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Abstract

A hierarchical extended Kalman filter (EKF) design is proposed to estimate unmeasured state variables and key kinetic
parameters in a first principles model of a continuous ethylene—propylene—diene polymer (EPDM) reactor. The estimator design is
based on decomposing the dynamic model into two subsystems by exploiting the triangular model structure and the different
sampling frequencies of on-line and laboratory measurements directly related to the state variables of each subsystem. The state
variables of the first subsystem are reactant concentrations and zeroth-order moments of the molecular weight distribution (MWD).
Unmeasured state variables and four kinetic parameters systematically chosen to reduce bias are estimated from frequent and
undelayed on-line measurements of the ethylene, propylene, diene and total polymer concentrations. The state variables of the
second subsystem are first-order moments of the MWD. Given state and parameters estimates from the first subsystem EKF, the

first-order moments and three non-stationary parameters added t

o the model for bias reduction are estimated from infrequent and

delayed laboratory measurements of the ethylene and diene contents and number average molecular weight of the polymer. Sim-
ulation tests show that the hierarchical EKF generates satisfactory estimates even in the presence of measurement noise and plant/

model mismatch.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ethylene—propylene (EPM) copolymers and ethyl-
ene-propylene—diene (EPDM) terpolymers are used
extensively in the automotive, construction and agri-
cultural industries [9.37]. In 1995 the domestic produc-
tion of these rubbers was almost 400,000 metric tons (11
EPM and EPDM are commonly manufactured via a
solution polymerization process in which a continuous
stirred tank reactor based on Ziegler-Natta catalyst
technology is the key unit operation. Product quality is
determined primarily by the Mooney viscosity (a mea-
sure of molecular weight) and the relative contents of
the ethylene, propylene and diene monomers in the
polymer. Stable reactor operation is required to mini-
mize off-specification polymer and to maximize pro-
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1647.
E-mail address: henson@ecs.umass.edu (M.A. Henson).

0959-1524/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi: 10.1016/j jprocont.2004.03.002

duction rates. EPDM reactors are commonly monitored
using simple statistical quality control techniques in
which laboratory measurement are compared to target
product properties. Due to the high cost and manual
nature of laboratory analysis, the product quality mea-
surements are available infrequently and contain sig-
nificant time delays. As a result, purely statistical
techniques are unlikely to yield an adequate character-
jzation of the current reactor state.

A more sophisticated approach for polymerization
reactor monitoring involves the combination of a kinetic
model with available measurements to infer the current
process state [2.3,13,15,27,38,40]. Although conceptu-
ally appealing, the state estimation approach is difficult
to implement an industrial environment because: (i) a
nonlinear estimation strategy is required to accurately
track reactor changes over a wide range of operating
conditions; (ii) on-line and laboratory measurements
with widely varying sampling frequencies and analysis
delays must be integrated; and (iii) the complexity of the
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polymerization dynamics invariably leads to significant
parametric and structural plant/model mismatch.
Multirate nonlinear state estimation strategies that
address the first two issues have been developed for
particular polymerization reactors [10,25,26,28,39].
Available multirate methods are direct extensions of
single rate techniques in the sense that on-line and lab-
oratory measurements are integrated into a single esti-
mator designed using the complete reactor model.

We pursue an alternative nonlinear estimation strat-
egy that exploits the EPDM model structure as well as
the multirate nature of the available measurements. The
triangular structure of the mass balance and moment
equations allows the reactor model to be decomposed
into two distinct subsystems. The first subsystem con-
tains differential equations for the reactant concentra-
tions and zeroth-order moments of the molecular weight
distribution (MWD) and is completely independent of
the second subsystem. By contrast, the second subsys-
tem consisting of differential equations for the first-order
MWD moments is affected by the first subsystem. Ra-
ther than formulate a single estimator that processes all
the measurements, we propose a hierarchical approach
in which the on-line measurements are used as inputs to
a first estimator and the laboratory measurements and
estimates from the first subsystem are used as inputs to a
second estimator. As compared to existing nonlinear
multirate estimation techniques, advantages of the pro-
posed method include: (1) reduced computational
requirements and improved numerical stability resulting
from decomposition of a single large estimator into two
smaller estimators; and (2) easier implementation and
reduced maintenance requirements owing to the modu-
lar nature of the hierarchical estimators.

A typical EPDM plant produces a range of polymer
grades that differ with respect to catalyst system, diene
monomer type and/or product quality targets. Deter-
mination of kinetic parameter values from literature
data and specialized laboratory experiments is not fea-
sible for each polymer in the gradeslate. A common
approach for reducing estimation bias resulting from
parametric and structural modeling errors is to estimate
a few key model parameters along with the unmeasured
state variables [13,19,36]. The success of combined state/
parameter estimation depends critically on proper
selection of the adjustable model parameters [28,36].
Rather than heuristically choose the estimated parame-
ters based on process knowledge, we utilize a systematic
parameter selection method previously developed by our
group [17] that exploits the available kinetic model. The
steady-state parameter-measurement sensitivity matrix
is used to achieve an acceptable compromise between
the magnitude and uniqueness of parameter effects on
the measured outputs. Unlike alternative methods that
simply allow screening of predetermined parameter sets
[35], our method yields an explicit ranking of the can-

didate parameters according to their usefulness for
reducing estimation bias.

A wide variety of nonlinear state estimation tech-
niques are potentially applicable to the EPDM problem.
Nonlinear state estimators commonly used for process
control applications can be classified as extended Lu-
enberger observers [3,38], extended Kalman filters
[24,34] and nonlinear receding horizon estimators
[29,30]. While extended Luenberger observers are most
suitable for theoretical analysis, they typically require
nonlinear coordinate transformations that are difficult
to construct for complex models and that raise concerns
about numerical stability in an industrial environment
subject to significant noise and frequent disturbances. A
major advantage of nonlinear receding horizon estima-
tors is the ability to enforce constraints on the estimated
variables. Because constrained estimates are generated
by solving a non-convex nonlinear program at each
sampling period, the computational overhead can be
prohibitive for complex models such as those required to
describe EPDM reactor dynamics. The hierarchical
estimation strategy proposed in this paper is based on
the extended Kalman filter (EKF) [11,12,24] because: (1)
restrictive assumptions on the model structure required
in other nonlinear state estimation techniques [5,14,23,
41] are not necessary; (2) measurements with different
sampling frequencies and analysis delays can be handled
[10,25,26,28,39]; and (3) on-line computational demands
are much less than for nonlinear receding horizon esti-
mators [22,29,30].

The proposed estimation strategy is particularly well
suited for application to industrial EPDM reactors. Al-
though applicable to a wide range of on-line estimation
problems, the parameter selection procedure ensures the
adjustment of kinetic parameters that minimize estima-
tion bias [17). By utilizing extended Kalman filtering for
combined state and parameter estimation, ill-condition-
ing problems associated with variable transform meth-
ods [5] and the large computational requirements of
optimization based methods [29] are avoided. Model
decomposition allows sequential design of the two sub-
system estimators, thereby reducing trial-and-error tun-
ing of the covariance matrices, improving numerical
stability and simplifying on-line implementation as
compared to existing multirate EKF schemes [26]. An-
other advantage of the hierarchical structure is that the
first subsystem estimator is not affected by disabling the
second subsystem estimator in the event that laboratory
measurements become unavailable or maintenance is
required.

The remainder of the paper is organized as follows.
The EPDM kinetic model and the assumed on-line and
laboratory measurements are discussed in Section 2.
Section 3 contains a detailed description of estimator
design including model decomposition into two sub-
systems, selection of the estimated parameters and for-
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mulation of the hierarchical EKFs. The simulated per-
formance of the hierarchical estimator in the presence of
parametric and structural modeling errors is presented
and discussed in Section 4. A brief summary and the
major conclusions are presented in Section 3.

2. EPDM Kkinetic model

We consider a solution polymerization process in
which EPDM is produced in a continuous stirred tank
reactor. The feed to the reactor consists of the three
monomers, solvent (hexane or methyl chloride), cata-
lysts (a transition metal halide catalyst and an ogano-
metallic co-catalyst) and chain-transfer agent (usually
hydrogen). The reactor model is based on a kinetic
mechanism that describes the major reactions involved
in initiation, propagation, termination and transfer of
polymer chains. We utilize the kinetic mechanism of
Cozewith [6] shown in Table 1. The basic reaction steps
are: (i) formation of an active catalyst species (C,) from
the catalyst (C) and co-catalyst (47); (i) deactivation of
the catalyst with various poisons such as diene monomer
(M5) to form dead catalyst species (D); (iii) initiation of a

Table |
EPDM kinetic mechanism

Type Reaction Rate constant
|. Catalyst activation C - Ca ks
2. Catalyst deactivation C, -—» D k.
C] e M] —D k‘:;
3. Chain initiation C, +M; — Piw ki
Cy+ My — Qoo kiz
4. Chain propagation Py + M — Pinp kn
P + My — QOigiw kiz
P + My — Ry ki
Qi + My — Piaie ke
Qi + My — Qi kx
R -+ My — Fainp k3
5. Chain termination
Spontaneous Py — U k,
Qi — Vi k
R — Win k,
With propylene Py + My — Uy ko
O + My — Vg ki
R + My — Wi ko
With diene P.,k + My — U,'jk k,3
Qijx + Mz — Vig ka
Riji + Mz — Wi ki

6. Chain transfer
With hydrogen Py + Hy = Uy + G kin
Qip + Hy = Vi + G2 kit
R + Hy — Wy + C2 Kiry
P + Al — U + Poo k,
Qi + Al — Vig + Pioo ki
Riy + Al — Wy +Pioo ki
Py + My — U + Qoo ey
O + My = Vig + Qoo ki
Rk + My — Wi + Qoo Ky,

With co-catalyst

With propylene

growing polymer chain by the reaction of active catalyst
with ethylene monomer (M;) or propylene monomer
(M,); (iv) propagation of a polymer chain by the addi-
tion of a monomer unit to the growing chain; (v)
termination of polymer chain growth by the transfor-
mation of a growing chain to a dead chain; and (vi)
transfer of the active catalyst from a growing polymer
chain to a new polymer chain by the action of chain
transfer agents such as hydrogen (H>). Alternative
EPDM kinetic schemes [7,26] differ from the mechanism
in Table 1 with respect to particular chain initiation,
propagation, termination and transfer reactions. The
notation Py and Uy is used to represent ethylene ended
growing and dead chains, respectively, with a total
number of i ethylene units, j propylene units, and &
diene units. Two types of propylene ended chains
(Qijx» Vix) and diene ended chains (R, W) are labeled
analogously. Each reaction j has an associated rate
constant k; whose value must be obtained from the lit-
erature or estimated from available data.

The reactor model consists of dynamic balance
equations for the reacting species and various MWD
moments. Overall mass and energy balances are not
included because EPDM reactors are operated at con-
stant volume and temperature except for grade transi-
tions which are not considered in this paper. Because the
available measurements discussed below are not related
to second-order MWD moments, the model only in-
cludes moments up to first order. In the absence of
multiple catalyst sites and/or polymer cross-linking, this
simplification is reasonable because the steady-state
polydispersity is identically two for any operating con-
ditions [6,7). The resulting dynamic model consists of 14
nonlinear ordinary differential equations (ODEs) for the
seven reacting species (ethylene, propylene and diene
monomers, inactive and active catalysts, co-catalyst and
hydrogen), four zeroth-order moments (concentrations
of ethylene ended chains Py, propylene ended chains Qy,
diene ended chains R, and dead chains By) and three
first-order bulk moments (total concentrations of eth-
ylene Aip0, propylene Ao and diene Jgo in the polymer
chains).

Appendix A.l contains the complete set of model
equations where C denotes a molar concentration, F is
the volumetric feed flow rate, ¥ is the constant reactor
volume, and the subscript ‘f* denotes a feed property.
The chain transfer reaction involving the aluminum
alkyl co-catalyst is assumed to be proportional to the
excess co-catalyst that remains following the formation
of the active catalyst species. Nominal parameter values
for the EPDM grade studied are listed in Table 2 [17].
Each parameter value has been scaled to have roughly
the same order of magnitude. The dynamic model
equations can be written in the general form:

x = f(x,u,0) 0]
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Table 2

Scaled reaction rate constants
Parameter Value Parameter Value
kg, 0.3663 ky 0.6410
k, 0 ky 3.0037
ke, 0 k3l 1.2418
k., 0.9890 k 0.5604
ki 1.8315 ki, 0.7839
ki> 1.8315 ke, 0
kyy 0.4212 ke 0
kyy 0.6886 ky, 1.7582
ki3 0.4139 ko, 1

where x € R is the state vector, 8 is a vector of esti-
mated parameters to be defined later, and u € R® is a
vector of feed concentrations used for process excita-
tion:

U= [CMI,( CMz.f CM].I' CCLf Cary CHz,f ]T (2)

The reactor model is completed by specifying the
measurements along with their sampling frequencies and
analysis delays. Frequent and undelayed measurements
of the ethylene concentration (Cy,), propylene concen-
tration (Cyy,), diene concentration (Cy,) and total poly-
mer concentration (J,) are assumed to be available.
ExxonMobil work demonstrates that such on-line
measurements can be obtained via a combination of
Fourier transform near infrared (FTNIR) spectroscopy
and multivariate statistical analysis of the resulting
spectra [21]. A sampling time of six minutes is necessary
to flush the probe following each sample and mitigate
fouling problems. The total polymer concentration is
related to the zeroth-order moments as follows:

7o =P+ Qy+ Ro+ By (3)

Infrequent and delayed measurements of the polymer
ethylene content (Xjy, ), diene content (Xjs,) and number
average molecular weight (M,) are assumed to be pro-
vided by laboratory analysis. While not measured di-
rectly, M, can be inferred from the measured Mooney
viscosity (M,) using the empirical equation:

M, = a(M,/1000)" (4)

where a and b are grade dependent constants. Exxon-
Mobil currently analyzes polymer samples every two
hours immediately following grade transitions and every
four hours during normal operation. Each measurement
is delayed by approximately one hour due to sampling,
laboratory analysis and transmission of results. Conse-
quently, we assume the three laboratory measurements
are available every two hours with a one hour delay.
These measurements are related to the first-order mo-
ments as follows {20,31}:

_ M, A
M, Ao + M., Ao10 + M., Aol

X, (5)

M., Ao
Xy, = - A - 6
M M,y oo + My, 2010 + M, 2001 ©)
— M, A M, A M, A
M, = - 100 + : o10 + My, Aot 0

Ay

where M,,, M,, and M,, are the molecular weights of
ethylene, propylene and diene, respectively.

3. Design of the hicrarchical extended Kalman filter

The EPDM dynamic model has a triangular structure
common to other types of polymerization reactor
models in which a first subsystem comprised of reactant
concentrations and zeroth-order MWD moments is de-
coupled from a second subsystem consisting of first-
order MWD moments. An EKF that receives frequent
and undelayed on-line measurements of the ethylene,
propylene, diene and total polymer concentrations is
used to estimate reactant concentrations and zeroth-
order MWD moments as well as four kinetic parameters
systematically chosen to reduce bias in the first subsys-
tem. The first subsystem estimates serve as inputs to a
second EKF that generates estimates of the first-order
MWD moments and three additive parameters from
infrequent and delayed laboratory measurements of the
ethylene and diene contents and number average
molecular weight of the polymer. This hierarchical for-
mulation allows the two EKFs to be designed sequen-
tially and the second subsystem correction term to be
utilized only when laboratory measurements become
available. Our goal is to develop a nonlinear state esti-
mator strategy that is implementable in an industrial
environment rather than theoretical analysis of estima-
tor convergence under idealized conditions. The inter-
ested reader is referred to other papers for detailed
stability analysis of the EKF [4,18,32,33].

3.1. Model decomposition

The proposed decomposition exploits the triangular
structure of the EPDM model and the different sampling
frequencies of the available measurements. The first
subsystem is represented as

a1 (0) = filei (1), u(t), 6]
91(1) =0 (8)
yi(khy) = hy[xi (k)] = Crxy(khn)

where the state variables x; = [Cy, Cu, Cuy, Co, Co
Cy Cuy, Po Qv Ro B(}]T € R are continuous functions
of time and the on-line measurements y; = [Cy, Ca,
Cwu, AU]T € R* are discrete signals with a sampling period
of h =6 min and no analysis delay. The kinetic
parameters 6, chosen for on-line estimation are ap-
pended to the model as additional unmeasured state
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variables. A systematic procedure for selecting these
parameters to reduce estimation bias is discussed below.
The second subsystem is written as

%3(8) = fabe (), x2(8), u(2), 61] + 62
02(t) = 0 9)
ya(khy) = halxy (khy — 1), x2(khy — 12))]

il

where the state variables x2 = [Aiw  Aoto Aoor ]T eR}
are continuous functions of time and the laboratory
measurements y, = Xy, Xu, M, ]T € R® are discrete
signals with a sampling period /=2 h and analysis
delay , = | h. The parameters 6, added to the model to
reduce estimation bias are discussed below. The sam-
pling intervals of the on-line and laboratory measure-
ment are related as: N = %T = 20.

3.2. Selection of estimated parameters

The subsystem models (8) and (9) used for nonlinear
estimation are formulated by considering selected
parameters as unmeasured state variables. On-line
parameter estimation is necessary to account for mod-
eling errors that result from limited process under-
standing, the introduction of simplifying assumptions
and inaccurate parameter values due to limited experi-
mental data. The objective is to select the parameters
such that estimation bias is minimized and localized to
the least important state variables. To ensure that the
parameters are observable and that bias is eliminated in
each measured variable, the number of estimated
parameters must be equal to the number of measure-
ments [13,34): 6, € R* and 6, € R*.

The first subsystem is comprised of balance equations
for the reacting species and the zeroth-order MWD
moments. The kinetic mechanism in Table 1 involves a
total of 18 rate constants k;, four of which are identically
zero for the specific grade studied (see Table 2). A sys-
tematic approach for selecting the four estimated
parameters 0, from the remaining set of 14 rate con-
stants is necessary to achieve a suitable tradeoff between
the following factors:

1. A parameter may have a very weak effect on the mea-
sured outputs. Successful estimation of such a weakly
identifiable parameter is unlikely because its eflect
cannot be accurately quantified.

2. The effects of certain parameters on the measured
outputs may be almost linearly dependent. Successful
estimation of such parameter sets is unlikely because
the individual parameter effects cannot be distin-
guished.

The presence of parameters with weak and/or nearly
linearly dependent effects on the measured outputs often
leads to estimator convergence problems [17].

We recently developed a systematic technique for
selecting parameters for off-line estimation that explic-
itly addresses the tradeoff between the magnitude and
uniqueness of parameter effects [17]. The recursive
parameter selection algorithm used for on-line estima-
tion is summarized in Appendix A.2. As discussed in the
original reference [17], the algorithm selects the follow-
ing kinetic parameters for the first subsystem: k,, &y, £13
and k. The parameters ¢y = [s, S, S13 Sn ]T actu-
ally included in the estimator design model (8) are de-
fined as follows:

k; = Sakav k,, = Siry klrle

* *
" kiy = siskia, ki = sukn

(10)
where k; represents the nominal parameter value in
Table 2 and k; represents the time varying estimate of &;.

All the kinetic parameters present in the first-order
bulk moment equations also appear in the first subsys-
tem. To maintain the triangular structure on which the
model decomposition is based, estimated parameters
other than rate constants must be introduced into the
second subsystem for bias reduction. Several investiga-
tors [13,16] have proposed the addition of non-station-
ary variables to the state equations as an alternative to
the use of physically based parameters. For complex
systems such as the Tennessee Eastman challenge pro-
cess [34], proper placement of these non-stationary
variables can be quite difficult. An advantage of the
proposed model decomposition is that the second sub-
system has the same number of state variables and
measured variables. This structure allows the introduc-
tion of a non-stationary variable to each of the three
first-order moment equations as reflected in the second
subsystem model (9) where the non-stationary variables
are denoted 0,.

3.3, Estimator formulation

The extended Kalman filter (EKF) [12,24] involves
linearization of the nonlinear model at the current esti-
mates followed by application of the linear Kalman filter
to the linearized model. Consider the first subsystem (8)
in which the four measurements are sampled but unde-
layed. Define the augmented state vector z; = [x{ o7 I
and the composite function ¢, (z1,u4) = [f(z1,u) 0T 1"
A first-order EKF which neglects the second- and
higher-order terms of the Taylor series expansion of the
nonlinear function /i(-) is constructed as follows:

o Prediction:
21 (khy + hylkhy) = 2, (khi ki)

khy+h
N / &1 [21 (ki ek ), u(z)] de
khy
(11)
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e Correction:

2 (kh1 +h1|kh| +h1) = 21(’(’11 +h1|kh|)
+ Ly {khy + hy) [ (khy + hy)
— C12)(khy + hy[khy)] (12)

where 2 (kh; + hi|ki) denotes the estimated state
vector at time khy + h; from information available at
time kk,. The prediction is performed with constant z
because the first subsystem estimates remain constant
over the sampling period #;. The estimator gain
Ly(khy + hy) is calculated from the following recursive
equations:

Ly(khy) = Py(khy|khy — hy)PT (kh)
X [qll(khl)P| (kh[lkhl - h[)lPT(khl) + R]rl

(13)
Py (khy{khy) = [ — Ly(khy) W (khy)|Py (khy|khy — )
(14)
Py(khy + By |khy) = @ (khy )Py (khy|kh) ) DT (khy) + Q
(15)
P(OIO) = Qu (16)

where P, is the time varying covariance matrix of the
estimated state vector 2, and Qy, Q and R are constant
covariance matrices of the initial state %(0), the state
disturbance vector, and the measurement noise vec-
tor, respectively. The matrices ®; and ¥, are ob-
tained by linearization of the model equations at each
sampling instant:

0, (21, u
@,(khl):{_d’lé(:‘__)]
21 2y (ki ) =y ) (17)
. ah\(zl)
Vilkin) = | —3—
20 Ly G )

The covariance matrices Qg, O and R usually are taken
to be diagonal and used for estimator tuning. Aug-
mentation of the state vector introduces new elements
into the covariance matrices that can be tuned to reduce
bias in the estimates of key state variables.

The state and parameter estimates 2, from the first
subsystem EKF act as inputs to the second subsystem
(9). The presence of the time delay 7, in the three labo-
ratory measurements makes the formulation of the EKF
for the second subsystem more complex than that for
the first subsystem. Let the augmented state vector z;
and the composite nonlinear function ¢,(z1,22,u) be
defined analogously to z; and ¢;(z1,u) respectively.
Rather than estimate the current state variables directly,
the delayed measurements are used to estimate the state
variables one time delay in the past: z(kh; — t|kh)
[10,28]. Then the current estimate z3(khalkhs) 1s gener-
ated by open-loop integration of the model (9) with the

past estimate as the initial condition. The corresponding
prediction and correction equations are:

e One sampling period ahead prediction:
22(/\'}!2 + hy — lz]khz) = fg(khz - tz‘khz)
kha+hy -1
[ g ) ks ) (2] 0
kha—13
(18)
¢ Model correction:

fz(khz + hy — lz‘khz + hz)
= fz(khz + hy — lzlkhz) + Lz(khz -+ hg){yz(khz + hz)
— hg[&l(khz + hy — tzlkhz),flz(khz +hy — tzlkhg)]}
(19)

o One time delay ahead prediction:

I:’z(khz‘khg) = ég(khz - lzlkhp_)

+/k"l $o21 (t|kha), 22(z|kh2), u(7)]d7

ha—ty

(20)

The one sampling period ahead prediction is performed
with constant 2, because the second subsystem estimates
remain constant over the sampling period ;. By con-
trast, the estimates z; are updated each time the first
subsystem EKF is executed. Recursive equations anal-
ogous to Egs. (13)(16) are used to compute the esti-
mator gain Lj(kh; + h2). The time varying matrices ®;
and ¥, required in these calculations are obtained by
linearization of the second subsystem model equations
using expressions analogous to (17).

4. Results and discussion

The performance of the hierarchical EKF is evalu-
ated using the sequence of feed flow rate changes
shown in Table 3. The changes represent deviations
from a set of nominal feed flow rates. A constant
molar ratio of the catalyst (C;) and co-catalyst (Al) is
maintained by treating the ratio of the two molar flow
rates as a single input variable. To validate the
assumption that the polydispersity remains approxi-
mately constant under dynamic conditions, the input
sequence is applied to the open-loop reactor model.
Although not shown here for the sake of brevity, the
results demonstrate that the polydispersity has a max-
imum deviation ol approximately 3% from the steady-
state value of two.

EKF performance is evaluated with and without
measurement noise for the following cases:
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Table 3

Plant input sequence
Feed M, (h) M, (h) M () Cy, Al (h) Hy (h)
—25% step change 0.5 2 35 5 6.5
+50% step change 1 2.5 4 5.5 7
-25% step change 1.5 3 4.5 6 1.5

1. Perfect model: the EKF design model and the plant
model are identical.

2. Parametric mismatch: constant parameter bias is
introduced by adding zero mean normally distributed
errors to the plant kinetic parameters to generate the
design model kinetic parameters.

3. Structural mismatch: a plant model based upon a dif-
ferent kinetic mechanism than the design model is
used.

The EKF covariance matrices are chosen to be diagonal
and tuned by trial-and-error for each case to achieve an
acceptable tradeoff between dynamic tracking of plant
state variables, rejection of measurement noise and
minimization of steady-state estimation bias. Estimator
performance is highly dependent on the covariance

matrices Q and R, while the effect of the Qo matrix is
negligible. The presence of measurement noise requires
the diagonal elements of the R matrix to be increased as
compared to noise-free tuning and produces slower
estimator convergence due to the smaller measurement
correction. EKF performance also is highly dependent
on tuning of the covariance matrix elements associated
with the adjustable kinetic parameters and the non-sta-
tionary variables.

Table 4 shows the covariance matrices for each of the
six scenarios investigated. The perfect model and para-
metric mismatch cases do not require a different set of
tuning parameters when measurement noise is intro-
duced, while two different sets of tuning parameters are
necessary for the structural mismatch case. The state
estimates are initialized to zero, the kinetic parameter

Table 4
EKF tuning parameters
Matrix Subsystem Variable Perfect model Parametric mismatch Structural mismatch
Noise free With noise Noise free With noise Noise free With noise
O First All 1.0E-2 1.0E-2 1.0E-2 1.0E-2 1.0E-2 1.0E-2
Second All 1.0E-3 1.0E-3 1.0E-3 1.OE-3 1.0E-3 1.0E-3
Q First Cuny 1.0E+1 1.0E+1 1.0E-11 1.0E-11 1.0E+1 1.0E-3
Cw2 1.0E+} 1.0E+1 1.OE-10 1.0E-10 1.0E+1 1.0E-3
Cins 1.OE+3 1.OE+3 1.0E-10 1.0E-10 1.OE+3 1.0E-1
Ce {.0OE-7 1.0E-7 1.0E-14 1.0E-14 1.0E-7 1.0E~11
Cer 1.0E-7 1.0E-7 1.0E-14 1.0E-14 1.0E-7 1.0E~-11
H, 1.0E-5 1.0E-5 1.0E-14 1.0E-14 1.0E-5 1.0E-9
Al 1.OE+3 1.0E+3 1.0E-10 1.0E-10 1.0E+3 1.0E-1
Py 1.0E-6 1.0E-6 1.0E-9 1.0E-9 1.0E-6 1.0E-10
O [.0E-7 1.0E-7 1.OE-12 1.OE-12 1.0E-7 1.0E-11
Ry 1.0E-8 1.0E-8 1.0E-14 [.0OE-14 1.0E-8 1.0E-12
By 1.0E-5 1.0E-5 1.0E-10 1.0E-10 1.0E-5 1.0E-9
Sa 0.E0 0.E0 1.0E+4 1.0E+4 1.0E+5 1.0E+3
511 0.E0 0.E0 1.0E+4 1 .OE+4 1.0E+5 1.0E+3
s13 0.E0 0.E0 1.0E+3 1.0E+3 1.0E+4 1.0E+2
Sl 0.E0 0.E0 1.0E+3 1.0E+3 1.0E+4 1.0E+2
Second Aroo 1.0E+8 1.0E+8 1.0E-5 1.0E-5 1.0E-4 1.0E-4
: Ao 1.0E+7 1.0E+7 1.0E-5 1.0E-5 1.0EO 1.0E0
Aot 1.0E+6 1.0E+6 1.0E-5 1.0E-5 1.0E+6 1.0E+6
dio 0.E0 0.E0 1.OE+S5 1.0E+5 1.0E+7 1.0E+7
doto 0.E0 0.E0 1.OE+5 1.0E+S 1.0E+7 1.OE+7
doot 0.E0 0.E0 1.0E+5 L.OE+S 1.0E+7 1.0E+7
R First Cuy 1.0E+6 1.0E+6 1.0E+6 1.OE+6 1.0E-1 1.0E+6
Cwz 1.0E+6 1.0E+6 1.0E+6 1.OE+6 1.0E—-1 1.0E+6
Cwr 1.0E+S 1.0E+5 1.0E+6 1.0E+6 1.0E-2 1.OE+S
Ao 1. OE+5 1.0E+5 1.0E+7 1.0E+7 1.0E-2 1.0E+5
Second M, 1.0E0 1.0E0 1.OE+17 1.0E+17 1.OE+17 1.0E+17
Xt 1.0E+4 1 QE+4 1.0E+17 1.0E+17 1.0E+17 1.0E+17
X3 1.0E+2 1.0E+2 1.0E+17 1.OE+17 1.0E+17 1.0E+17
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estimates associated with the first subsystem are initial-
ized to unity and the non-stationary parameter estimates
associated with the second subsystem are initialized to
zero. Estimated concentrations are set to a very small
positive value if they become negative to avoid EKF
divergence.

4.1. Perfect model

The EKF design model and the plant model are as-
sumed to be identical to investigate the limits of EKF
performance. For this set of tests on-line parameter
estimation is not necessary and only state estimation is
performed. Figs. 1 and 2 show the EKF performance
obtained for the plant inputs in Table 3 in the presence
of measurement noise implemented as follows:

Fi(k) = [1 + rin(k)]y:(k) (21)

where y; is a noise-free plant value, y is the noise cor-
rupted plant measurement, n is a zero mean white noise
signal, and r; is scaling parameter used to obtain the
desired variance. The scaling parameter r; is chosen as
0.05 for on-line measurements and 0.02 for laboratory
measurements.

Due to the availability of frequent and undelayed
on-line measurements, excellent tracking of the first
subsystem plant variables is observed despite poor esti-
mator initialization and significant measurement noise
(Fig. 1). The second subsystem plant variables are not
tracked as effectively because laboratory analysis leads
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to infrequent and delayed measurement feedback (Fig.
2). Despite the lack of plant information, the EKF is
able to quickly converge from the poor initial condition
and accurately track the plant variables. The estimate of
the number average molecular weight is generally more
accurate than the two monomer content estimates. Al-
though not shown here, EKF performance is improved
only slightly by the complete removal of measurement
noise.

4.2. Parametric mismatch

For the second set of simulation tests the EKF design
model is structurally identical to the plant model but
random errors in the non-zero kinetic parameters are
introduced as follows:

6, = (1 +m)b, (22)

where 0, is a plant parameter, n is a random variable
taken from a Gaussian distribution with zero mean and
unity variance, r = 0.1 is a scaling factor for the vari-
ance, and 0, is the perturbed parameter used in the de-
sign model. Introduction of these random perturbations
is intended to mimic uncertainties in the kinetic model
parameters that invariably exist even if the model
structure is well characterized. On-line parameter esti-
mation is used to minimize bias caused by errors in the
14 non-zero kinetic parameters. Because only four ki-
netic parameters (k,, ki1, k13, k1) are adjusted, complete
elimination of bias is not possible.
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Fig. 1. First subsystem EKF for perfect model with measurement noise.
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Fig. 2. Second subsystem EKF for perfect model with measurement noise.

15
o
s
[®) e
T oy e I
[7] )
| "
|
0.5 4] 0.5
0 2 4 6 8 [¢] 2 4 6 8
time (hr)
A 15
\ —— Plant
- - Mode! Predicted
— EKF
G <~
3 = 3 1 N TN
w 3 PN
|53 5 -
(%] ] -
‘ \
A
0.5
8 0 2 4 6 8

time (hr)

Fig. 3. First subsystem EKF for parumetric mismatch without measurement noise.

Figs. 3-5 show the EKF performance obtained in the from an open-loop observer when the estimates are
absence of measurement noise. State estimates obtained initialized to zero also are included. While lacking
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measurement feedback to compensate for plant/model
mismatch, the open-loop observer is a reasonable basis
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Fig. 5. Estimated parameters for parametric mismatch without measurement noise.

for comparison because industrial practitioners often
view open-loop estimation as the first alternative for
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generating unmeasured state variables. The EKF esti-
mates of the first subsystem variables exhibit slightly
faster dynamics and reduced bias as compared to the
open-loop estimates (Fig. 3). The improvement is most
significant for the ethylene concentration (Cy,) and the
total polymer concentration (4y). Due to infrequent and
delayed measurement feedback, the EKF and open-loop
estimates for the second subsystem variables are com-
parable (Fig. 4).

The evolution of the EKF parameter estimates is
shown in Fig. 5. Although not apparent from these
plots, all the estimates eventually converge to constant
values. Relatively large adjustments in the parameters
for catalyst activation (s,) and diene addition to ethylene
ended chains (s,3) are required to reduce bias in 2y and
the diene concentration (Cy,), respectively. The rela-
tively large adjustment in the non-stationary variable
dyoo associated with the second subsystem leads to sig-
nificant improvements in the estimation of the number
average molecular weight (M,) as compared to the open-
loop observer. Although not shown here, EKF perfor-
mance is not significantly degraded by the introduction
of measurement noise.

4.3. Structural mismatch
In the final set of simulations the plant model is based

on a proprietary kinetic mechanism that differs from the
mechanism in Table 1 used to derive the EKF design
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model. These tests are intended to evaluate EKF per-
formance in the presence of substantial plant/model
mismatch expected in an industrial application. Figs.
6-8 provide a comparison of EKF and open-loop esti-
mator performance in the absence of measurement
noise. Fig. 6 shows that frequent and undelayed mea-
surement feedback allows the EKF to provide superior
estimates of the first subsystem variables. The two esti-
mators yield similar performance for the second sub-
system because the advantage of feedback is greatly
diminished when the plant measurements are available
infrequently and with large delay (Fig. 7). The evolution
of the EKF parameter estimates is shown in Fig. 8. As
compared to the parametric mismatch case (Fig. 5), the
EKF produces larger changes in the kinetic parameter
for hydrogen chain transfer (s,,) and the three non-
stationary variables associated with the second subsys-
tem.

EKF performance in the presence of structural mis-
match and measurement noise is shown in Figs. 9 and
10. The noise variance parameter ; in (21) is chosen as
0.05 for on-line measurements and 0.02 for laboratory
measurements. As shown in the last two columns of
Table 4, the EKF covariance matrices are retuned from
their noise-free values. Table § provides a comparison of
integral square errors for the two estimators. As shown
in Fig. 9, the EKF provides superior estimates of the
first subsystem state variables including the active cat-
alyst concentration (Cc,) that is very important for
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Fig. 6. First subsystem EKF for structural mismatch without measurement noise.
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production rate control. On-line adjustment of the four
kinetic parameters allows the EKF to eliminate esti-
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Fig. 8. Estimated parameters for structural mismatch without measurement noise.

mation bias in the first subsystem measurements. By
contrast, the EKF provides comparatively poor esti-
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Fig. 10. Second subsystem EKF for structural mismatch with measurement noise.

mates of the second subsystem state variables. Aithough
not shown here, the retuned covariance matrices lead to
large changes in the non-stationary variables compared
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to the noise-free case. As a result, the EKF actually
provides better tracking of the polymer product prop-
erties than the open-loop estimator (Fig. 10).
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Table §
Integral square estimation errors for structural mismatch with measurement noise
Estimator Cy, Cy, Cu,
Open-loop 4.65 6.00E~1 5.70
EKF 3.10 3.80E-1 4.42
Estimator o0 Qo Ro
Open-loop 3.84E+1 331E+] 2.65E+1
EKF 2.95E+1 2.37E+1 1.95E+1

Ce, Ce, Ci, Cu
3.16E+1 3.23E+1 2.20E-1 1.72E~1
3.20E+1 2.53E+1 2.12E-1 1.71E-1
By A100 Aoto Ao
4.43 2.12E-1 [.18E-1 491E-1
2.03 1.68 1.79 4.78

5. Summary and conclusions

A hierarchical extended Kalman filter (EKF) design
based on a first principles model of a continuous eth-
ylene—propylene-diene polymer reactor was presented.
The dynamic model is decomposed into two subsystems
by exploiting the triangular model structure and the
different sampling frequencies of the available on-line
and laboratory measurements. The first subsystem is
comprised of differential equations for the reactant
concentrations and the zeroth-order moments of the
molecular weight distribution (MWD). An augmented
version of the first subsystem is used to design an EKF
that generates estimates of unmeasured state variables
and four kinetic parameters from on-line measurements
of the ethylene, propylene, diene and total polymer
concentrations. The second subsystem consists of first-
order MWD moment equations in which the state
variables of the first subsystem represent unknown in-
puts. A hierarchical design in which estimates of the first
subsystem variables serve as inputs to an EKF designed
for the second subsystem has been developed. The sec-
ond subsystem EKF generates frequent estimates of the
polymer contents and number average molecular weight
from infrequent and delayed laboratory measurements
of these quantities. The proposed formulation allows the
second subsystem correction term to be utilized only
when laboratory measurements become available.

The hierarchical EKF differs from existing multirate
estimation techniques in which on-line and laboratory
measurements are integrated into a single estimator
designed using the complete reactor model. While these
other techniques are potentially applicable to the EPDM
problem, the proposed method offers several advantages
including reduced computational requirements, im-
proved numerical stability, easier implementation and
reduced maintenance. A variety of simulation tests
involving measurement noise, parametric modeling
errors and structural plant/model mismatch were used to
evaluate the hierarchical estimation strategy. The results
show that the EKF provides effective tracking of reac-
tant and polymer concentrations, while infrequent and
delayed laboratory measurement feedback limits the
accuracy of the polymer property estimates. The pro-
posed design strategy is applicable to other types of
polymerization reactors with on-line measurements of

reactant concentrations and laboratory measurements
correlated to higher-order MWD moments.
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Appendix A
A.1. EPDM reactor model

Reuactant concentration equations

dC, F
d:“ = "I‘/‘(CM”- — Cuy) — (knCc, + k1P + kuQo
+ k3 Ro)Ch, (A1)
dc F
__d;”Z =7 (Chtyy; — Cuy) — kiCey + kn2Po + k2200
+ (kiy + ki, )(Po + Qo + Ro)Cis, (A2)
dCy, F
—d—y’* =7 (Caye — Cit) — [(kiyCe, + k3P
+ ki, (Po + Qo + Ro)|Ca, (A3)
dC F
dtcl =7 (Ce,p — Cey) = (kay + ke + ke, Crr ) Co, (A4)
dC F
2= 5 Co, + ke, = (kaCon + kaCo)Cey
+ kip, Crty (Po + Qu + Ro)] (A.5)
dC F C
== Cur = Car) = k(EEI - 1)(1’0 + Qv+ Ro)
1
(A.6)
dCy, F
< =5 (Coy = Co) =k Cin (B + Qo+ Ro) - (AT)
Zeroth-order moment equations
dP F
th =~ -I7Po + ki Ce,Cuy + (k21Qo + k31R0)Cy,

— (ki2Cu, + k13Cu )Py — (ki + ki, Crpy + ki, G

Car 1)(Q0 + Ro)

+ ki, Crty + Kiry, CoYPo + <_C
G
(A8)
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d F
W0 L0+ kaCeCu + kaCusP
— k1 Cu, Qo — ["ﬂ + ki, Cut, + ki, C,
C
+ klr| CHZ + klr<—_Aj‘ - 1):! Ql)
Ce,
+ kiry, Cut, (Py + Ro) (A9)
dR F
—Etg = - I—/RO + ki3Cu Po — k31 Cpy Ry — \:k: + &, Chs,
Cu
+ ki, Crgy + ki Criy + oy | — — 1 + kyryy, Cagy | Ry
Co, :
(A.10)
dB F
—U = By + |k +k,Chsy, + kyyCaa, + ki, City
di vV
Ca
+ko| === 1) +kpy, Cop,| - (Po+ Qo + Ro)
Ce, :
(A.11)
First-order moment equations
ds F
0~ Ao + ki Ce,Cury + (ki Py + kn Qo
ds V
C
+ k31Ry)Cas, +k,,<—‘i— 1>P0 (A.12)
Ce,
di F
d(;w = - —I;)-mo + (knCe, + k12Po + %2200)Ch,
+ ki, i1, Oo (A.13)
ds. F
dotm = -—1;1001 + ki3nCor P (A.14)

A.2. Kinetic parameter selection algorithm

The EPDM kinetic parameters selected for on-line
estimation are determined using the following recursive
algorithm [17]:

1. Consider a steady-state operating point of the reactor
model denoted as i, %, y and . Introduce a small per-
turbation A8, = 6, — 0, in the jth non-zero kinetic
parameter and denote the steady-state change in the
ith output as Ay; = y; — ». Compute the dimension-

less sensitivity coefficient matrix S = {S,}:
s _ duls
! A()f/ 9,/'

2. Perform principal component analysis [8] on the
covariance matrix X = STS. Denote m =4 as the
number of measured outputs and A € R™ as the vector
of non-zero eigenvalues of X. Compute the overall
effect metric E; € [0, 1] of the jth parameter:

(A.15)

it |4 Cijl
P

where C; represents an element of the principal
component matrix. Select the highest ranked para-
meter p; = {6,|E; = max; E;}, and set the number of
selected parameters n = 1.

3. Compute the linear independence metric d; € [0, 1]
for each parameter 6, not already selected:

E = (A.16)

5'F

[FIE] (A17)

where §; is the dimensionless sensitivity vector asso-
ciated with 6,, and 3 is the vector in the space spanned
by the sensitivity vectors of the parameters
{p1,...,p.} previously chosen for estimation which is
closest to 3, in the Euclidean sense [17].

4. Calculate the identifiability metric /; € [0, 1] for each
parameter 9; not already selected:

l;=E;d;

d; = sin | cos™'

(A.18)

Select the next highest ranked parameter p,. =
{0l = max, /;}, and set the number of selected
parameters n = n + 1. If n < m, then return to step 3.
Otherwise, terminate the algorithm,
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