
Chemical Engineering Science 59 (2004) 2297–2313
www.elsevier.com/locate/ces

Dynamic modeling of crosslinking and gelation in continuous
ethylene–propylene–diene polymerization reactors using the

pseudo–kinetic constant approach�

Rujun Lia, Armando B. Corripioa, Kerry M. Dooleya ;∗, Michael A. Hensonb, Michael J. Kurtzc

aGordon A. and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803-7303, USA
bDepartment of Chemical Engineering, University of Massachusetts Amherst, 686 N. Pleasant Street, Amherst, MA 01003-3110, USA

cExxonMobil Chemical Company, Baton Rouge, LA 70805-3359, USA

Received 21 March 2003; received in revised form 17 October 2003; accepted 28 January 2004

Abstract

A dynamic model for continuous ethylene–propylene–diene terpolymerization reactors in which crosslinking and gel formation are
attributable to reactions between the pendant double bonds of diene units has been developed. The model is applicable to other types of
crosslinking reactions such as those due to aging, polymer blending, and vulcanization. The polymer properties at the gel point and in the
post-gel region are computed using the numerical fractionation method. Direct application of this method to the prediction of terpolymer
properties in the gel or post-gel region can lead to severe numerical problems, due to large di8erences in order of magnitude of various
moments across the generations. These problems are overcome by applying a pseudo-kinetic rate constant method, i.e., by constructing a
moment model for a pseudo-homopolymer that approximates the behavior of the actual terpolymer under the long chain and quasi-steady
state assumptions. The pseudo-homopolymer model is then used as the basis for application of the numerical fractionation method. We
show that the proposed dynamic model is capable of predicting realistic polydispersities and molecular weight distributions even near the
gel point with as few as 11 generations, and in the post-gel region with as few as <ve generations. The largest steady-state polydispersities
of the soluble polymer are obtained when the crosslinking rate just exceeds the critical value for gelation. The steady-state polydispersity
decreases exponentially in the post-gel region at higher values of the rate constant, while the sol fraction decreases in a more linear
fashion. The overall molecular weight distribution (MWD) of the sol is constructed assuming a Schulz two parameter distribution for
each generation. For the industrial case of a small number of crosslinks, the <rst two generations contribute the most to the MWD, which
is unimodal. The tail of the MWD is longest near the initial gelation time; the tail is shortened in the post-gel region as higher generations
are consumed.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ethylene–propylene (EPM) copolymers and ethylene
–propylene–diene (EPDM) terpolymers are used in the
manufacturing of automotive components, cable and wire,
appliances, building and construction materials and agricul-
tural equipment due to their excellent resistance to ozone
and chemicals. Major US producers of EPM and EPDM
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rubbers include ExxonMobil Chemical, DuPont-Dow,
Uniroyal Chemical, DSM Elastomer and Bayer. The annual
domestic production of these rubbers in 1995 was almost
400,000 metric tons (OFce of Air Quality, EPA, 1995).
EPDM is traditionally manufactured via solution polymer-
ization using Ziegler–Natta catalysts. The diene monomer
is typically ethylidene norbornene (ENB), although other
dienes such as 1,4-hexadiene are also used (ver Strate,
1985; Cozewith, 1988; Noordermeer, 1997). Typical EPDM
polymers contain less than 5 wt% diene. Product quality
is determined primarily by the Mooney viscosity (a mea-
sure of molecular weight), Mooney viscosity relaxation (a
measure of polydispersity) and the monomer contents of
the polymer. EPDM producers manufacture a variety of
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di8erent commercial grades with each grade having di8er-
ent polymer properties. Many grades are composed of linear
polymer chains with very little branching. However, some
grades include long-chain branches and can contain a gel
fraction; polydispersities as high as seven have been mea-
sured for weight-average molecular weights in the range
3×104–3×106 (Cozewith, 1988; Beardsley and Tomlinson,
1990; Saatkamp et al., 1995; Dikland, 1996; Beelen et al.,
1998; Pehlert et al., 2001).
In the manufacturing process, gel appears when the de-

gree of crosslinking reaches a certain level. Understanding
of gelation and molecular weight distribution of polymer is
of importance for polymer manufacturing practice to pro-
duce polymers with well-controlled properties. Gel may ad-
versely a8ect polymer properties. It is diFcult to control gel
level; runaway gelation can result. Therefore, it is impor-
tant to understand the gelation mechanism and how to con-
trol the level of gel. The gel point (point of incipient gela-
tion) partitions the behavior into pre- and post-gel regions.
Population balance-based moment methods are widely used
in modeling polymerization processes in the pre-gel region,
where all moments are <nite and the moment equations can
be solved without diFculty. However, at the gel point and
in the post-gel region the moment method is no longer capa-
ble of representing the system because the second moments
go to in<nity.
Flory (1953) developed a statistical approach to relate

network formation to monomer functionalities and conver-
sions in stepwise polymerizations, but the approach is dif-
<cult to apply to addition polymerizations performed in a
CSTR (Cozewith and Teymour, 1998). Teymour and Camp-
bell (1994) developed a “numerical fractionation” technique
that partitions the polymer network into generations accord-
ing to the degree of crosslinking. The linear polymer is the
zeroth generation, and two zeroth generation polymer chains
can crosslink and produce a <rst-generation polymer chain.
In general, an ith generation chain crosslinks with a jth gen-
eration chain to produce a chain of: the ith generation if
i¿ j; the jth generation if i¡ j; the (i+1)th generation if
i = j. The moment equations for a <nite number of gener-
ations can be derived. Only the moments of certain lower
generations that have a lower degree of crosslinking are cal-
culated. The higher generations are treated as gel. Because
each generation has <nite second moments, this technique
allows integration past the gel point in order to calculate
polymer properties in the post-gel region. The physical prop-
erties of the soluble polymer (sol) and the weight fraction
of the gel can be calculated and the molecular weight dis-
tribution of the sol can be reconstructed. This method can
be applied to both batch reactors and CSTRs, although the
numerical complications are more signi<cant for a CSTR
(Cozewith and Teymour, 1998). The method has already
been applied to several types of homopolymer batch and
CSTR reactors (Arzamendi and Asua, 1995; Topalis et al.,
1996; Mazzotti et al., 1996; Pladis and Kiparissides, 1998).
The method was also applied to a batch copolymerization re-

action by Gossage (1997). However, it has not yet been ap-
plied to a copolymerization or terpolymerization in a CSTR.
In this paper, the “numerical fractionation” method has been
applied to the EPDM terpolymerization process for the <rst
time, and the associated numerical problems have been ad-
dressed and solved.

2. Model development

The mechanism of EPDM polymerization without
crosslinking used here was <rst proposed by Cozewith
(1988), and is listed in Appendix A. In the mechanism, the
addition of a diene unit such as ENB to a propylene-ended
chain, and the addition of propylene and diene units to a
diene-ended chain, are assumed to be negligible due to the
steric hindrance of diene monomer.
An addition to the mechanism proposed by Cozewith

et al. (1979) allows for crosslinked chains. This mechanism
was originally derived for a homopolymer based on the as-
sumption that two polymer chains can crosslink through the
pendant double bonds (PDBs) of the monomers. The mech-
anism is extended to EPDM terpolymer in this paper. The
crosslinking reactions can be represented as follows:

Di1j1k1 + Di2j2k2 → D(i1+i2)( j1+j2)(k1+k2−1); (1)

whereD is a dead polymer chain, and i, j, k are the number of
ethylene, propylene and reactive PDB units in the chain, re-
spectively. It is assumed that only dead chains can crosslink
because the live chains in all cases constitute¡ 20% (mole
fraction), and usually ¡ 10%, of all chains for the EPDM
process discussed in this paper. The crosslinking reaction
rate is proportional to the number of PDBs and can be writ-
ten as

rc = kck1k2Di1j1k1Di2j2k2 ; (2)

where rc is the crosslinking reaction rate; kc is the crosslink-
ing rate constant; and k1 and k2 correspond to the number
of PDBs in chains 1 and 2, respectively.
The choice of kinetics was motivated by the following.

While crosslinking kinetics with cure accelerators such as
peroxides or other radical generators, and most long-chain
branching kinetics, are typically <rst order in PDB and <rst
order in live chains (ver Strate et al., 1980; Dikland, 1996;
Sha8er and Ray, 1997), the coupling described here requires
two PDBs on two di8erent chains. The linkage is initiated
by the interaction of a PDB with cocatalyst to form an active
(carbenium-ion terminated) branch (Kresge et al., 1985; ver
Strate, 1985; Pehlert et al., 2001). However, direct vinylic
coupling of PDBs has also been observed, for example in
vinyl norbornene homopolymers using AlEtCl2 as catalyst
(Kennedy and Makowski, 1967; Dolatkhani et al., 1996).
Regardless of the number of intervening links in a branch,
the crosslink is not complete until the branch reacts with an-
other PDB. If this last step is rate-limiting, and if interven-
ing branch propagations are at quasi-steady state, a second
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order (in PDB) rate expression would result. The total loss
of reactive PDBs is then one, because the <nal reaction does
not necessarily terminate the active (carbenium ion) species.
However, in the development that follows it will be apparent
that we could assume the loss of two reactive PDBs in this
process without a8ecting the simulation results.
Even if the mechanism is not exactly as described here, the

second-order kinetics assumption (in PDBs) has been tested
to a limited extent by Gardner and ver Strate (1973), who
used labeled ENB so they could count both the total num-
ber of diene groups by radioassay and refractive index and
the number of unreacted PDBs by iodine number. The curve
relating the two could be reproduced exactly only by assum-
ing that the amount of consumed PDBs was proportional
to the square of the diene content. Also, Dolatkhani et al.
(1996) studied the kinetics of homopolymer diene systems,
some of which crosslinked. The crosslinking systems were
ENB=VOCl3=AlEt2Cl and ENB=TiCl3=AlCl3. When their
crosslinking data are regressed, the overall order in diene is
2, while for the non-crosslinking systems (using dimethy-
loctadiene) the overall order is ∼ 1. NMR and IR spectra
showed that direct vinylic coupling occurred for all of the
crosslinking systems, with no evidence of vinylic coupling
for the other systems. In conclusion, there is solid evidence
for second-order kinetics in PDB crosslinking reactions.
Because the number of PDBs equals the number of di-

ene units in the polymer chains if no crosslinking reactions
take place, and because typically less than 5% of the PDBs
crosslink in a typical EPDM process, it is reasonable to as-
sume that the number of PDBs equals the number of diene
units in the polymer chains. This simpli<cation eliminates
the need for another set of moments. The following 10 dif-
ferent moments are used to compute the polymer properties.
These moments are de<ned as
Zeroth moment:

B0 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

Bijk : (3)

B0 represents the concentration of the dead chains.
First moments:

B100 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

iBijk ;

B010 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

jBijk ;

B001 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

kBijk : (4)

B100, B010 and B001 are the <rst moments of ethylene, propy-
lene and diene in the dead chains, respectively; they repre-
sent the concentrations of the monomers in the dead chains.

Second moments:

B200 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

i2Bijk ; B020 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

j2Bijk ;

B002 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

k2Bijk ; (5)

B110 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

ijBijk ; B101 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

ikBijk ;

B011 =
∞∑
i=0

∞∑
j=0

∞∑
k=0

jkBijk : (6)

B200, B020, B002, B110, B101 and B011 are the six individual
second moments of the dead chains with respect to ethylene
alone, propylene alone, diene alone, ethylene and propy-
lene, ethylene and diene, and propylene and diene, respec-
tively. The second moments do not have an explicit phys-
ical interpretation. From these moments, we can compute
the monomer content, number and weight average molecu-
lar weights and polydispersity of the polymer. The moment
equations themselves are provided as supplementary mate-
rial.
The contribution of the crosslinking reaction to the mo-

ment equations is as follows:
Zeroth moment:

rc;B0 =−1
2
kc(B001)2: (7)

First moments:

rc;B100 = 0; (8)

rc;B010 = 0; (9)

rc;B001 = 0: (10)

Second moments:

rc;B200 = kc(B101)
2; (11)

rc;B020 = kc(B011)
2; (12)

rc;B002 = kc(B002)
2; (13)

rc;B101 = kcB002B101; (14)

rc;B011 = kcB002B011; (15)

rc;B110 = kcB101B011: (16)

This model includes 35 state variables: concentrations of
the three monomers, the inactive and active forms of the
catalyst, the alkyl co-catalyst, and hydrogen (chain transfer
agent); and four zeroth moments, 12 <rst moments and 12
second moments. This will be referred to as “the full model”
in contrast to a reducedmodel derived using a pseudo-kinetic
constant approach.
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The gel point is critical to polymer property control be-
cause gel can adversely a8ect the rheological and other
polymer properties. The degree of the crosslinking must be
well-controlled to avoid formation of gel or to maintain the
mass fraction of gel below a certain level. Mathematically,
gel is characterized by in<nite weight average molecular
weight and second moments. The critical kc is the minimum
value of kc that allows gel to form under the given feed con-
ditions. To focus on the dynamic e8ects of crosslinking, we
assume in agreement with observation that crosslinking re-
actions take place over a much longer time scale than chain
propagation (Cozewith and Teymour, 1998), so we can as-
sume that the linear chains are in quasi-steady state. We
then write a moment equation for the second moment with
respect to diene in a CSTR, prior to or in the absence of
crosslinking.

dB002;L
dt

=−1
�
B002;L + rp;B002; L = 0; (17)

where B002;L is a second moment for the purely linear poly-
mer prior to or in the absence of crosslinking, rp;B002; L is the
generation rate of B002;L, and � is the residence time. Given
the much longer time scale for crosslinking, the ODE for
the second moment with respect to diene when crosslinking
does take place becomes:

dB002
dt

=−1
�
B002 + rp;B002; L + kc(B002)

2

=
1
�
(B002;L − B002) + kc(B002)2: (18)

To guarantee that B002 will be <nite and real, the following
inequality must hold at steady state:

kc6
1

4�B002;L
: (19)

As kc increases, B002 eventually becomes in<nite, causing
the other <ve second moments to simultaneously become
in<nite and indicating that gel is formed. The value 1

4�B002; L
is called the critical kc (kc;c). The critical residence time (�c)
can be calculated as

�c =
1

4kc;cB002;L
: (20)

This represents the minimum residence time at which gel
could form in a CSTR.

3. Pseudo-kinetic constant approach for crosslinking
reactions

Because the typical moment method is only valid in the
pre-gel region, Teymour and Campbell (1994) proposed a
“numerical fractionation” method that allows integration of
the moment equations up to and through the gel point, in or-
der to compute distributions in the post-gel region. Cozewith
and Teymour (1998) noticed that the numerical fractionation

approach exhibits numerical diFculties in the calculation of
homopolymer moments in a CSTR due to large di8erences
in the order of magnitude of moments across generations
and accumulated errors for those moments near zero. We
<rst applied the method directly to the EPDM terpolymer-
ization in a CSTR. The moment equations for the crosslink-
ing reactions are as follows.
Zeroth moment

dgm;0
dt

= kcgm;001
m−1∑
n=0

gn;001

+
kc
2
(gm−1;001)2 − kcgm;001B001: (21)

First moments

dgm;100
dt

= kc

(
gm;101

m−1∑
n=0

gn;001 + gm;001
m−1∑
n=0

gn;101

)

+kcgm−1;101gm−1;001 − kcgm;101B001; (22)

dgm;010
dt

= kc

(
gm;011

m−1∑
n=0

gn;001 + gm;001
m−1∑
n=0

gn;011

)

+kcgm−1;011gm−1;001 − kcgm;011B001; (23)

dgm;001
dt

= kc

(
gm;002

m−1∑
n=0

gn;001 + gm;001
m−1∑
n=0

gn;002

)

+kcgm−1;002gm−1;001 − kcgm;002B001: (24)

Second moments

dgm;200
dt

= kc

(
gm;201

m−1∑
n=0

gn;001 + 2gm;101
m−1∑
n=0

gn;101

+gm;001
m−1∑
n=0

gn;201

)
+ kcgm−1;201gm−1;001

+kc(gm−1;101)2 − kcgm;201B001; (25)

dgm;020
dt

= kc

(
gm;021

m−1∑
n=0

gn;001 + 2gm;011
m−1∑
n=0

gn;011

+gm;001
m−1∑
n=0

gn;021

)
+ kcgm−1;021gm−1;001

+kc(gm−1;011)2 − kcgm;021B001; (26)

dgm;002
dt

= kc

(
gm;003

m−1∑
n=0

gn;001 + 2gm;002
m−1∑
n=0

gn;002

+gm;001
m−1∑
n=0

gn;003

)
+ kcgm−1;003gm−1;001

+kc(gm−1;002)2 − kcgm;003B001; (27)
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dgm;110
dt

= kc

(
gm;111

m−1∑
n=0

gn;001 + gm;101
m−1∑
n=0

gn;011

+gm;011
m−1∑
n=0

gn;101 + gm;001
m−1∑
n=0

gn;111

)

+kcgm−1;111gm−1;001 + kcgm−1;101gm−1;011

−kcgm;111B001; (28)

dgm;101
dt

= kc

(
gm;102

m−1∑
n=0

gn;001 + gm;101
m−1∑
n=0

gn;002

+gm;002
m−1∑
n=0

gn;101 + gm;001
m−1∑
n=0

gn;102

)

+kcgm−1;102gm−1;001 + kcgm−1;101gm−1;002

−kcgm;102B001; (29)

dgm;011
dt

= kc

(
gm;012

m−1∑
n=0

gn;001 + gm;011
m−1∑
n=0

gn;002

+gm;002
m−1∑
n=0

gn;011 + gm;001
m−1∑
n=0

gn;012

)

+kcgm−1;012gm−1;001 + kcgm−1;011gm−1;002

−kcgm;012B001: (30)

In these equations, g represents moments, and m represents
generations. The above equations constitute the general form
for the <rst and higher generations. For the zeroth mo-
ments, only the consumption terms appear in the equations.
Note that in the second moment equation the third moments
also appear, as in the full model. This non-closure problem
was addressed in both cases using a closure approximation
(Saidel and Katz, 1968), as shown in

gm;3 =
2g2m;2
gm;1

− gm;2gm;1
g0

: (31)

Because the closure approximation only involves bulk mo-
ments, the long-chain assumption was used to obtain the
individual third moments. This assumption assumes that
the chains are long enough that all chains have identical
monomer contents. The individual third moments were com-
puted from the long-chain assumption under which the fol-
lowing equations can be derived (the colons in Eq. (32)
denote ratios):

gm;200 : gm;020 : gm;002 : gm;110 : gm;101 : gm;011

=(gm;100)2 : (gm;010)2 : (gm;001)2 : gm;100gm;010

: gm;100gm;001 : gm;010gm;001; (32)

g300;m : g030;m : gm;003 : g210;m : gm;201 : g120;m : gm;021

: gm;102 : gm;012 : gm;111

=(gm;100)3 : (gm;010)3 : (gm;001)3 : (gm;100)2gm;010

: (gm;100)2gm;001 : gm;100(gm;010)2

: (gm;010)2gm;001 : gm;100(gm;001)2 : gm;010(gm;001)2

: gm;100gm;010gm;001: (33)

The bulk moments of a generation are given in terms of the
individual generational moments as follows:

gm;1 = gm;100 + gm;010 + gm;001; (34)

gm;2 = gm;200 + gm;020 + gm;002 + 2gm;110

+ 2gm;101 + 2gm;011; (35)

gm;3 = gm;300 + gm;030 + gm;003

+3gm;210 + 3gm;201 + 3gm;120

+3gm;021 + 3gm;102 + 3gm;012 + 6gm;111: (36)

From Eqs. (33)–(36), we can compute the individual
third moments and solve the ODEs for the zeroth, <rst
and second moments for each generation. However, when
we applied the numerical fractionation method to the
EPDM process, even larger di8erences in the magnitudes
of moments within and across generations than those of
homopolymer were observed. Typical ODE solvers were
not able to converge the moments of higher generations.
Therefore, the pseudo-kinetic constant approach was used
to simplify the terpolymer to a pseudo-homopolymer, and
then the numerical fractionation approach was applied to
the pseudo-homopolymer system.
This pseudo-kinetic constant approach (Xie and

Hamielec, 1993a,b,c) has been widely used in the modeling
of free-radical polymerization. The approach is based on a
quasi-steady state assumption for both the free radicals and
the live chains. The concentrations of the pseudo-monomer
(CM ) and pseudo-live polymer (L0) are de<ned as the sum
of the concentrations of the monomers and live polymer
chains, respectively:

CM =
3∑
i=1

CMi ; (37)

L0 = P0 + Q0 + R0; (38)

where CMi is the concentration of the ith monomer and P0,
Q0 and R0 are the concentrations of ethylene-, propylene-
and diene-ended live polymer chains, respectively. The mole
fraction of each monomer (�Mi) is calculated as

�Mi =
CMi

CM
: (39)
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The mole fractions of individual polymer chains are cal-
culated from equations derived using the quasi-steady-state
assumption, i.e., the overall contents of chains are in steady
state:

k12P0CM2 = k21Q0CM1 ; (40)

k13P0CM3 = k31R0CM1 : (41)

Therefore, the monomer contents of the chains are functions
of both propagation rate constants and monomer concentra-
tions:

�P =
P0
L0
=

1

1 +
k12CM2

k21CM1

+
k13CM3

k31CM1

; (42)

�Q =
Q0
L0
=
k12CM2

k21CM1

�P; (43)

�R = 1− P0
L0

− Q0
L0
= 1− �P − �Q: (44)

The pseudo-propagation rate constant kp can be de<ned as

kp = (k11�P + k21�Q + k31�R)�M1

+(k12�P + k22�Q)�M2 + k13�P�M3 (45)

and the propagation reaction rate can be written as follows:

rp = kpCML0: (46)

The crosslinking reaction of the terpolymer (Eq. (1)) is
simpli<ed as

Dr1l1 + Dr2l2 → D(r1+r2)(l1+l2−1); (47)

where r is the number of total monomer units and l is the
number of PDBs in the chain. The crosslinking reaction
terms of the dead chains can now be written as

rc;B0 =−1
2
kc(PDB)2; (48)

rc;B1 = 0; (49)

rc;B2 = kc

( ∞∑
r=1

∞∑
l=1

rlBrl

)2
; (50)

where PDB is the overall concentration of PDBs, and B0, B1
and B2 are the bulk zeroth, <rst and second moments of the
dead pseudo-homopolymer, respectively. The loss of one
(or more) PDBs can be ignored in the derivation because
the number of crosslinked PDBs for the polymers of interest
is very small compared to the overall PDB concentration.
The <rst and second moments of the pseudo-homopolymer
are the sums of the individual <rst and second moments
(Ogunnaike, 1994):

B1 = B100 + B010 + B001; (51)

B2 = B200 + B020 + B002 + 2B110 + 2B101 + 2B011: (52)

The term
∑∞

r=1

∑∞
l=1 rlBrl in Eq. (50) is a cross second

moment and gives rise to a non-closure problem because
higher-order moments are required to solve the equations.
To avoid this problem a long-chain assumption is invoked
(Gossage, 1997); all chains in the reactor are assumed long
enough that their monomer contents are identical. Therefore,
the ratios of numbers of individual monomers in each chain
equal the ratios of their associated <rst moments. Let �PDB
be the fraction of PDBs in the dead chains:

�PDB =
l
r
=
PDB
B1

: (53)

Then Eq. (50) can be written as

dB2
dt

= kc(�PDBB2)2: (54)

This reduced model has 15 state variables with the <rst
seven states the same as the full model. The other state
variables are: two bulk zeroth moments (live and dead),
two bulk <rst moments (live and dead), two bulk second
moments (live and dead), and the PDB concentrations in
live and dead chains. The detailed ODEs for the reduced
model are listed in Appendix B. Because the moments in the
reduced model are not based on the individual monomers,
there are no large di8erences in the order of magnitude of
moments within and across generations as in the full model.
Therefore, we can use the numerical fractionation approach
to calculate the polymer properties in the post-gel region.
When the numerical fractionation approach is applied to
the pseudo-homopolymer, the fraction of PDBs for each
generation (�PDBm) can be assumed to equal the overall PDB
fraction because the crosslinking density is low:

�PDBm =
PDBm
gm;1

=
PDB
B1

; (55)

where gm;1 denotes the <rst moment of the mth generation.
Then the moments of the crosslinking reactions for each
generation can be written as

dgm;0
dt

=−kc�PDBgm;1PDB (m= 0); (56)

dgm;0
dt

= kc�2PDB

[
gm;1

m−1∑
n=0

gn;1 +
1
2
(gm−1;1)2

]

−kc�PDBgm;1PDB (m¿ 1); (57)

dgm;1
dt

=−kc�PDBgm;2PDB (m= 0); (58)

dgm;1
dt

= kc�2PDB

(
gm;2

m−1∑
n=0

gn;1 + gm;1
m−1∑
n=0

gn;2

)

+kcgm−1;2gm−1;1 − kc�PDB
gm;2PDB (m¿ 1); (59)
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dgm;2
dt

=−kc�PDBgm;3PDB (m= 0); (60)

dgm;2
dt

= kc�2PDB

(
gm;3

m−1∑
n=0

gn;1 + 2gm;2
m−1∑
n=0

gn;2

+gm;1
m−1∑
n=0

gn;3

)
+ kc�2PDB(gm−1;3gm−1;1 + g

2
m−1;2)

−kc�PDBgm;3PDB (m¿ 1): (61)

Note that in the second moment equation third moments
appear, as in the full model. This non-closure problem is
solved using the same closure approximation (Saidel and
Katz, 1968) as shown in Eq. (31).
Gossage (1997) has shown that the molecular weight dis-

tribution computed using the numerical fractionation method
showed good agreement with experimental data, and the
crosslinking density computed by the numerical fractiona-
tion method for a batch reactor agrees with Flory’s theory.
Papavasiliou et al. (2002) compared the reconstructedMWD
using this closure with the direct solution, and showed that
the closure can cause large errors in the MWD. Comparison
was also made for the EPDM process and the results will
be shown in the following section.

4. Results and discussion

4.1. Computational issues

Dynamic simulations were performed using Matlab and
Simulink. The ODE solver used was “ode23tb”, an implicit
Runge–Kutta formulation with two stages. The <rst stage
is a trapezoidal rule step and the second stage is a back-
ward di8erence formula of order two. This solver has been
demonstrated to solve sti8 problems eFciently (Bank et al.,
1985; Shampine and Hosea, 1996). The numerical fraction-
ation method overcomes the problems of the traditional mo-
ment method at the gel point, and is able to continue the
calculations into the post-gel region. But the method requires

very high accuracy for the moments of the higher gener-
ations. When it is applied to the full model, large di8er-
ences in magnitudes of di8erent moments within the same
generation and across di8erent generations resulted in seri-
ous computational problems. In particular, the ODE solver
failed to converge in the post-gel region where certain gen-
erations disappeared. When the method is applied to the re-
duced model, di8erences in magnitudes of the moments are

reduced by collapsing the individual <rst and second mo-
ments into the bulk moments. Even so the integration re-
quires stringent tolerances. The absolute tolerance was set
to 10−14 and the relative tolerance to 10−8 to achieve con-
vergence at all conditions tested. The default values for the
tolerances are 10−6 and 10−3, respectively. The CPU time
for a 10-h simulation with 11 generations, feed conditions as
listed in the following section, and kc = 3:12kc;c was about
10 min on a PC with a Pentium IV 1:70 GHz processor and
128 MB memory. The CPU time for the same simulation
with only one generation is less than 20 s.

4.2. Validation of the assumptions

There are three major approximations used in deriving
the pseudo-kinetic model within the numerical fraction-
ation framework: the quasi-steady-state assumption, the
long-chain assumption, and the third moment approxi-
mation. The quasi-steady-state assumption simpli<es the
terpolymer to a pseudo-homopolymer and reduces the full
model with 35 state variables to the reduced model with
15 state variables. The long-chain assumption makes the
numerical fractionation method applicable to the reduced
model, and is used exclusively for the crosslinking reac-
tions. The third moment approximation allows the third
moment to be calculated from the three lower-order mo-
ments for solving the second moment equations. In this
section, the <rst two assumptions are tested. The validity
of the third assumption has been discussed extensively by
Cozewith and Teymour (1998), and is also considered in
a later section. Potential errors arising from an inadequate
number of generations are also considered here.
The derivation of the reduced model equations them-

selves, with kc=0, was checked by comparing their solution
to the chain length distribution for a CSTR at steady state,
which can be obtained from simple exit-age distribution con-
siderations. First, the full model was solved at steady state
for P; Q; R; M1; M2, andM3. The number chain length dis-
tributions for P; Q, and R were generated by multiplying the
exit-age distribution by the solutions of the age equations
(e.g., for M1):

dxM1 (t)
dt

=
(k11P0 + k21Q0 + k31R0)CM1 − (kt + kt2CM2 + kt3CM3 )(P100 + Q100 + R100)

P0 + Q0 + R0
= rM1 (�): (62)

With similar equations for xM2 and xM3 . In other words, the
vessel was assumed to be perfectly macromixed with no
micromixing. Under these conditions, x(t)=[r(�)]t, so using
the weight fraction:

W (t) =
x(t) dE(t)dt∫∞

0 x(t) dE(t)dt dt
: (63)

Upon substitution for x(t) and E(t), if r(�) is de<ned as
the sum of the dimensionless polymerization rates for all
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Table 1
Scaled reaction rate constantsa

Parameter Value Parameter Value

ka 0.3663 k21 0.6410
kx 0 k22 3.0037
kx2 0 k31 1.2418
kx3 0.9890 kt 0.5604
ki1 1.8315 kt2 0.7839
ki2 1.8315 kt3 0
k11 0.4212 ktr 0
k12 0.6886 ktr1 1.7582
k13 0.4139 ktrM2 1

aParameters were <rst scaled to the range of 1–10 and then divided
by the scaled value of ktrM2 .

monomers, the following equation for weight chain length
distribution results:

W (x) =
x

� 2r2(�)
e−x=�r(�): (64)

This solution is independent of the structure of the moment
equations. We compared number- and weight-average chain
lengths computed using these equations to those computed
from the steady-state equations of the reduced model in Ap-
pendix B, kc = 0. Average relative deviations using the ki-
netics constants of Table 1 were less than 1% in the number
average chain length and less than 5% in a typical W (x)
with chain transfer reactions included (less than 1% for no
chain transfer, where the long-chain assumption is better sat-
is<ed). Therefore, the moment calculations of the reduced
model are valid, at least in the limit of no crosslinking.

4.2.1. Validation of the quasi-steady-state assumption
Xie and Hamielec (1993a–c) point out that the rel-

ative error caused by this assumption is a function of
the average molecular weights. The larger the number
or weight average molecular weight, the smaller the er-
ror. The “quasi-steady-state” assumption was tested under
startup conditions again using a EPDM system that does
not crosslink. Both the full model and reduced model were
simulated using the same set of kinetic parameters. The
predicted TMn and TMw by the reduced model were compared
with those of the full model for the errors introduced by
the assumption. The scaled parameter values are listed in
Table 1. The parameter values are scaled for proprietary rea-
sons. The kinetic parameter set used in this paper predicts av-
erage molecular weights greater than 102 kg=mol. The maxi-
mum relative dynamic errors in TMn and TMw resulting from

Table 2
Errors caused by the quasi-steady-state assumption

ktr1 value (ratio to the original value) 1 10 100 1000

Error (%) TMn −4× 10−3 −4:4× 10−3 −2× 10−2 −1:1× 10−3
TMw −2.2 −2.25 −1:9× 10−1 8:6× 10−1

the assumption are 4 × 10−3% and 2.2%, respectively,
both of which are smaller than the measurement er-
ror. To check the e8ect of the assumption at lower
molecular weights, the H2 chain transfer reaction con-
stant (ktr1 ) was increased to produce lower molecu-
lar weight polymer. The simulation results show that
even when ktr1 is 1000 times larger than the nomi-
nal value and the average molecular weights are re-
duced to approximately 20% of their original values,
the relative errors are still roughly the same magni-
tudes. The errors for di8erent ktr1 values are listed in
Table 2.

4.2.2. Validation of the long-chain assumption
The long-chain assumption was tested at steady state us-

ing a terpolymer system with crosslinking reactions in the
pre-gel region. For kc values ranging from zero to just be-
low the critical kc, the full and reduced models were com-
pared, by analyzing the relative error of B002 in the reduced
model using the long-chain assumption. The crosslinking
constant can be varied in practice by either the use of dif-
ferent crosslinking inhibitors and/or by varying the cocata-
lyst/catalyst ratio (Kresge et al., 1985; ver Strate, 1985). If
the long-chain assumption holds exactly then the following
equation is obtained:(
PDB
B1

)2
=
B002
B2

: (65)

The relative error due to the assumption is expressed as
1− (PDB=B1)2

B002=B2
and plotted against kc in Fig. 1. As kc increases

from zero to near the critical value, the absolute value of the
error increases from about 1.5% to 2.3%. When kc is small
the polymer is composed mainly of linear chains; as kc in-
creases, branched chains whose second moment ratios di8er
from those of linear chains begin to appear. From Fig. 1 we
can see that the second moment is underestimated; there-
fore, this approximation will underestimate polydispersity as
well. The relative error in the polydispersity predicted by the
pseudo-kinetic model is plotted in Fig. 2. The error increases
as kc increases, accelerating rapidly as kc approaches the
critical value. Simulation results show that the critical kc is
1.60 in the full model, and 1.65 in the pseudo-kinetic model.
In conclusion, this assumption will cause errors near the
gel point. But in the post-gel region the highly crosslinked
chains are quickly consumed as gel, so the polydispersity
of the sol decreases and linear chains dominate the soluble
polymer once again. Therefore, the error is expected to
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Fig. 1. Relative error in B002 caused by crosslinking in the pre-gel region.
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Fig. 2. Relative error in polydispersity in the pre-gel region.

rapidly decrease in the post-gel region. Unfortunately, the
error cannot be estimated in the post-gel region because the
full model cannot be reliably solved when kc ¿kc;c.

4.2.3. Error caused by the number of generations
In the numerical fractionation method, the generations in-

cluded in the model are treated as soluble polymer. Higher
generations not included are considered to be gel. All the
generations used in the model have <nite second moments
and <nite polydispersity. Therefore, the model requires an
in<nite number of generations to reproduce the behavior of
the polymer at the gel point where the polydispersity be-
comes in<nite. The numerical fractionation method will gen-
erate potentially large errors in the neighborhood of the gel
point. By contrast, in the post-gel region the higher gener-
ations are consumed quickly and the polydispersity of the
sol decreases dramatically. The number of generations used
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Fig. 3. Evolution of the polydispersity for di8erent numbers of generations
when kc = 3:12kc;c.

represents a tradeo8 between accuracy near the gel point
and computational eFciency and reliability.
The following dynamics simulation was performed to de-

termine an acceptable tradeo8. The initial condition was the
steady-state solution of the full model without crosslinking
reactions. The crosslinking reactions (kc = 3:12kc;c) began
at time zero. This test was designed to study the dynam-
ics of crosslinking and the characteristics of the numerical
fractionation approach without interference from the other
reactions. It is justi<ed given the very di8erent characteris-
tic time scales of the propagation reactions relative to the
crosslinking reactions. Fig. 3 shows results for the evolu-
tion of the polydispersity from pre-gel to <nal steady state
at the same feed conditions as in Figs. 1 and 2. Note that the
polydispersity is two at time zero because the linear poly-
mer follows the most probable distribution. The dynamics
of gelation are faithfully represented in the post-gel region,
and the <nal steady state is accurately predicted, with as
few as <ve (zeroth to fourth) generations. However, more
generations are required to accurately represent the dynam-
ics near the gel point. The required number of generations
for this region was determined by successively adding gen-
erations until the predicted polydispersities in Fig. 3 were
constant in the time range (1 ± 0:025)tc range, where tc is
the gel time. Simulations using di8erent kc values within a
reasonable range for the EPDM process (kc=kc;c = 0:1-6),
showed that 11 total generations are adequate to approxi-
mate the dynamics near the gel point, and the computational
demands are not excessive.

4.3. Dynamics of crosslinking reactions in the post-gel
region

The evolution of the bulk second moments was analyzed
<rst, because the second moments are closely associated
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Fig. 4. Evolution of second moments of the individual generations in the post-gel region.

with the formation of gel.We found that the secondmoments
of di8erent generations evolve very di8erently in the post-gel
region (Fig. 4). The linear polymer (zeroth generation) de-
creases slowly from its initial value to its new steady state.
The <rst through third generations show similar behavior,
increasing from zero to their maxima which occur prior to
the gel point, then decreasing to nonzero steady-state values.
The lower the generation, the earlier in time the maximum
occurs. The higher generations increase to their maximum
values at the gel point and then decrease to zero. We can also
see that the higher the generation, the faster the dynamics
associated with crosslinking. When gel is formed, the higher
generations begin to decrease at the gel point because the
sol consumption rate by the gel (−kc�2PDBgm;1

∑∞
n=m gn) is

larger than the sol production rate by the lower generations
( 12kc(gm−1;1)

2). Because the higher generations have higher
degrees of crosslinking, they are consumed faster and come
to the zero steady state more rapidly. As a result, the poly-
dispersity decreases rapidly after the gel point and reaches
the steady state shown in Fig. 5.
In the post-gel region, the polymer is composed of both

sol and gel. The mass fraction of sol (xsol) is calculated as
the ratio of the sum of <rst moments of all the generations
and the <rst moment of the polymer:

xsol =
∑M

m=0 gm;1 + L1
B1 + L1

; (66)
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Fig. 5. Evolution of overall polydispersity in the pre- and post-gel regions.

where M is the highest generation used. In the manufactur-
ing practice, crosslinking inhibitors, type of cocatalyst, and
the cocatalyst/catalyst ratio control crosslinking, and so the
gel fraction. The e8ects are complex; the simplest way to
model them is to vary the crosslinking rate constant. The
residence time was not varied in the simulations because in
manufacturing practice the residence time is kept relatively
constant. Fig. 6 shows the evolution of the sol fraction at kc

kc; c
= 1.88, 3.12 and 4.38. A smaller kc not only results in less
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Fig. 7. Steady-state polydispersity in the pre- and post-gel regions.

gel, but also causes the sol to approach steady state more
slowly. Figs. 7 and 8 show the steady-state polydispersity
of the sol and the sol fraction, respectively, as functions of
kc. Note that the range of polydispersities in Fig. 7, from
two to slightly greater than seven, is typical of crosslinked
EPDM (Beardsley and Tomlinson, 1990; Saatkamp et al.,
1995; Beelen et al., 1998; Pehlert et al., 2001). The max-
imum steady-state polydispersity is close in value to the
literature value of 6.6 (Beelen et al., 1998). A large poly-
dispersity in the post-gel region is obtained when kc just
exceeds the critical value. As kc increases, the steady-state
polydispersity of the sol in the post-gel region decreases al-
most exponentially. The sol fraction, on the other hand, de-
creases with kc in a more linear fashion. The small errors
in the pre-gel region result from the assumptions used to
implement the pseudo-kinetic constant and numerical frac-
tionation approaches.
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Fig. 8. Steady-state sol fraction in the post-gel region.

4.3.1. E:ects of diene feed ;ow rate
Diene feed Uow rate is critical to control the degree of

crosslinking reactions and the amount of gel because the
crosslinking reaction rate is proportional to the square of
the diene content in polymer. Simulation results show that
doubling diene feed Uow rate without changing other feed
Uows reduced the critical kc to 0.23 of its original value;
the critical residence time was reduced by a corresponding
amount. On the other hand, reducing the diene feed Uow
rate by one-half increased the critical kc to 4.12 times its
initial value. Therefore, the critical kc or critical residence
time is approximately inversely proportional to the square of
the diene feed Uow rate. In manufacturing practice, caution
must be taken when adjusting diene feed Uow rate, in order
to avoid excessive gel production.

4.3.2. Construction of MWD
An approximate molecular weight distribution can be con-

structed by assuming each generation obeys a certain dis-
tribution function. Here the Schulz two-parameter (!) dis-
tribution function (Boyd and Phillips, 1993; Teymour and
Campbell, 1994) is used,

W (x; m) =
ym(xym)zme−xym

!(zm + 1)
; (67)

where zm and ym are de<ned as

zm =
1

Pdm − 1 ; (68)

ym =
zm + 1
TMw;m

: (69)

W is the mass fraction of the mth generation polymer chains
with mass x, TMw;m is the weight average molecular weight of
the mth generation polymer, Pdm is the polydispersity of the
mth generation, and ! represents the gamma function. Using
this distribution function, we can reconstruct the MWD of
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Fig. 9. Molecular weight distribution of the sol at steady state.

the sol by a weighted sum of the mass fractions W (x; m) of
each generation:

W (x) =
M∑
m=0

W (x; m)
gm;1
B1

: (70)

Fig. 9 shows the MWD at steady state when kc
kc; c
= 3:12.

The results show that at steady state the sol is primarily
composed of linear polymer chains (zeroth generation) and
<rst-generation branched polymer chains. From the enlarged
picture at the top right of Fig. 9, we see that the mass frac-
tion of the second generation is small compared to the <rst
two generations. Therefore, the e8ect of the second and
higher generations on the MWD is negligible, and the over-
all sol distribution is unimodal. This <nding di8ers from
that of some other applications of numerical fractionation
(Arzamendi and Asua, 1995; Butte et al., 1999; Papavasiliou
et al., 2002), where a pronounced shoulder was observed
due to artifacts of the method, speci<cally the third mo-
ment closure approximation coupled with the assumption of
a Schulz distribution within each generation (Papavasiliou
et al., 2002). But in this work, the overall MWD is nar-
rower and closer to a Schulz distribution. For comparison, a
log-normal distribution as suggested by Papavasiliou et al.
(2002) was incorporated into the model, applying it to each
generation. However, it was found that for the log-normal
distribution the ODE solver could not converge moments of
generations higher than the <fth, while with the Schulz dis-
tribution and the same tolerances the moments of all eleven
generations converge. A comparison of the MWDs recon-
structed using the zeroth through <fth generations is plot-
ted in Fig. 10. Whether based on the Schulz or log normal
generational assumptions, neither reconstructed MWD ex-
hibits an arti<cial shoulder. The MWD reconstructed using
the log normal distribution yields a slightly smaller molec-
ular weight at its peak than does the Schulz distribution.
The predicted time-dependent polydispersities, at the con-
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Fig. 10. Comparison of molecular weight distribution of the sol at
steady state using a Schulz or log normal distribution in each generation,
kc=kc;c = 3:12.
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Fig. 11. Evolution of the molecular weight distribution of the sol in the
post-gel region.

ditions of Fig. 10, are almost identical except in a narrow
region (t=� ∼ ±0:1) around the gel point, where they di8er
by ∼ 15%. One cannot choose between the results, because
a direct solution cannot be obtained in this region. While
recent work postulates that a weighted sum of the two dis-
tributions at the generational level can better reproduce di-
rect solution results, these simulations suggest that for this
case the results from a weighted sum approach would not
di8er markedly from those obtained using either (Schulz or
log normal distribution) assumption, except at the gel point
itself.
Fig. 11 shows the sol MWD obtained when kc

kc; c
= 3:12

moving from the pre-gel region to the <nal steady state in the
post-gel region. In Fig. 12, the tail area of Fig. 11 is enlarged
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Fig. 12. Evolution of the molecular weight distribution of the sol in the
high-molecular weight region.

for better visualization of the changes taking place in the
vicinity of the gel point. The shape of this tail region is typ-
ical of crosslinked EPDM terpolymers as measured by low
angle light scattering (ver Strate, 1985). From the two <g-
ures we see that the MWD at startup has the shortest tail be-
cause the polymer is still mainly composed of linear chains.
As the process approaches the gel point, more generations
with high number average molecular weights are formed,
shifting the tail to the right. The MWD curve just before the
initial gel time has the longest tail because it has the most
populated generations. As a result, both the mass fraction of
polymer at the MWD maximum and TMn itself decrease as
the process approaches the gel point. In the post-gel region,
the tail is less pronounced because higher generations with
higher molecular weights have been consumed as gel.

5. Conclusions

A crosslinking mechanism based on the reaction of pen-
dant double bonds of the diene monomer has been pro-
posed and evaluated for an EPDM terpolymerization process
in a CSTR. Computation of the molecular weight distribu-
tions under dynamic conditions, in both pre- and post-gel
regions, has been performed for a process of this type for
the <rst time. This is made possible by a combination of
a numerical fractionation (generational) method along with
a pseudo-kinetic constant approach. The assumptions were
validated by comparing full model solutions to a reduced
model for various limiting cases. In particular, a long-chain
assumption causes some error in computing polydispersi-
ties near the gel point, but the error decreases rapidly in the
post-gel region.
The dynamics of the crosslinking reactions were studied

in the post-gel region; number average chain length, poly-

dispersity and sol fraction could be computed with as few as
<ve generations, at reasonable computational expense. The
higher generations of the sol are consumed rapidly, causing
the sol polydispersity to decrease rapidly to its steady-state
value. The largest steady-state sol polydispersity is obtained
when the crosslinking rate constant just exceeds a critical
value. This critical value is inversely proportional to the sec-
ond moment of PDBs for the polymer prior to, or in the ab-
sence of, crosslinking. The sol polydispersities decrease ex-
ponentially with higher values of the rate constant. The <rst
two generations contribute the most to the MWD, which is
unimodal. The tail of the MWD is longest near the time of
initial gelation; this tail is shortened in the post-gel region
as higher generations are consumed as gel.

Notation

B moment of dead chains, mol=m3

C concentration, mol=m3

F outlet volumetric Uow rate, m3=s
g moment of generation, mol=m3

k rate constant, s−1 or m3=(mol s)
ka rate constant, catalyst activation reaction
kc rate constant, crosslinking reaction
kx rate constant, spontaneous catalyst deactivation
kx2 rate constant, catalyst deactivation with propy-

lene
kx3 rate constant, catalyst deactivation with diene
ki1 rate constant, chain initiation with ethylene
ki2 rate constant, chain initiation with propylene
k11 rate constant, ethylene adding to an

ethylene-ended chain
k12 rate constant, propylene adding to an

ethylene-ended chain
k13 rate constant, diene adding to an ethylene-ended

chain
k21 rate constant, ethylene adding to a

propylene-ended chain
k22 rate constant, propylene adding to a

propylene-ended chain
k31 rate constant, ethylene adding to a diene-ended

chain
kt rate constant, spontaneous termination
kt2 rate constant, termination with propylene
kt3 rate constant, termination with diene
ktr rate constant, chain transfer with aluminum

alkyl
ktr1 rate constant, chain transfer with hydrogen
ktrM2 rate constant, chain transfer with propylene
L moment of live chains, mol=m3

mf molar Uow rate of feed, mol=h
M number of generations used in the simulation
TMn number average molecular weight, kg=mol
TMw weight average molecular weight, kg=mol
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Mwav monomer average molecular weight, kg=mol
Pd polydispersity
P concentration of ethylene ended chains, mol=m3

PDB concentration of pendant double bonds in dead
chains, mol=m3

Q concentration of propylene-ended chains,
mol=m3

R concentration of diene-ended chains, mol=m3

rc crosslinking reaction rate, mol=(m3 s)
rm monomer consumption rate, mol=(m3 s)
rp propagation reaction rate, mol=(m3 s)
t time or age, s
V volume of the reactor, m3

W mass fraction
X polymer content
x mass of chains, kg, or mole fraction
y Schulz distribution variable
z Schulz distribution variable

Species

Al aluminum alkyl
C1 inactive catalyst
C2 active catalyst
D dead chain
H2 hydrogen
M pseudo-monomer
M1 monomer 1, ethylene
M2 monomer 2, propylene
M3 monomer 3, diene
P ethylene-ended live chain
PDB pendant double bond
Q propylene-ended live chain
R diene-ended live chain

Greek letters

! gamma function
� residence time, h
) bulk moment, L=mol
� mole fraction

Subscripts

0 zeroth moment
100 <rst moment with respect to M1

010 <rst moment with respect to M2

001 <rst moment with respect to M3

2 second moment
200 second moment with respect to M1

020 second moment with respect to M2

002 second moment with respect to M3

110 second moment with respect to M1 and M2

101 second moment with respect to M1 and M3

011 second moment with respect to M2 and M3

c critical value

f feed
i the number of M1 units in the polymer chain
j the number of M2 units in the polymer chain
k the number of M3 units in the polymer chain
l the number of pendant double bonds in the poly-

mer chain
L prior to or in the absence of crosslinking
m generation
r the number of monomer units in the polymer

chain
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Appendix A. Kinetics mechanism (see Table 3)

Appendix B. Model equations of pseudo-kinetic constant
method—standard moment approach

B.1. Components

Concentration of ethylene:

dCM1

dt
=
mf;M1

V
− F
V
CM1 − [ki1CC2

+(k11�P + k21�Q + k31�R)L0]CM1 : (B.1)

Concentration of propylene:

dCM2

dt
=
mf;M2

V
− F
V
CM2 − [kx2CC1 + ki2CC2

+ (k12�P + k22�Q + kt2 + ktrM2 )L0]CM2 : (B.2)

Concentration of diene:

dCM3

dt
=
mf;M3

V
− F
V
CM3 − [kx3CC1

+(k13�P + kt3 )L0]CM3 : (B.3)

Concentration of inactive catalyst:

dCC1
dt

=
mf;C1
V

− F
V
CC1

−(ka + kx + kx2CM2 + kx3CM3 )CC1 : (B.4)

Concentration of active catalyst:

dCC2
dt

=
mf;C2
V

− F
V
CC2 + kaCC1

−(ki1CM1 + ki2CM2 )CC2 + ktr1CH2L0: (B.5)
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Table 3
Kinetics mechanism

Type Reaction Rate constant

1. Catalyst activation C1 → C2 ka
2. Catalyst deactivation C1 → D kx

C1 +M2 → D kx2
C1 +M3 → D kx3

3. Chain initiation C2 +M1 → P100 ki1
C2 +M2 → Q010 ki2

4. Chain propagation Pijk +M1 → P(i+1)jk k11
Pijk +M2 → Qi(j+1)k k12
Pijk +M3 → Rij(k+1) k12
Qijk +M1 → P(i+1)jk k21
Qijk +M2 → Qi(j+1)k k22
Rijk +M1 → P(i+1)jk k31

5. Chain termination
Spontaneous Pijk → Uijk kt

Qijk → Vijk kt
Rijk → Wijk kt

With propylene Pijk +M2 → Uijk kt2
Qijk +M2 → Vijk kt2
Rijk +M2 → Wijk kt2

With diene Pijk +M3 → Uijk kt3
Qijk +M3 → Vijk kt3
Rijk +M3 → Wijk kt3

6. Chain transfer
With hydrogen Pijk + H2 → Uijk + C2 ktr1

Qijk + H2 → Vijk + C2 ktr1
Rijk + H2 → Wijk + C2 ktr1

With cocatalyst Pijk + Al→ Uijk + P100 ktr
Qijk + Al→ Vijk + P100 ktr
Rijk + Al→ Wijk + P100 ktr

With propylene Pijk +M2 → Uijk + Q010 ktrM2
Qijk +M2 → Vijk + Q010 ktrM2
Rijk +M2 → Wijk + Q010 ktrM2

Concentration of hydrogen:
dCH2
dt

=
mf;H2
V

− F
V
CH2 − ktr1CH2L0: (B.6)

Concentration of alkyl:
dCAl
dt

=
mf;Al
V

− F
V
CAl − ktr

(
CAl
CC1

− 1
)
L0: (B.7)

B.2. Zeroth moments

Concentration of live chains:
dL0
dt

=
mf;P0; s
V

− F
V
L0 + (ki1CM1 + ki2CM2 )CC2

−[kt + kt2CM2 + kt3CM3 + ktr1CM2 )L0: (B.8)

Concentration of dead chains:
dB0
dt

=
mf;B0
V

− F
V
B0 +

[
kt + kt2CM2 + kt3CM3 + ktr

×
(
CAl
CC1

− 1
)
+ ktr1CH2 + ktrM2CM2

]
L0

−1
2
kc(PDB)2: (B.9)

B.3. First moments

Concentration of monomers in live chains:

dL1
dt

=
mf;L1
V

− F
V
L1 + (ki1CM1 + ki2CM2 )CC2 + kpCML0

−
[
kt + kt2CM2 + kt3CM3 + ktr1CH2 + ktrM2CM2 + ktr

×
(
CAl
CC1

− 1
)]
L1

+
[
ktr

(
CAl
CC1

− 1
)
+ ktrM2CM2

]
L0: (B.10)

Concentration of monomers in dead chains:

dB1
dt

=
mf;B1
V

− F
V
B1 +

[
kt + kt2CM2 + kt3CM3 + ktr

×
(
CAl
CC1

− 1
)
+ ktr1CH2 + ktrM2CM2

]
L1: (B.11)

Concentration of diene (PDB) in live chains:

dL001
dt

=
mf;L001
V

− F
V
L001 + k13�PDBCM3L0: (B.12)

Concentration of PDB in dead chains:

dPDB
dt

=
mf;PDB
V

− F
V
PDB

+
[
kt + kt2CM2 + kt3CM3 + ktr

(
CAl
CC1

− 1
)

+ktr1CH2 + ktrM2CM2

]
L001:

−1
2
kc(PDB)2: (B.13)

B.4. Second moments

Live chains:

dL2
dt

=
mf;L2
V

− F
V
L2 + (ki1CM1 + ki2CM2 )CC2

+kpCM (L0 + 2L1)

+
[
(ktr

(
CAl
CC1

− 1
)
+ ktrM2CM2

]
L0: (B.14)

Dead chains:

dB2
dt

=
mf;B2
V

− F
V
B2 +

[
kt + kt2CM2 + kt3CM3 + ktr

×
(
CAl
CC1

− 1
)
+ ktr1; sCH2 + ktrM2CM2

]
L2:

+kc(�PDBB2)2 (B.15)
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B.5. Physical properties

B.5.1. Monomer average molecular weight

Mw;av =
1
rM

3∑
i=1

Mw;Mi rMi ; (B.16)

where rMi is the monomer consumption rate of the ith
monomer:

rM1 = (ki1CC2 + k11�P + k21�Q + k31�R)CM1 ; (B.17)

rM2

= [ki2CC2 + k12�P + k22�Q

+(kt2 + ktrM2 )L0]CM2 ; (B.18)

rM3 = k13�P + kt3L0CM3 ; (B.19)

and rM is the overall monomer consumption rate:

rM =
3∑
i=1

rMi : (B.20)

The equation for the overall monomer average molecular
weight can be derived from the overall mass balance:

d TMw;av

dt
=−F

V
TMw;av +

1
)1

[
RMMw;av − TMw;av

×
(
dL1
dt

+
dB1
dt

)]
: (B.21)

B.5.2. Monomer contents
The two monomer contents can be derived using the in-

dividual mass balances.
Ethylene content:

dXM1

dt
=−F

V
XM1 +

1
)1 TMw;av

[
rM1Mw;M1 − )1XM1

× d TMw;av

dt
− TMw;avXM1

(
dL1
dt

+
dB1
dt

)]
: (B.22)

Diene content:

dXM3

dt
=−F

V
XM3 +

1
)1 TMw;av

[
RM3Mw;M3 − )1XM3

× d TMw;av

dt
− TMw;avXM3

(
dL1
dt

+
dB1
dt

)]
: (B.23)

B.5.3. Average molecular weights and polydispersity
Number average molecular weight:

TMn = TMw;av
)1
)0
: (B.24)

Weight average molecular weight:

TMw = TMw;av
)2
)1
: (B.25)

Polydispersity:

Pd =
TMw

TMn
=
)2)0
()1)2

: (B.26)

References

Arzamendi, G., Asua, J.M., 1995. Modeling gelation and
sol molecular-weight distribution in emulsion polymerization.
Macromolecules 28, 7479–7490.

Bank Jr., R.E., Coughran, W.C., Fichtner, W., Grosse, E., Rose, D.,
Smith, R., 1985. Transient simulation of silicon devices and circuits.
IEEE Transaction on Computer-Aided Design 4, 436–451.

Beardsley, K.P., Tomlinson, R.W., 1990. Processing of EPDM polymers
as related to structure and rheology. Rubber Chemistry and Technology
63, 540–553.

Beelen, H.J.H., Maag, L.R., Noordermeer, J.W.M., 1998. Understanding
the inUuence of polymer and compounding variations on EPDM
extrusions. Rubber World 4, 18–19.

Boyd, R.D., Phillips, P.J., 1993. The Science of Polymer Molecules.
Cambridge University Press, Cambridge.

Butte, A., Ghielmi, A., Storti, G., Morbidelli, M., 1999. Calculation of
molecular weight distribution in free-radical polymerization with chain
branching. Macromolecular Theory and Simulations 8, 498–512.

Cozewith, C., 1988. Transient response of continuous-Uow stirred-tank
polymerization reactors. A.I.Ch.E. Journal 34, 272–282.

Cozewith, C., Teymour, F., 1998. Polymer cross-linking in post-gel
region for continuous and batch reactors. A.I.Ch.E. Journal 44,
722–732.

Cozewith, C., Graessley, W.W., ver Strate, G., 1979. Polymer
cross-linking in continuous Uow stirred reactors. Chemical Engineering
Science 34, 245–248.

Dikland, H.G., 1996. InUuence of chemical composition and molecular
structure of EPDM on peroxide crosslinking eFciency. Kautschuk
Gummi Kunsto8e 49, 413–417.

Dolatkhani, M., Cramail, H., DeFeux, A., 1996. Linear non-conjugated
dienes from biomass as termonomers in EPDM synthesis,
2: Comparison with 5-ethylidene-2-norbornene termonomer.
Macromolecular Chemistry and Physics 197, 289–302.

Flory, P.J., 1953. Principles of Polymer Chemistry. Cornell University
Press, New York.

Gardner, I.J., ver Strate, G., 1973. Determination of ethylidenenorbornene
in EPDM terpolymers. Rubber Chemistry and Technology 46,
1019–1034.

Gossage, J.L., 1997. Numerical fractionation modeling of nonlinear
polymerization. Ph.D. Thesis, Illinois Institute of Technology, Chicago,
IL, USA.

Kennedy, J.P., Makowski, H.S., 1967. Carbonium ion polymerization of
norbornene and its derivatives. Macromolecular Science (Chemistry)
A1, 345–370.

Kresge, E.N., Cozewith, C., ver Strate, G., 1985. Long chain
branching and gel in EPDM. Rubber Chemistry and Technology 58,
180–181.

Mazzotti, M., Fiorentino, S., Ghielmi, A., 1996. Kinetics of long-chain
branching in emulsion polymerization. Macromolecular Symposia 111,
183–193.

Noordermeer, J.W.M., 1997. Standardization of EPDM characterization
tests for QC and speci<cation purposes. Rubber World 217,
16–20.

OFce of Air Quality, 1995. Hazardous air pollutant emissions
from process units in the elastomer manufacturing industry—
basis and purpose document for proposed standards. Tech.
Rep.EPA-453/R-95-006a, Environmental Protection Agency.

Ogunnaike, B.A., 1994. On-line modelling and predictive control of an
industrial terpolymerization reactor. International Journal of Control
59, 711–729.



R. Li et al. / Chemical Engineering Science 59 (2004) 2297–2313 2313

Papavasiliou, G., Birol, I., Teymour, F., 2002. Calculation of molecular
weight distribution in non-linear free-radical polymerization using
the numerical fractionation technique. Macromolecular Theory and
Simulations 11, 533–548.

Pehlert, G.J., Dharmarajan, N.R., Ravishankar, P.S., 2001. Blends of
EP(D)M and metallocene plastomers for wire and cable applications.
159th Meeting, ACS Rubber Division, Providence, RI, USA.

Pladis, P., Kiparissides, C., 1998. A comprehensive model for the
calculation of molecular weight long-chain branching distribution
in free-radical polymerizations. Chemical Engineering Science 53,
3315–3333.

Saatkamp, T., Lechner, M.D., Otten, M., Vennemann, N., 1995.
Comparison of technological test procedures for the characterization
of processing behavior. Kautschuk Gummi Kunsto8e 12,
892–896.

Saidel, G.M., Katz, S., 1968. Dynamic analysis of branching in
radical polymerization. Polymer Science: Polymer Physics Edition 6,
1149–1160.

Sha8er, W.K.A., Ray, W.H., 1997. Polymerization of ole<ns through
heterogeneous catalysis. XVIII. A kinetic explanation for unusual
e8ects. Journal of Applied Polymer Science 65, 1053–1080.

Shampine, L.F., Hosea, M.E., 1996. Analysis and implementation of
TR-BDF2. Applied Numerical Mathematics 20, 21–37.

Teymour, F., Campbell, J.D., 1994. Analysis of the dynamics of gelation
on polymer reactors using the “numerical fractionation” technique.
Macromolecules 27, 2460–2469.

Topalis, E., Pladis, P., Kiparissides, C., Goossens, I., 1996.
Dynamic modelling and steady-state multiplicity in high pressure
multizone LDPE autoclaves. Chemical Engineering Science 51,
2461–2470.

ver Strate, G., 1985. Ethylene–propylene elastomers. In: Mark,
H.F., Kroschwitz, J.I. (Eds.), Encyclopedia of Polymer Science
and Engineering, 2nd Edition, Vol. 6. Wiley, New York,
pp. 522–564.

ver Strate, G., Cozewith, C., Graessley, W.W., 1980. Branching
by copolymerization of monovinyl and divinyl monomers in
continuous-Uow stirred reactors. Journal of Applied Polymer Science
25, 59–62.

Xie, T., Hamielec, A.E., 1993a. Modeling free-radical copolymerization
kinetics—evaluation of the pseudo-kinetic rate constant method. 1
Molecular weight calculations for linear copolymers. Makromolekulare
Chemie—Theory and Simulations 2, 421–454.

Xie, T., Hamielec, A.E., 1993b. Modeling free-radical copolymerization
kinetics—evaluation of the pseudo-kinetic rate constant method.
2 Molecular weight calculations for copolymers with long chain
branching. Makromolekulare Chemie—Theory and Simulations 2,
455–483.

Xie, T., Hamielec, A.E., 1993c. Modeling free-radical copolymerization
kinetics—evaluation of the pseudo-kinetic rate constant
method. 3 Molecular weight calculations for copolymers with
crosslinking. Makromolekulare Chemie—Theory and Simulations 2,
777–803.


	Dynamic modeling of crosslinking and gelation in continuousethylene--propylene--diene polymerization reactors using thepseudo--kinetic constant approach
	Introduction
	Model development
	Pseudo-kinetic constant approach for crosslinking reactions
	Results and discussion
	Computational issues
	Validation of the assumptions
	Validation of the quasi-steady-state assumption
	Validation of the long-chain assumption
	Error caused by the number of generations

	Dynamics of crosslinking reactions in the post-gel region
	Effects of diene feed flow rate
	Construction of MWD


	Conclusions
	Acknowledgements
	Appendix A. Kinetics mechanism (see Table 3)
	Appendix B. Model equations of pseudo-kinetic constant method---standard moment approach
	Components
	Zeroth moments
	First moments
	Second moments
	Physical properties
	Monomer average molecular weight
	Monomer contents
	Average molecular weights and polydispersity


	References


