing chain; v) termination of polymer-chain
growth by the transformation of a growing chain to a dead
chain; and vi) transfer of the active catalyst from a growing
polymer chain to a new polymer chain by the action of various



404 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 3, MAY 2004

TABLE 1
EPDM KINETIC MECHANISM

Type Reaction Rate Constant
1. Catalyst activation C1—Cy ka
2. Catalyst deactivation C1—D ke
Cl + M34*D kxg
3. Chain initiation Cy + M1—Pigo ki
Cs + Ma—Qo10 kiz
4. Chain propagation Pijk + M1— Pk k11
Pijk + Ma—Qigi+1)k k1g
Pijk + M3—Rijq1) k13
Qijk + M1— Py 1)k ko1
Qijk + Ma—Qii+1)k koo
Riji + Mi— Pk k31
5. Chain termination
spontaneous Py —Usjn k¢
Qijk—Vijk ky
Rij—Wijk k¢
with propylene Py + Ma—Usj ko
Qijk + Ma— Vi kto
Rijp + Ma— Wi kto
with diene Ejk + M3—’Uijk ktg
Qijk + M3— Vi k3
Rijg + M3— W k3
6. Chain transfer
with hydrogen Pk + Ho—Usji, + Co kir1
Qijk + Ha—Vijr + Co ki
Rije+ Hy—Wijr + Ca ktr1
with cocatalyst Pk + Al = Uy + Pioo kir
Qijk + Al — Viji + Pioo ki
Riji + Al = Wik + Pigo ki
with propylene Pijr + Ma—Usjr + Qoio ktr o
Qijr + Ma— Vs + Qoro Ktrags
Riji + Ma—Wijr + Qoo Kirar

chain transfer agents such as hydrogen (Hj). The symbols
P;;1, and U, are used to represent ethylene-ended growing
and dead chains, respectively, with a total number of ¢ ethylene
units, 7 propylene units, and k diene units. Analogous notation
is used for propylene chains (Q;;x, Vi;jx) and diene chains
(Rijr, Wije).

The dynamic reactor model consists of mass balances for
each reactant combined with balances for various moments of
the molecular weight distribution (MWD) that are derived from
the kinetic scheme in Table I. An energy balance is not required
because EPDM reactors are operated isothermally under normal
conditions. The rate of each elementary reaction j is character-
ized by a rate constant k;. Defining 6 to be a vector comprised
of the rate constants chosen for estimation, the dynamic model
equations have the following form:

d;l = g(l’i,f — ;) +ri(z,0) (4)
where: x; is the sth state variable which represents a reactant
molar concentration or MWD moment, z; s is the concentration
of the ¢th state variable in the feed stream which is nonzero only
for the reactants, F' is the feed volumetric flow rate, V' is the
constant reactor volume, and r; is a reaction rate function that
depends nonlinearly on the state variables and linearly on the
parameters [19]. The complete model has 29-state variables rep-
resenting seven reactant concentrations, four zeroth-order mo-
ments, 12 first-order moments and six-bulk second-order mo-

TABLE 11
SCALED REACTION RATE CONSTANTS
Parameter | Value | Parameter | Value
kq 0.3663 ko1 0.6410
ks 0 koo 3.0037
kzy 0 ka1 1.2418
ks 0.9890 kt 0.5604
k; 1.8315 kt, 0.7839
kio 1.8315 kt3 0
k11 0.4212 kr 0
k12 0.6886 kiry 1.7582
k13 0.4139 ktTM2 1

ments. Detailed model equations are not provided here for the
sake of brevity. The interested reader is referred to [19] for fur-
ther details on the general model structure.

B. Parameter Estimation

Although EPDM reaction kinetics have been studied exten-
sively, a complete and consistent set of reaction-rate constants
is difficult to find in the open literature. A few parameter sets for
EPM copolymers and EPDM terpolymers are tabulated in [17].
The available information usually is not sufficient to completely
specify the 18-rate constants involved in the kinetic mechanism.
This problem is exasperated by the fact that commercial plants
are used to manufacture a wide range of polymer grades that
differ with respect to the catalyst system, diene monomer type,
and nominal operating conditions. The determination of com-
plete parameter sets from the literature and specialized labora-
tory experiments is not feasible. An alternative approach is to es-
timate the kinetic parameters from readily available plant data.

To perform off-line parameter estimation, a nominal set of
kinetic rate constants that serve as initial conditions in the op-
timization problem must be specified. We utilize the param-
eter values listed in Table II because they are the best avail-
able estimates for the particular polymer grade studied in this
paper. Each parameter value has been scaled to have roughly the
same order of magnitude. Accuracy of the parameter estimates
is strongly dependent on the available plant measurements. We
assume that the polymer-production rate (P,.), the polymer con-
tents of ethylene (Xjy, ) and diene (Xyy, ), and the weight-av-
erage molecular weight (M ,,) are measured every six minutes
without delay. Although not pursued in this study, the Mooney
viscosity (a primary indicator of product quality) can be inferred
from M, [19].

The off-line parameter-estimation problem is formulated as
the constrained nonlinear optimization problem ming .J where

1 I ) )]
o0 v B

=11:=1

m, is the vector of measurements and y,, ;is the ith plant mea-
surement. The minimization is performed subject to equality
constraints imposed by the model (1) and inequality constraints
that ensure positive kinetic parameter estimates (6 > 0). We
utilize a sequential-solution strategy in which optimization and
model integration are performed separately [20]. The optimiza-
tion problem (5) generally is nonconvex due to the nonlinear
model equations [21]. We have found that gradient based opti-
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mization algorithms such as sequential-quadratic programming
[22] and direct-search algorithms such as the simplex method
[23] often converge to local minima. Better performance has
been obtained with probabilistic-optimization codes such as the
genetic algorithm [24] and simulated annealing (SA) [25]. Al-
though convergence to the global minimum is not guaranteed,
the SA code [26] used in this paper yields good results and is
much easier to tune than genetic algorithm codes. The main
shortcoming of the SA algorithm is its computational ineffi-
ciency.

Under the assumption that the nonlinear-dynamic model is
structurally identifiable, perfect estimation of every unknown
parameter is theoretically possible. In practice, good estimates
cannot be obtained for some of the parameters due to lack of
measurements and because the operating range is severely lim-
ited by manufacturing constraints. The presence of parameters
with weak and/or almost linearly-dependant effects often results
in convergence to different local minima from different initial
guesses. Because mechanistic—nonlinear models invariably con-
tain such parameters, only a subset of the unknown parameters
should be selected for estimation.

III. PARAMETER SELECTION FOR OFF-LINE ESTIMATION

The proposed parameter-selection method is based on the
parameter-output sensitivity matrix computed at a particular
steady-state operating point. As such, the results obtained
are local with respect to the operating point and the initial
values of the unknown parameters. Successful application of
the method requires that: i) the steady-state behavior is not
strongly dependent on the operating point such that the results
are extensible to other operating conditions and ii) the initial
parameter values produce reasonable qualitative predictions
such that order of magnitude variations are not required to
achieve quantitative agreement with plant data. Many industrial
processes including EPDM reactors satisfy these conditions
due to infrequent changes in operating conditions and the avail-
ability of reasonable parameter values from previous modeling
efforts. Possible extensions of the parameter-selection method
for handling nonlinearities and dynamics are discussed in the
concluding section.

A. Magnitude of Parameter Effect

A new measure for the overall steady-state effect of a
model parameter on a set of measured-output variables is
presented. The measure is derived from the dimensionless
parameter-output sensitivity coefficients gi]’ defined as

éjagq ~]'—
= =23, 6
PG00, 50 ©

where y; and éj are nominal values of the ¢th output and jth
parameter, respectively, and S; ; 1s the steady-state value of the
sensitivity coefficient defined in (2). The sensitivity coefficient
is nondimensionalized to ensure that contributions of certain pa-
rameters and/or outputs are not overemphasized. The sensitivity

TABLE 1III
DIMENSIONLESS SENSITIVITY MATRIX
Xn Xty P, My
ko -0.07992 -0.06031 0.2287 -0.4865
ka3 0.07983 0.06023 -0.2284 0.486
ki | —1.64x107° | —3.42x1078] 1.85x107% | —=5.93 x 1071
kio | —226x1077] -1.90x 107 | 5.08 x 1077 | —8.83 x 104
k11 0.04858 -0.1014 0.05989 0.1308
k1o -0.1256 -0.1588 0.1489 0.1434
k13 -0.06286 0.1487 0.1912 -0.3742
ko1 -0.01368 -0.009504 0.05932 -0.02531
koo -0.01251 -0.01139 0.01562 0.006613
kap | —1.04 x 1073 | =827 x 1074 | —2.97 x 1073 | —7.40 x 10~Z
ks 0.08202 0.06543 -0.2345 0.3482
ko 0.03064 0.02445 -0.0876 0.1300
kir1 3.68 x 107° 268 x107° | —2.53 x 1071 -0.5147
Ktrppy | —2.26 x 1075 | =270 x 1075 | 2.70 x 1077 -0.07221

coefficient matrix S = {S;;} can be computed by solving the
following steady-state sensitivity equations [3]:

0=f(z,a,0) @)
_of(@,u,0)  0f(7,u,0)0%

0=="%0  tor o9 ®)

y=h(z) ®

.0y on@) oz

=26~ "oz o0 (10

where u, Z, and y denote steady-state values.

For complex models the sensitivity equations can be difficult
to formulate and solve. In this case, an approximate method
where the steady-state model equations are solved numerically
for small parameter perturbations may be more convenient.
Consider a perturbation in the jth parameter, A8; = 6; — 6;,
and the corresponding change in the ith output, Ay, = vy; — y;.
The approximate sensitivity coefficient is calculated as

Ay;

dyi
~ N

00,

J

S = (11)

In addition to the approximate nature of (11), the need to
specify the magnitude of the parameter perturbation introduces
some degree of arbitrariness. We have applied both sensi-
tivity-calculation methods to the EPDM reactor model. The
two methods yielded virtually identical sensitivity values when
perturbations of less than one percent of the nominal parameter
values were used. Consequently, only the results obtained by
explicitly solving the sensitivity equations are presented in the
paper.

Table III shows the dimensionless sensitivity matrix S calcu-
lated using the nominal parameter values in Table II. Only the
fourteen nonzero parameters are considered. Parameters such
as the initiation rate constants (k;1, k;2) and the diene-ethylene
rate constant (k3;) have very little effect on the four outputs.
They effectively are unidentifiable and should be eliminated
from consideration as estimated parameters. However, we in-
clude these parameters in the subsequent analysis to better illus-
trate the proposed method. Certain subsets of parameters (e.g.,
kq, kz3) have nearly linearly dependent effects on the output
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TABLE IV
OVERALL PARAMETER EFFECTS

Parameter E Rank | Parameter E Rank
ka 0.4457 | 1 k1 0.1256 8
ka3 0.4452 2 Ktrpry 0.0607 9
kir1 0.4353 3 ko1 0.0511 10
k13 0.3625 4 ka0 771x 1073 | 11
k¢ 0.3590 5 ka1 2.30x1073 | 12
ko 0.1341 6 Kio 8.82x 1077 ] 13
k12 0.1305 7 ki1 503x 1074 14

variables. Consequently, the single parameter from each subset
which should be selected for estimation must be determined.

A quantitative measure of the overall effect of each param-
eter on the measured outputs is derived by applying principal
component analysis (PCA) [13] to the dimensionless-sensitivity
matrix. The principal components are the eigenvectors of the co-
variance matrix X = ST S. The first principal component is the
eigenvector associated with the largest eigenvalue of the X -ma-
trix and represents the direction of largest overall variation. The
remaining principal components are ordered according to their
contribution to the overall variance. X is a p X p matrix where p
is the number of nonzero parameters. Given m < p independent
outputs, only m of the eigenvalues of X are nonzero since Sisa
m X p matrix. In the EPDM reactor problem p = 14 and m = 4.
The absolute value of the principal components element C;; re-
flects the contribution of the jth parameter to the variance of the
ith output. The weighted sum of the nonzero eigenvalues \; and
their corresponding principal component elements is used as a
measure of the overall effect of the jth parameter

B EZZ?}Q X Cijl
! Zi:l | Al
where 0 < F; < 1. The measure I reflects the difficulty in
determining the jth parameter when only a single parameter is
estimated. Accurate estimation from limited data sets is favored
by large E; values. However, this measure does not account for
the quantity and quality of the available data.

Table IV shows the results of the PCA-based calculation (12)
for the EPDM reactor model. Based on the relative values of
the measure, a preliminary partitioning of parameters into three
groups can be performed. Parameters in the first group (kq, k.3,
ki1, k13, ki) have a comparatively large effect on the four out-
puts. Accurate estimation of each parameter is precluded only
by the presence of linear dependencies with other parameters
in this group. Parameters in the second group (k:2, k12, k11,
kir .- k21) have a much weaker effect on the outputs. There is
the potential to estimate each parameter from this group which
has a linearly independent effect. Parameters in the third group
(ka2, k31, ki2, k;1) have very little effect and cannot be accu-
rately estimated. As discussed below, a more definitive ranking
requires investigation of possible linear dependencies between
individual parameters as well as the development of a formal
procedure to achieve an acceptable tradeoff between the magni-
tude and linear independence of parameter effects.

12)

B. Linear Dependence of Parameter Effects

In addition to having a large overall effect, each estimated pa-
rameter should have a distinct effect on the measured outputs.

More precisely, the effect of a given parameter should not be
linearly dependent with the effects of other estimated parame-
ters. Otherwise, the individual parameter effects cannot be dis-
tinguished from the given outputs. Such linear dependencies can
be identified from the dimensionless sensitivity matrix S. If the
sensitivity vector of a given parameter is close to being linearly
dependent with the sensitivity vectors of other estimated param-
eters, then estimation of the given parameter from limited plant
data will be problematic. Instead of generating unique solutions
over a range of initial parameter values, the estimator (5) will
tend to converge to different estimates of the nearly linearly de-
pendent parameters according to the initial value chosen. For
example, estimation of both rate constants k, and k.3 in the
EPDM problem is expected to be problematic because their ef-
fects are nearly linearly dependent (see Table III).

Successful estimation from limited parameter data requires
that the sensitivity vectors of the estimated parameters are not
too close to being linearly dependent. To formalize this concept,
a metric is introduced for the degree of linear independence be-
tween the sensitivity vector of a particular parameter and the
sensitivity vectors of the other estimated parameters. Let S rep-
resent the dimensionless-sensitivity vector of the kth parameter
where k € [1,n] and n is strictly less than the number of mea-
surements (m). Assuming the $j, are linearly independent, any
vector in the n-dimensional vector space S,, can be represented
as

n
5= Z ardn (13)
k=1
where the ay, are constants. Consider another parameter j with
dimensionless-sensitivity vector 5; where j > n. The objective
is to find the vector § € S, closest to the sensitivity vector 5;
by solving the following:

1
min = (3; — 3)7(3; — 3). (14)
ay
This minimization problem is equivalent to solving the fol-

lowing matrix:

Tz ST x Tx
51 81 cee 8581 8j81
a= : (15)
AT ~ ~T ~ ~T ~
51 8n 5L3, 578,

Given the linear independence of the sg, this matrix always is
invertible and (15) can be solved for the constant vector a.
Next, a measure for the degree of linear independence be-
tween the given sensitivity vector 5; and the minimum-distance
sensitivity vector s derived from (13) is introduced. We have
found that the sine of the angle between the sensitivity vectors
is a reasonable metric
1135111151

where |- || denotes the Euclidean norm and d; € [0, 1]. Two lim-
iting cases are readily identified. When d; = 1 the sensitivity
vector 5, is orthogonal to the vector space spanned by the other
sensitivity vectors Si. Then the effect of jth parameter on the
outputs is readily distinguished from the effects of the other pa-
rameters. Conversely, 5; is linearly dependent with one or more

d; = sin cos™!

(16)
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of the sensitivity vectors 5, when d; = 0. In this case, the indi-
vidual effect of the jth parameter cannot be distinguished from
the collective effect of the other parameters regardless of the
amount of steady-state plant data. A potential shortcoming of
the proposed method is that parameter effects which are indis-
tinguishable from steady-state information may be distinguish-
able from dynamic data. Parameters which yield comparatively
large values of the linear-independence metric d; are preferred
for estimation.

We have used the metric (16) to identify the possible presence
of nearly linearly dependent parameters in the EPDM-reactor
model given the nominal parameter values in Table II. While
not shown here for the sake of brevity, the results demonstrate
that the quadruplet {k,, kz3, k¢, ks, } and the pair {kep1, kir gy }
form nearly linearly dependent parameter groups. This suggests
that only one parameter from each group can be successfully es-
timated from limited plant data. A more formal analysis proce-
dure based on this metric is introduced below.

C. Parameter Selection Procedure

We propose a method for selecting estimated parameters
based on a quantitative measure of practical identifiability. The
identifiability measure provides a tradeoff between the two
objectives discussed above: i) large effect of each parameter
on the output variables as measured by the magnitude F; and
i) linear independence of the parameter effects on the output
variables as measured by the metric d;. The following recursive
algorithm is used to rank each candidate parameter according
to its identifiability.

1) Perform the PCA-based calculation (12) to determine the
overall effect E; of each parameter 6;. Select the highest
ranked parameter p1 = {f;|E) = max; E;} and set the
number of selected parameters n = 1.

2) Let m represent the number of measured outputs. If
n < m, then use (16) to compute the linear-indepen-
dence metric d; for each remaining parameter 6; with
respect to previously selected parameters {p1,...,pn}.
Go to step 4.

3) If n > m, then form all possible (m — 1)-tuples of the
previously selected parameters. The number of possible
combinations is ¢ = (n!/((m — D)!(n — m + 1)1)).
Use (16) to compute the linear-independence metric
dg,; for each remaining parameter 6; with respect to
every combination of the previously selected parameters
{p1,.-.,Pm—1}. Determine the worse-case metric over
all the combinations: d; = ming dg ;.

4) Calculate the identifiability index I; for each remaining
parameter 6;

I, =F;d;

J 3177

7)

Select the next highest ranked parameter p,{; =
{0k|Irx = max,I;}, and set the number of selected
parameters n = n + 1. If n < p where p is the number
of parameters, then return to step 2. Otherwise, terminate

the algorithm.
The only consideration involved in choosing the first param-
eter is its overall effect on the measured outputs. Remaining pa-

TABLE V
RESULTS OF TWO PARAMETER SELECTION ALGORITHMS

Proposed Method FIM-Based Method
ka k1o

ka, ktrl k12; k13

ka, ktr1, k13 k12, k13, kera

ka, kir1, k13, k11

ka, kir1, k13, k11, k12

ka, ker1, k13, k11, k12, ke

ko, ktr1, k13, k11, k12, kt, ko1

ki, k13, ker1, k11

k12, k13, kir1, k11, ka

k12, k13, kir1, k11, ka, ki2

ki, k13, kir1, k11, K23, k2, ka1

| o] O i o= B

rameters are ranked to provide an acceptable tradeoff between
the magnitude and linear independence of their effects as mea-
sured by the identifiability index I;. The linear-independence
metric d; must be computed subject to the constraint that the
vector space spanned by the sensitivity vectors of the previously
selected parameters has maximum dimension m — 1 where m
is the number of measured outputs. Otherwise, the sensitivity
vector of any remaining parameter is necessary contained in
this vector space since the sensitivity vector has rank . When
the number of previously selected parameters (n) is strictly less
than m, the vector space considered is spanned by the sensitivity
vectors of all previously selected parameters. When n > m,
then ¢ different vector spaces are constructed from all possible
(m — 1)-tuples of the sensitivity vectors of the previously se-
lected parameters. The linear-independence metricis computed
with respect to the worse-case vector space in the sense that the
metric d, ; is minimized over all possible combinations of the
previously selected parameters. The final result of the procedure
is a ranking of the candidate parameters according to their iden-
tifiability.

A potential shortcoming of the proposed method is that the
total number ¢ of (m — 1)-tuples grows rapidly as the number
of parameters p and the number of measurements m increase.
For the EPDM reactor example where p = 14 and m = 4,
the maximum number of combinations which must be evaluated
during a single iteration is 364. The selection procedure can be-
come computationally prohibitive for larger p and m. Although
not discussed here, a simpler linear-dependence test based on
collinearity between parameter pairs can be used to substantially
reduce the computational effort at expense of neglecting linear
dependencies between three of more parameters [14].

Results for the first seven iterations of the proposed algorithm
for the EPDM-reactor model are shown in the second column of
Table V. The rate constant k,, is ranked first because it has the
largest overall effect on the measured outputs (see Table IV).
Despite being the second highest ranked parameter with respect
to overall effect, k.3 is not chosen in the first seven steps because
its sensitivity vector is nearly linearly dependent with that of &, .
As a result, k4.1 and k13 are ranked second and third, respec-
tively. The parameter k, is not selected until the sixth iteration
because its sensitivity vector is nearly linearly dependent with
that of k. The parameter k.5 is not chosen in the first seven steps
for the same reason. Despite having a slightly smaller overall
effect, the parameter k11 is ranked just above k1o because k11
has a larger linear-independence metric. The parameter ko; is
ranked seventh because the sensitivity vector of ki,,,, is nearly
linearly dependent with that of k..
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As originally proposed, the FIM-based method [12] discussed
in Section I requires a subjective choice of the parameters that
yield the best tradeoff between minimization of the FIM-condi-
tion number (C') and minimization of the FIM determinant (D).
To eliminate this subjectivity, we have modified the FIM-based
approach such that the estimated parameters are chosen to min-
imize the product of these two measures. This ensures that a
unique solution is obtained for each subset of candidate pa-
rameters. The third column of Table V shows the results of
the first seven iterations of the modified FIM-based algorithm.
The proposed and FIM-based methods yield different param-
eter sets at each iteration. For instance, k12 is selected first in
the FIM-based algorithm despite being only the seventh ranked
parameter in terms of overall effect (see Table IV). Furthermore,
the FIM-based algorithm does not simply add another parameter
to the previously selected parameters. For example, in the sev-
enth iteration of the FIM algorithm the parameter k, selected in
the fifth iteration is dropped while k,3 and k3, are added. The
implications of these differences are examined in the next sec-
tion by performing off-line parameter-estimation tests.

IV. OFF-LINE PARAMETER-ESTIMATION RESULTS

While a ranking of parameters according to their identifia-
bility is generated, the proposed method does not directly ad-
dress the question of the number of parameters that should be
estimated. We have found that differences between identifia-
bility measures can provide some useful information about the
number of estimated parameters. If the identifiability measure
of the Nth ranked parameter is much greater than that of the
(N + 1)th ranked parameter, then estimation of the (N + 1)th
parameter likely will be difficult. However, this heuristic is not
generally applicable because some problems will not admit such
aclear distinction. As an alternative, we perform limited off-line
parameter-estimation tests to determine the appropriate number
of estimated parameters. While this section focuses on off-line
estimation, the parameter selection technique is equally appli-
cable to on-line estimation where the number of estimated pa-
rameters must be equal to the number of measurements to ensure
observability of the augmented system [27], [28].

A. Simulated Plant Data

Simulated plant data is obtained from a proprietary EPDM-
reactor model that utilizes a different kinetic scheme than that
shown in Table I to model polymer-chain growth. This is re-
ferred to as the plant model in the subsequent simulation studies.
The dynamic model based on the kinetic scheme in Table I that
is used for solution of the off-line estimation problem is referred
to as the estimation model. Due to differences in the kinetic
schemes, there are structural-modeling errors between the plant
and estimation models even if the same kinetic-rate constants
are used.

The plant model is used to generate dynamic data for param-
eter estimation. The feed-molar flow rates of the various reac-
tants are available for plant excitation. Because optimal experi-
mental design is outside the scope of this paper, a process knowl-
edge based approach is used to design the plant-input sequence

TABLE VI
PLANT INPUT SEQUENCE
Feed M1 Mz M3 017 Al H2
~25% step change | 0.5h | 2h [35h| 5h |6.5h
+50% step change | 1h |{25h| 4h | 55h | 7h
—-25% step change | 1.5h | 3h [45h| 6h [7.5h
TABLE VII
COMPARISON OF TWO PARAMETER SELECTION METHODS
ko k11 k13 kir1 J
Proposed | Initial value | 0.0366 | 0.0542 | 0.5842 | 2.2236
Method Solution 0.7175 | 0.3796 | 0.3957 | 1.6655 | 0.0017
Initial value | 3.1604 | 0.0877 | 0.3925 | 0.2290
Solution 0.6663 | 0.4126 | 0.4205 | 1.7215 | 0.0017
k11 k12 k13 ktr1 J
FIM-Based | Initial value | 0.0366 | 0.0542 | 0.5842 | 2.2236
Method Solution 0.5322 | 0.8841 | 0.5447 | 2.4311 | 0.0031
Initial value | 3.1604 | 0.0877 | 0.3925 | 0.2290
Solution 0.5353 | 0.8853 | 0.5454 | 2.4326 | 0.0031

shown in Table VI. The sequence consists of three step changes
in each feed flow rate of the magnitude and duration listed. The
ratio of the catalyst and cocatalyst flow rates is unchanged be-
cause these flow rates must be maintained at a certain stoichio-
metric ratio. Actual flow rates cannot be revealed for proprietary
reasons.

B. Comparison of Parameter Selection Methods

The proposed parameter-selection method is compared
to the FIM-based technique described in Section III-C to
determine potential advantages associated with these alterna-
tive approaches. As shown in Table VII, for the case of four
estimated parameters (n = 4), the rate constants k11, k13,
and k., are selected by both methods. However, the fourth
parameter chosen is k, with the proposed method and k12 with
the FIM-based method. The two sets of selected parameters are
compared by solving the off-line estimation problem (5) using
the simulated plant data discussed in Section IV-A. Table VII
shows the results obtained for two different sets of initial
parameter values that were obtained by randomly perturbing
the nominal values in Table II. For both initial conditions, each
method converges to a small region in the parameter space. Be-
cause the two optimization problems differ only with respect to
the decision variables, the objective-function value provides a
direct measure of the relative performance that can be achieved
with a given set of estimated parameters. The proposed method
yields an objective-function value that is approximately half the
value obtained with the FIM-based technique. When viewed
in conjunction with the previously discussed shortcomings
of FIM-based methods, including the heuristic nature of the
parameter selection process and computationally inefficiency,
these result suggest that the proposed method is potentially
superior for problems with a large number of unknown pa-
rameters. However, this conclusion is based on the results of a
single case study. Several additional studies would be required
to determine if the proposed method is generally superior or if
the preferred method is application dependent.
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TABLE VIII
FIVE PARAMETER ESTIMATION RESULTS FOR PERFECT MODEL
ka k11 k12 k13 kir1 J SSE
Plant value | 0.3663 | 0.4212 | 0.6886 | 0.4139 | 1.7582
Initial value | 0.0366 | 0.0542 | 0.5842 | 2.2236 | 3.1604
Solution 0.3710 | 0.4062 | 0.6964 | 0.4104 | 1.7355 | 0.000591 | 0.0018
Initial value | 0.0877 | 0.3925 | 0.2290 | 0.1229 | 1.1242
Solution 0.3581 | 0.4288 | 0.6996 | 0.4200 | 1.7875 | 0.00041 | 0.0016
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C. Determination of the Number of Estimated Parameters

We utilize off-line parameter-estimation tests to determine
the appropriate number of estimated parameters for the EPDM
problem. The objective is to estimate as many parameters as pos-
sible subject to the restriction that the optimal solution is not too
strongly dependent on the initial parameter values. We refer to
this property as reliable parameter estimation. Four estimated
parameters is viewed as a minimum number because the dimen-
sionless sensitivity matrix has rank four at the nominal steady
state. If the reliability property does not hold, then the final pa-
rameter values obtained are arbitrarily determined by the initial
parameter values chosen. Given this situation, the preferred al-
ternative is to reduce the number of estimated parameters such
that unique estimates are obtained from different initial values.
Below we present two sets of simulation tests designed to ana-
lyze estimation performance. The first set of tests are designed
to analyze parameter convergence in the absence of structural
modeling errors, while the second set of tests are designed to
investigate the effects of plant/model mismatch.

In the first set of tests, the estimation model is used as the
plant model to eliminate structural modeling errors. The ini-
tial values of the estimated parameters are obtained by random
perturbation of their nominal values in Table II while the non-
estimated parameter values are equal to their nominal values.

Comparison of dynamic responses for perfect model with five estimated parameters.

Table VIII shows results obtained by solving the off-line esti-
mation problem (5) where the first five parameters in the second
column of Table V are used as decision variables. The dynamic
plant data is obtained by using the input sequence in Table VI
to perturb the estimation model. For each initial condition con-
sidered, the five estimated parameters converge to a small re-
gion that contains the plant values and the sum of squared er-
rors (SSE) between the estimated and plant parameter values
is small. The small differences between the two optimal solu-
tions are attributable to the random nature of the simulated-an-
nealing algorithm. Predicted dynamic responses of the scaled
output variables obtained using the first set of five estimated
parameters in Table VIII are compared to the plant responses in
Fig. 1. Only very small differences between the model and plant
responses are observed. The results suggest that these five pa-
rameters can be reliably estimated from the available plant data.

Table IX shows estimation results when the first six param-
eters in the second column of Table V are used as decision
variables in the optimization problem. The estimates do not
converge to a region near the plant values as demonstrated by
the large SSE value. The lack of parameter convergence is
attributable to the inclusion of k;, whose effect is nearly linearly
dependent with that of k,. Fig. 2 shows a comparison of the
plant responses and the model responses obtained with the six
estimated parameters. As compared to the five parameter case
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TABLE IX
SIX PARAMETER ESTIMATION RESULTS FOR PERFECT MODEL
kq k11 kg k13 ki ki1 J SSE
Plant value | 0.3663 | 0.4212 | 0.6886 | 0.4139 | 0.5604 | 1.7582
Initial value | 0.0366 | 0.0542 | 0.5842 | 2.2236 | 3.1604 | 0.0877
Solution 0.4193 | 2.0351 | 3.4016 | 2.0522 | 3.0929 | 5.5253 | 0.002675 | 70.9
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Fig. 2. Comparison of dynamic responses for perfect model with six estimated parameters.
shown in Fig. 1, predictions of the polymerization rate and TABLE X

weight-average molecular weight are much less accurate. These

FIVE PARAMETER ESTIMATION RESULTS FOR IMPERFECT MODEL

results suggest that reliable estimation of six kinetic parameters ka k11 k1o k13 ki1 J

is possible only with the design of a more exciting input se- Initial value | 0.0366 | 0.0542 | 0.5842 | 2.2236 | 3.1604

quence and/or the inclusion of additional measurements. Both ; SOI‘;“OT (1)333'2( ggggg gg;gg gigg i‘ggg 0.001458
. P . nitial value | 0. . . . .

strategies can be problematic in a EPDM-plant environment. Soration 115027 T0.3355 105536 T0.3275 112427 | 0.001533

In the second set of tests, a proprietary reactor model is used
as the simulated plant to investigate the effects of structural
modeling errors. The initial parameter values used in the op-
timization problem are obtained by randomly perturbing the
nominal values in Table II. Due to plant/model mismatch, the
estimated parameter values cannot be expected to converge to
the plant values. Consequently, the estimation results are an-
alyzed with respect to convergence from different initial pa-
rameter values, the objective function values and the predicted
dynamic responses. Table X shows estimation results obtained
using the first five parameters in the second column of Table V.
The estimates converge to the same small region of parameter
space for both sets of initial values. Fig. 3 shows dynamic sim-
ulation results obtained using the estimated parameters derived
from the first set of initial values. Although some disparities be-
tween the plant and model responses are evident, the predictions

are acceptable despite the presence of structural modeling er-
rors. Although not shown here, the estimation results obtained
using the first six parameters in the second column of Table V
exhibit poor parameter convergence, large objective function
values, and biased output predictions. These results reinforce
the conclusion that only five kinetic parameters can be reliably
estimated given the available measurements and dynamic data.

V. SUMMARY AND CONCLUSION

A simple method for analyzing mechanistic-dynamic models
to determine the most appropriate parameters for off-line esti-
mation has been proposed. The steady-state analysis is based
on a dimensionless parameter-output sensitivity matrix which
is readily derived from the available model. The overall effect
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of each parameter on the measured outputs is determined by ap-
plying principal component analysis to the sensitivity matrix.
The uniqueness of each parameter effect is determined by com-
puting the minimum distance between the sensitivity vector of
the particular parameter and the vector spaces spanned by sensi-
tivity vectors of the parameters already selected for estimation.
A recursive parameter-ranking algorithm is used to achieve an
acceptable tradeoff between the magnitude and linear indepen-
dence of parameter effects. The proposed method is successfully
applied to the problem of kinetic parameter estimation for an
industrial model of a EPDM reactor. Off-line estimation tests
suggest that five kinetic parameters can be reliably estimated
from four product-quality measurements given the available dy-
namic-simulation data.

The proposed parameter-selection method is based on the
parameter-output sensitivity matrix computed at a particular
steady-state operating point. Consequently, the proposed
method does not account for dynamic or nonlinear charac-
teristics that may effect parameter identifiability. A dynamic
extension is possible if the calculations are performed using a
dynamically weighted sensitivity matrix

M

Sp =" w(k)S(k)

k=1

(18)

where M and S(k) are defined as before and w(k) is a dy-
namic weighting factor that is used to obtain an appropriate rel-
ative weighting of dynamic and steady-state data. The proposed
method possibly can be extended to nonlinear steady-state anal-
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Comparison of dynamic responses for imperfect model with five estimated parameters.

ysis by averaging the sensitivity matrices generated at multiple
steady states

_ 1 XL
Sv = Z; Si (19)
where N is the number of steady-state points and S; is the di-
mensionless sensitivity matrix at steady-state point . Both of

these extensions currently are being studied for the EPDM ki-
netic parameter-estimation problem.
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