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ABSTRACT: A dynamic flux balance model based on a
genome-scale metabolic network reconstruction is
developed for in silico analysis of Saccharomyces cerevisiae
metabolism and ethanol production in fed-batch culture.
Metabolic engineering strategies previously identified for
their enhanced steady-state biomass and/or ethanol yields
are evaluated for fed-batch performance in glucose and
glucose/xylose media. Dynamic analysis is shown to provide
a single quantitative measure of fed-batch ethanol produc-
tivity that explicitly handles the possible tradeoff between
the biomass and ethanol yields. Productivity optimization
conducted to rank achievable fed-batch performance
demonstrates that the genetic manipulation strategy and
the fed-batch operating policy should be considered simul-
taneously. A library of candidate gene insertions is
assembled and directly screened for their achievable ethanol
productivity in fed-batch culture. A number of novel gene
insertions with ethanol productivities identical to the best
metabolic engineering strategies reported in previous studies
are identified, thereby providing additional targets for
experimental evaluation. The top performing gene inser-
tions were substrate dependent, with the highest ranked
insertions for glucose media yielding suboptimal perfor-
mance in glucose/xylose media. The analysis results suggest
that enhancements in biomass yield are most beneficial for
the enhancement of fed-batch ethanol productivity by
recombinant xylose utilizing yeast strains. We conclude that
steady-state flux balance analysis is not sufficient to predict
fed-batch performance and that the media, genetic manip-
ulations, and fed-batch operating policy should be consid-
ered simultaneously to achieve optimal metabolite
productivity.
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Introduction
The availability of genome-scale stoichiometric models of
cellular metabolism (Reed et al., 2006) has enabled the
development of computational algorithms for the analysis
and design of complex metabolic networks. A popular
approach is flux balance analysis (FBA), where a linear
programming problem is posed to resolve the intracellular
fluxes in an underdetermined stoichiometric model
under the assumption that the cell utilizes available
resources for growth rate maximization (Stephanopoulos
et al., 1998). FBA has been used extensively for predicting
cellular growth and product secretion patterns in microbial
systems (Kauffman et al., 2003; Sauer et al., 1996; Segre
et al., 2002). Extensions of classical FBA allow the redesign
of metabolic networks for the overproduction of desired
metabolites through gene deletions and insertions, which
are implemented by removing or adding intracellular
reactions to the network. These computational methods
provide metabolic engineering targets that are experimen-
tally testable. In a recent study with a Saccharomyces
cerevisiae genome-scale network, the growth phenotypes of
gene knockouts were predicted with a �70–80% success
rate (Famili et al., 2003). Several computational studies of
gene manipulations for metabolite overproduction have
been presented (Bro et al., 2006; Burgard and Maranas,
2001; Pharkya et al., 2004).

These FBA methods assume time-invariant extracellular
conditions and generate steady-state predictions consistent
with continuous culture. However, large-scale production
of metabolic products is often achieved with batch and
� 2007 Wiley Periodicals, Inc.



fed-batch culture. An important advantage of fed-batch
culture is that substrate levels can be transiently varied to
achieve a favorable tradeoff between cellular growth and
product formation rates. Although batch culture experi-
ments are often used to evaluate FBA predictions, the results
are strictly valid only for the balanced growth phase. An
alternative is to perform metabolic network analysis and
design using dynamic extensions of stoichiometric models.
Dynamic flux balance models are obtained by combining
stoichiometric equations for intracellular metabolism with
dynamic mass balances on key extracellular substrates and
products under the assumption of fast intracellular
dynamics (Gadkar et al., 2004; Hjersted and Henson,
2006; Mahadevan et al., 2002; Sainz et al., 2003; Varma and
Palsson, 1994). The intracellular and extracellular descrip-
tions are coupled through the cellular growth rate and
substrate uptake kinetics, which can be formulated to
include key regulatory effects such as product inhibition of
growth. Batch culture simulations with dynamic flux
balance models have shown good agreement with experi-
mental data (Sainz et al., 2003; Varma and Palsson, 1994).

Dynamic flux balance modeling offers important advan-
tages over alternative dynamic modeling frameworks.
Because simple unstructured models rely on phenomen-
ological descriptions of cell growth and constant yield
coefficients (Nielsen and Villadsen, 1994), they have no
predictive capability for genetic alterations. Metabolic
engineering applications of structured kinetic models
(Steinmeyer and Shuler, 1989; Vaseghi et al., 1999), log-
linear kinetic models (Hatzimanikatis et al., 1998), and
cybernetic models (Jones and Kompala, 1999; Varner and
Ramkrishna, 1999) are often limited by the lack of
parameter values for in vivo enzyme kinetics. Dynamic
flux balance modeling provides a practical alternative for
incorporating intracellular structure. Given the availability
of a steady-state flux balance model, only a small number of
additional parameters are needed to account for the uptake
of multiple substrates and the secretion of multiple
products. On the other hand, a well documented weakness
of classical FBA is the difficulty associated with incorporat-
ing cellular regulation. This problem has been partially
addressed by using gene expression data to constrain
regulated fluxes within the metabolic network (Åkesson
et al., 2004; Covert et al., 2001). Dynamic flux balance
analysis (DFBA) offers the additional possibility of
formulating substrate uptake kinetics to account for known
regulatory processes.

The production of ethanol from recombinant yeast
strains has received considerable attention for renewable
liquid fuel applications. Of particular interest is genetic
engineering of xylose fermenting strains that can grow on
media derived from agricultural products such as corn
(Aristidou and Penttila, 2000; Jeffries and Jin, 2004; Kuyper
et al., 2005; Ostergaard et al., 2000). A recent study by Bro
et al. (2006) revealed novel metabolic engineering targets for
improved ethanol production from glucose media based on
classical FBA of a genome-scale S. cerevisiae metabolic
network. One of the most promising strategies was shown
experimentally to outperform wild-type S. cerevisiae in both
glucose and glucose/xylose media. In addition to being
limited to steady-state culture conditions, this computa-
tional analysis failed to explicitly address the well-known
tradeoff between the biomass and ethanol yields. Moreover,
regulatory processes such as ethanol inhibition of growth
that are active under dynamic culture conditions might lead
to favorable metabolic engineering strategies that are not
easily identifiable from steady-state analysis.

The computational study reported in this paper focuses
on genome-scale analysis of a S. cerevisiae dynamic flux
balance model to analyze existing and uncover new
metabolic engineering strategies for ethanol overproduction
from glucose and glucose/xylose media in fed-batch culture.
A fully compartmentalized and charge balanced network
reconstruction (Duarte et al., 2004) is combined with
extracellular mass balance on growth substrates (glucose,
xylose, oxygen) and competing metabolic products (etha-
nol, glycerol, xylitol). To our knowledge, the developed
model represents the first attempt to incorporate a genome-
scale metabolic reconstruction into the dynamic flux
balance framework. Dynamic analysis of ten metabolic
engineering strategies reported in the steady-state FBA study
of Bro et al. (2006) are evaluated with respect to their
achievable ethanol productivities in fed-batch culture. A
library of candidate gene insertions is dynamically screened
to identify new metabolic engineering targets for enhanced
fed-batch ethanol productivity.
Methods

Dynamic Flux Balance Model

A fed-batch model for aerobic and anaerobic growth of
S. cerevisiae on glucose and xylose media was developed. The
model consisted of intracellular steady-state flux balances
coupled to dynamic extracellular mass balances through
kinetic uptake expressions for three possible substrates
(glucose, xylose, oxygen). The S. cerevisiae genome-scale
metabolic network model iND750 was used in this study
(Duarte et al., 2004; http://gcrg.ucsd.edu/organisms/
yeast.html). Each reaction is fully charged balanced and
elementally mass balanced with respect to carbon and
hydrogen. The model is fully compartmentalized with
750 genes and 1,149 intracellular reactions, which are
divided into the cytosol, mitochondrion, peroxisome,
nucleus, endoplasmic reticulum, Golgi apparatus, and
vacuole. Compartmentalization of the 646 unique metabo-
lites produces 1,059 species that are stoichiometrically
balanced. The dimensions of the stoichiometric matrix for
the iND750 model are 1,059 species and 1,264 fluxes, which
includes the intracellular reactions and 115 membrane
exchange fluxes. The publicly available model includes a
mostly complete description of xylose metabolism such that
the associated pathways become active only when a xylose
Hjersted et al.: Genome-Scale Analysis of Yeast Fed-Batch Culture 1191
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uptake rate is specified. The only modification needed for
simulation of recombinant xylose utilizing strains was the
insertion of the reverse reaction for xylitol dehydrogenase,
which increased the number of fluxes to 1,265 for mixed-
substrate studies.

The linear program (LP) to resolve the underdetermined
flux balances was formulated as:

max
v

m ¼
P

j

wjvj

subject to : Av ¼ 0
vmin � v � vmax

(1)

where A is the stoichiometric matrix for the metabolic
network, v is a vector of reaction and exchange fluxes, and
vmax and vmin are vectors for upper and lower flux bounds,
respectively. The cellular growth rate (m) was calculated
from the fluxes producing biomass precursors where the
weights (w) were determined from the amount of each
precursor necessary for biomass formation (Duarte et al.,
2004). We did not constrain the metabolic network to
account for known differences between the aerobic and
anaerobic metabolism of S. cerevisiae (Åkesson et al., 2004)
due to the difficulty associated with incorporating steady-
state gene expression data into our dynamic model. Despite
this omission, we were able to generate dynamic predictions
consistent with experimental data over a wide range of
aerobic and anaerobic conditions.

The uptake kinetics for glucose (vg), xylose (vz), and
oxygen (vo) were modeled as:

vg ¼ vg;max

G

Kg þ G

1

1þ E
Kie

(2)

vz ¼ vz;max

Z

Kz þ Z

1

1þ E
Kie

1

1þ G
Kig

(3)

vo ¼ vo;max

O

Ko þ O
(4)

where G, Z, E, and O are the glucose, xylose, ethanol, and
dissolved oxygen concentrations, respectively, Kg,Kz, andKo

are saturation constants, vg,max, vz,max, and vo,max are
maximum uptake rates, and Kie and Kig are inhibition
constants. The glucose uptake followed Michaelis–Menten
kinetics with an additional regulatory term to capture
growth rate suppression due to high ethanol concentrations
(Sainz et al., 2003). The xylose uptake had a similar form
with an additional regulatory term to account for inhibited
xylose metabolism in the presence of the preferred substrate
glucose (Kuyper et al., 2005). Ethanol uptake was excluded
from the model because ethanol consumption is oxidative
and only experimentally observed when glucose is nearly
exhausted (Jones and Kompala, 1999), conditions which do
not occur in the simulations considered in this study.
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The dynamic mass balances on the extracellular environ-
ment were posed as:

dV

dt
¼ F (5)

dðVXÞ
dt

¼ mVX (6)

dðVGÞ
dt

¼ FGf � vgVX (7)

dðVZÞ
dt

¼ FZf � vzVX (8)

dðVEÞ
dt

¼ veVX (9)

where V is the liquid volume, X is the biomass concentra-
tion, Gf and Zf are the glucose and xylose feed concentra-
tions, respectively, and F is the feed flow rate. The growth
rate (m) and the ethanol exchange flux (ve) were resolved by
solution of the inner flux balance model. Although not
shown here, analogous equations were posed for key
metabolic byproducts (glycerol and xylitol). The dissolved
oxygen concentration was treated as an input variable under
the assumption that its dynamic profile could be tracked by
a suitably designed feedback controller. This simplification
was deemed reasonable because anaerobic conditions were
used to promote ethanol production during later stages of
the batch when high cell densities that might limit oxygen
mass transfer were encountered. Consequently, extracellular
oxygen balances were omitted and the dissolved oxygen
concentration was simply represented as the percent of
saturation: DO¼O/Osat where Osat is the saturation
concentration.
Metabolic Engineering Strategies

Genetic manipulations involving gene deletions, gene
overexpressions, and gene insertions for ethanol over-
production were considered in this study. Steady-state FBA
and DFBA were applied to eleven previously suggested
metabolic engineering strategies. These strategies included
eight gene insertions and two combination gene insertion/
overexpression strategies that were predicted to enhance
biomass and/or ethanol yields when classical FBA was
applied to the iFF708 S. cerevisiae metabolic network model
(Bro et al., 2006). We performed the same steady-state
analysis on the iND750 model, which represents a second
generation improvement of the iFF708 reconstruction, to
provide a consistent basis for comparing our DFBA results.
The ten strategies were implemented by the addition of
reactions to the metabolic network for gene insertions, by
the removal of reactions for gene deletions, and by the
removal of bound constraints from reactions for gene
DOI 10.1002/bit



Table I. Model parameter values.

Variable Value References

vo,max 8 mmol/gdw/h Sonnleitner and Kappeli (1986)

Ko 0.003 mmol/L Sonnleitner and Kappeli (1986)

Osat 0.30 mmol/L —

Kie 10 g/L —

V0 0.5 L —

Vf 1.2 L —

X0 0.05 g/L —

Table II. Glucose media parameter values.

Variable Value References

vg,max 20 mmol/gdw/h Sonnleitner and Kappeli (1986)

Kg 0.5 g/L Sonnleitner and Kappeli (1986)

F 0.044 L/h —

Gf 100 g/L —

tf 16.0 h —

G0 10.0 g/L —
overexpressions as discussed by Bro et al. (2006). An
additional gene deletion strategy was considered. The aac1
gene is associated with oxidative phosphorylation, and the
knockout Daac1 has been shown to be experimentally viable
(Giaever et al., 2002; Lawson et al., 1990). While this
knockout has no effect under anaerobic conditions, our
preliminary analysis showed that higher ethanol yields at the
expense of reduced biomass yields were predicted for
aerobic conditions. We performed analysis of the Daac1
knockout to examine the tradeoff between these two
competing factors in fed-batch culture, where an initial
aerobic phase used to produce biomass is followed by an
anaerobic phase that promotes ethanol formation (Hjersted
and Henson, 2006).

We also assembled a library of 357 gene insertion
candidates from the LIGAND database in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa,
1997; Kanehisa and Goto, 2000; Kanehisa et al., 2006)
(http://www.genome.jp/) in an attempt to uncover novel
metabolic engineering strategies for ethanol overproduction
in fed-batch culture. Only reactions involving species
present in the cytosol of iND750 were considered for this
study. We were able to match 517 of the 575 cytosolic species
in iND750 to compounds in the LIGAND database, and 788
reactions involved only these matched species. The iND750
metabolic network already included 431 of these reactions,
yielding a reduced set of 357 reactions corresponding to
potential gene insertions. All reactions were assumed
reversible unless available experimental data suggested
otherwise.

Because the iND750 model is fully charged and
elementally balanced, the reactions extracted from the
KEGG database needed to be examined for consistency and
possibly modified before analysis was performed. The 357
reactions in the assembled gene insertion library were
therefore subjected to charge and elemental balances. The
charge balance for each candidate reaction was determined
as follows:

b ¼ RTc (10)

where c is a vector of charges for each species, R is the
stoichiometric matrix assembled from all the candidate
reactions, and b is the resulting vector of charge balances
where a zero entry indicated a properly charge balanced
reaction. A similar formulation was used to check elemental
balances on hydrogen and carbon. Hydrogen ions were
added to unbalanced reactions when the charge deficit
matched the hydrogen deficit to simultaneously satisfy both
balances. Six reactions were eliminated due to carbon
imbalances, and 11 reactions were removed due to
unsatisfied charge and/or hydrogen balances. Therefore,
the final library consisted of 340 reactions corresponding to
potential gene insertions. The same balancing procedure was
applied to the eight reaction insertions proposed by Bro
et al. (2006) to ensure consistency with the iND750
model.
Model Parameters and Dynamic Simulation

Nominal model parameter values used for all simulations
are listed in Table I. Literature values for a wild-type yeast
strain (Sonnleitner and Kappeli, 1986) were used for the
oxygen uptake kinetic parameters (vo,max, Ko). The
saturation oxygen concentration (Osat) was determined
from Henry’s law at 1.0 atm and 308C. The initial and final
volumes (V0, Vf) and the initial biomass concentration (X0)
were chosen as representative values for a bench-scale
bioreactor available in our laboratory. The glucose inhibi-
tion constant with respect to ethanol (Kie) was chosen to
give reasonable predictions of experimentally observed
substrate, biomass and product profiles in batch culture with
glucose (Jones and Kompala, 1999) and glucose/xylose
(Kuyper et al., 2005) media. The sensitivity of the model
predictions to this uncertain parameter is analyzed in the
Results section. Additional model parameters needed for
glucose media simulations are listed in Table II. The glucose
uptake kinetic parameters (vg,max, Kg) were obtained from
the literature (Sonnleitner and Kappeli, 1986), while the feed
flow rate ( F), initial glucose concentration (G0), glucose
feed concentration (Gf), and final batch time (tf) were
chosen as representative values for our experimental system.

Table III lists parameter values specific to simulations of
the xylose utilizing recombinant S. cerevisiae strain RWB 218
(Kuyper et al., 2005), including experimentally derived
glucose and xylose uptake kinetic parameters. The fermenter
operating conditions were chosen as representative values
for our experimental system and equal concentrations of
glucose and xylose in the media. Glucose and xylose are
believed to be transported by the same family of
hexose transporters with glucose being the preferred carbon
source (Kuyper et al., 2005). The xylose inhibition constant
with respect to glucose (Kig) was chosen to capture the effect
Hjersted et al.: Genome-Scale Analysis of Yeast Fed-Batch Culture 1193
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Table III. Glucose and xylose media parameter values.

Variable Value References

vg,max 7.3 mmol/gdw/h Kuyper et al. (2005)

Kg 1.026 g/L Kuyper et al. (2005)

vz,max 32 mmol/gdw/h Kuyper et al. (2005)

Kz 14.85 g/L Kuyper et al. (2005)

Kig 0.5 g/L —

F 0.035 L/h —

Gf 50 g/L —

Zf 50 g/L —

tf 20.0 h —

G0 5 g/L —

Z0 5 g/L —

Figure 1. Fed-batch simulation profiles for wild-type S. cerevisiae with glucose

feed and a switch in the dissolved oxygen concentration from 50% DO to 0% DO at 7.7 h

indicated by the vertical line.
of repressed xylose uptake in the presence of glucose
(Kuyper et al., 2005). The sensitivity of the model
predictions to this uncertain parameter is analyzed in the
Results section.

Dynamic simulations were performed in MATLAB using
the code ode23 to integrate the extracellular mass balance
equations. The inner LP was evaluated inside the integration
routine along with the dynamic equations using the
MATLAB interface to the LP code MOSEK. A possible
problem with FBA is the presence of multiple optimal
solutions, which implies the existence of an infinite number
of different flux distributions that produce the same optimal
growth rate (Mahadevan and Schilling, 2003). Multiple
optimal solutions with respect to the ethanol secretion rate
were handled by first solving the LP (1) for maximum
biomass, and then by fixing the biomass at this maximum
value and resolving the LP for maximum ethanol secretion.
This approach allowed variability in the ethanol production
rate as a result of multiple optima to be eliminated by
selecting the theoretical maximum ethanol production with
respect to the maximal growth rate. Alternative approaches
based on the solution of a mixed-integer LP (Lee et al., 2000)
were deemed to be unnecessarily complex since only
alternate optima with respect to the ethanol secretion rate
were important for this study.

The ethanol productivity was defined as the overall rate of
ethanol production from the fed-batch run:

ðVEÞjt¼tf

tf
(11)

where t¼ 0 denotes the initial batch time. Dynamic
optimization of fed-batch ethanol productivity was con-
sidered for two types of input profiles. In the first case the
switching time between partially aerobic (50%DO; hereafter
referred to as aerobic) and anaerobic conditions (0% DO)
was treated as the only decision variable, while in the second
case the DO concentration following the switch was treated
as a second decision variable to investigate enhanced ethanol
production under microaerobic conditions. For simplicity, a
constant feed flow rate and feed substrate concentrations,
fixed initial conditions, and a fixed final batch time were
utilized in both cases. The resulting single and two variable
1194 Biotechnology and Bioengineering, Vol. 97, No. 5, August 1, 2007
optimization problems were solved with the MATLAB
optimal search function fminsearch.
Results

Glucose Media

Fed-batch simulation of a constant glucose feed flow rate
and an aerobic (50% DO) to anaerobic (0% DO) switch is
shown in Figure 1. The initial conditions and parameter
values for this simulation are reported in Tables I and II. A
rapid increase in the biomass concentration was observed
under aerobic growth conditions. The switch to anaerobic
growth at 7.7 h resulted in a substantially increased ethanol
production rate at the expense of biomass production.
The final batch time obtained from solution of a full
optimization problem (Hjersted and Henson, 2006) was
extended slightly to compensate for the non-optimized
glucose feeding strategy used in this study. The switching
time (ts) was chosen such that the glucose was nearly
exhausted by the end of the batch. Competition between the
byproduct glycerol and ethanol was observed after the
switch to anaerobic conditions. The computational time for
this dynamic simulation was only 9 s on a 3.0 GHz Pentium
IV workstation.

The next set of results was generated from steady-state
FBA of ten genetic manipulations for enhanced ethanol
production suggested in Bro et al. (2006). Table IV shows in
silico predictions for these manipulations along with results
for the single gene deletion Daac1. The labels of the eight
gene insertion strategies indicated in parentheses corre-
spond to reaction entries in the KEGG LIGAND database.
DOI 10.1002/bit
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Figure 2. Sensitivity of the ethanol productivity to the aerobic–anaerobic

switching time (ts) in fed-batch culture with glucose media. The dotted line indicates

the optimal switching time for the wild-type strain.
The genetic manipulation strategies are subsequently
referred to by these labels. The modifications of the
insertion reactions needed to achieve charge and elemental
balancing are shown explicitly in the Appendix. LPs for both
anaerobic (0% DO) and aerobic (50% DO) conditions were
solved for each manipulation. All manipulations produced
enhanced ethanol and growth yields for anaerobic growth
with the exception of Daac1, which corresponds to a flux in
oxidative phosphorylation that is only active aerobically.
The flux through each inserted reaction was significant
compared to the glucose uptake rate. Under aerobic
conditions, only two manipulations generated ethanol
and biomass yields that differed from the wild-type.
Enhanced aerobic ethanol production at the expense of
reduced cellular growth was predicted for both of these
strategies.

In the original study of Bro et al. (2006), anaerobic yield
enhancements of 4.2–10.4% for ethanol and 5.2–16.5% for
biomass were predicted for their ten proposed manipula-
tions. When these predictions were compared to the FBA
results in Table IV, particularly large differences were
observed in the ethanol yields. These differences were
attributable to the different flux balance models analyzed in
the two studies. We believe that the additional compart-
mentalization and full charge balancing of the iND750
model used in this study were the primary causes of the
discrepancies with the iFF708 model (Forster et al., 2003)
used in the original study. The lower ethanol yield
predictions from the iND750 model seemed to be more
consistent with experimental data, but both models over-
predicted experimentally observed growth rates (Bro et al.,
2006).

The results in Table IV demonstrated a notable short-
coming of classical FBA. Given different relative enhance-
ments in anaerobic ethanol and biomass yields, the preferred
manipulation for aerobic ethanol production could not be
directly determined. A similar difficulty was encountered for
aerobic growth, where the impact of increased ethanol yield
and decreased biomass yield for the two manipulations
listed could not be quantitatively compared to the wild-type
with respect to total ethanol production. Consequently, the
preferred manipulation for fed-batch ethanol production in
which an aerobic growth phase is followed by an anaerobic
growth phase could not be determined without further
analysis.

We defined the ethanol productivity as the total mass of
ethanol produced divided by the duration of the batch. The
productivity represents a single measure of fed-batch
performance that explicitly incorporates the tradeoff
between time-varying ethanol and biomass yields through-
out the batch. DFBA results for the sensitivity of the ethanol
productivity to the aerobic-anaerobic switching time in fed-
batch culture are shown in Figure 2. These results were
generated for each manipulation strategy by repeated fed-
batch simulation with different switching times. The initial
conditions and parameter values used are reported in
Tables I and II. The maximal productivities shown as peaks
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in Figure 2 could be used to produce an explicit ranking of
the manipulation strategies: (1) R00105/R01039/R01058;
(2) R00365/R01866/R00112/R00845/R01063; (3) Dgdh1
gdh2; (4) Dgdh1 glt1 gln1; (5) wild-type. The reduced
growth yield of the deletion strategy Daac1 overwhelmed the
increased ethanol yield, generating productivities below the
scale in Figure 2. The vertical dotted line at the optimal
productivity for the wild-type strain demonstrates that the
manipulation strategies have different optimal switching
times. Consequently, optimal performance is dependent
both on the metabolic engineering strategy and the fed-
batch operating policy. This suggests that attempts to
separately optimize the cellular design and the fermentation
conditions are likely to produce suboptimal ethanol
productivities.

Single variable optimization was performed to confirm
the optimal switching times found in the sensitivity analysis
(Fig. 2). Simultaneous optimization of the switching time
and the dissolved oxygen concentration (DO) following the
switch was also conducted to investigate enhanced fed-batch
productivity under microaerobic conditions. The two
variable optimization problem required about 18 min of
computation time for each manipulation strategy. The
results in Table V show that eachmanipulation exceptDaac1
DOI 10.1002/bit



Table V. Fed-batch optimization for glucose media.

Label ts (h) Productivity increase (%)a ts (h) DOs (%) Productivity increase (%)a Microaerobic increase (%)b

R00105 7.66 5.25 7.43 0.019 2.09 0.09

R01039 7.66 5.25 7.43 0.019 2.09 0.09

R01058 7.66 5.25 7.43 0.019 2.09 0.09

R01866 7.13 4.46 6.83 0.031 1.64 0.40

R00365 7.13 4.38 6.83 0.031 1.64 0.47

R00112 7.13 4.38 6.83 0.031 1.64 0.47

R00845 7.13 4.38 6.83 0.031 1.64 0.47

R01063 7.13 4.38 6.83 0.031 1.64 0.47

Dgdh1 gdh2 7.35 3.79 6.94 0.031 1.70 1.12

Dgdh1 glt1 gln1 8.40 2.46 8.10 0.033 1.18 1.90

Daac1 14.09 �29.74 12.95 0.099 �29.96 2.86

Wild-type 7.70 1.89 g/h 6.94 0.079 1.95 g/h 3.19

aProductivity increase over wild-type (actual wild-type productivity reported in last row).
bMicroaerobic productivity increase over a purely anaerobic phase for the same strategy.
was predicted to outperform the wild-type. Although not
the focus of this study, the very lowDO concentrations listed
would be difficult to achieve experimentally. The largest
productivity enhancement under microaerobic conditions
versus purely anaerobic conditions was predicted for
the wild-type (3.19%), whereas the manipulations with
the highest productivity under anaerobic conditions
yielded the smallest predicted benefit (0.09%) from
microaerobic growth. However, the relative ranking of
the manipulation strategies remained mostly unchanged
under microaerobic growth with the notable exception that
the deletion/overexpression strategy Dgdh1 ghd2 slightly
outperformed five insertion strategies that were previously
ranked higher. This result provides another illustration of
the need to consider the design of metabolic engineering
strategies and process operating policies simultaneously.
The deletion strategy Daac1 was omitted from further
analysis due to its poor performance.

The sensitivity of optimal fed-batch productivities to the
glucose inhibition constant with respect to ethanol (Kie) was
examined to assess the impact of this uncertain parameter.
Results are shown in Figure 3 for each manipulation
strategy, where the dotted line represents the nominal
parameter value. A point on this plot was generated by fixing
the genetic manipulation and the Kie value and then
optimizing the aerobic–anaerobic switching time to
determine the maximal productivity. For each manipula-
tion, the productivity dropped sharply below the nominal
value and leveled off at larger values where inhibition had a
diminished effect. The relative rankings of the manipula-
tions were mostly unchanged by the Kie value. However a
crossing of the wild-type and the Dgdh1 glt1 gln1 curves was
observed near Kie¼ 6 g/L because the inhibitory effect of
ethanol is increased at small Kie values.
Figure 3. Sensitivity of the fed-batch ethanol productivity to the inhibition

constant Kie for glucose media. The dotted line indicates the nominal parameter value.
Glucose and Xylose Media

We conducted dynamic simulations for fed-batch fermen-
tation with 50%/50% glucose/xylose mixtures using the
parameter values and initial conditions reported in Tables I
and III. To our knowledge, this study represents the first
application of DFBA to mixed substrates. Compared to the
glucose media results reported earlier, the results shown in
Figure 4 were generated with a longer final batch time of 20 h
due to the xylose utilizing strain having higher saturation
constants, a lower maximum glucose uptake rate, and
inhibition of xylose uptake in the presence of glucose.
Furthermore, a longer aerobic phase was necessary to
generate a sufficiently high biomass concentration such that
most of the substrate was consumed by the final batch time.
The switch from aerobic to anaerobic conditions at 16 h was
characterized by a significant increase in ethanol production
and a sharp decline in biomass production. The xylose
Hjersted et al.: Genome-Scale Analysis of Yeast Fed-Batch Culture 1197
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Figure 4. Fed-batch simulation profiles for the xylose utilizing S. cerevisiae

strain RWB 218 (Kuyper et al., 2005) with glucose and xylose feed and a switch in the

dissolved oxygen concentration from 50% DO to 0% DO at 17.0 h indicated by the

vertical line.
concentration increased due to feeding until decreasing
sharply after glucose was nearly exhausted. Glycerol
production was insignificant as a result of the limited
residual glucose present following the switch to anaerobic
conditions. The production rate of the byproduct xylitol was
much higher than was the competing byproduct glycerol in
the glucose media case (Fig. 1), which suggested that
metabolic engineering strategies are needed to divert carbon
from xylitol to ethanol and/or biomass. These fed-batch
predictions are in reasonable agreement with experimental
batch profiles presented in Kuyper et al. (2005).
Table VI. Steady-state FBA for glucose and xylose media.

Label Ethanol yield increase (%)

Anaerobic: vg¼ 2.4, vz¼ 2.1

Dgdh1 glt1 gln1 9.1

Dgdh1 gdh2 8.1

R00365 12.2

R01866 12.3

R00112 12.2

R00105 9.6

R01039 9.6

R00845 12.2

R01063 12.2

R01058 9.6

Wild-type: m¼ 0.085 h

Aerobic:avg¼ 2.4, vz¼ 2.1,

Dgdh1 glt1 gln1 17.7

Wild-type: m¼ 0.339 h

aAerobic yields differed from the wild-type only for the single strategy repo
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Steady-state FBA results with mixed substrates are
presented in Table VI for the ten genetic manipulations
suggested by Bro et al. (2006). While each manipulation was
predicted to yield a simultaneous increase in the ethanol and
biomass yields under anaerobic conditions compared to the
wild-type, the relative performance of these manipulations
could not be determined without further analysis. Com-
pared to glucose media (Table IV), higher increases in
ethanol yields and smaller increases in biomass yields were
predicted. The flux through each inserted reaction was
significant, ranging between 18% and 41% of the glucose
uptake rate. Only the deletion/overexpression Dgdh1 glt1
gln1 differed from the wild-type under aerobic conditions
(50% DO). The performance impact of the substantial
increase in ethanol yield and the large decrease in biomass
yield was difficult to assess, especially when considering fed-
batch culture with both aerobic and anaerobic growth
phases.

The sensitivity of fed-batch ethanol productivities with
mixed substrate to the aerobic-anaerobic switching time is
shown in Figure 5. Parameter values and initial conditions
used are listed in Tables I and III. The predicted
productivities were substantially lower than for glucose
media (Fig. 2) due to differences in the substrate uptake
kinetics and to significant secretion of xylitol as a competing
byproduct. The productivity measure allowed an explicit
ranking of the manipulation strategies, with the R00112,
R00365, R00845, R01063, and R01866 insertions predicted
to yield the best performance. These insertions comprised
the second highest ranked group for glucose media,
demonstrating that the media should be considered
simultaneously with the genetic manipulation and the
fed-batch operating policy to achieve optimal performance.
Unlike glucose media (Fig. 2) the optimal switching time
was relatively insensitive to the manipulation, indicating
that the optimal switching time was most strongly affected
by the substrate uptake kinetics. Only the deletion/
overexpression Dgdh1 glt1 gln1 required a significantly
Biomass yield increase (%) Reaction flux (mmol/g/h)

, vo¼ 0.0 (mmol/g/h)

4.1 —

9.5 —

15.2 0.96

15.3 0.98

15.2 0.96

4.1 0.44

4.1 0.45

15.2 0.96

15.2 0.96

4.1 0.45
�1, Ye/g¼ 0.424 g/g

vo¼ 7.84 (mmol/g/h)

�7.6 —
�1, Ye/g¼ 0.166 g/g

rted.
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Figure 5. Sensitivity of the ethanol productivity to the aerobic–anaerobic

switching time (ts) in fed-batch culture with glucose and xylose media. The dotted

line indicates the optimal switching time for the wild-type strain.

Figure 6. Sensitivity of the fed-batch ethanol productivity to the inhibition

constant Kig for glucose and xylose media. The dotted line indicates the nominal

parameter value.
different switching time, but this manipulation produced a
substantially lower productivity due to its reduced biomass
yield. Comparison of these dynamic predictions with the
steady-state FBA results (Table VI) revealed that manipula-
tions with relatively high biomass yields were most favorable
in fed-batch culture. Tests with 25%/75% and 75%/25%
glucose/xylose mixtures were conducted and similar trends
were predicted (not shown).

We investigated the sensitivity of the optimal fed-batch
productivities to the xylose uptake inhibition constant with
respect to glucose (Kig) to assess the impact of this uncertain
model parameter. Figure 6 shows that the ethanol
productivities declined sharply below the nominal para-
meter value and increased approximately linearly at larger
values. However, the relative productivities of the ten
manipulation strategies remained roughly constant over a
wide range of Kig values. Therefore, an accurate value for Kig

was not needed to rank the manipulations according to their
relative fed-batch performance. Sensitivity to the final batch
time was also tested, and the overall rank of the
manipulation strategies remained unchanged over a large
range of tf values (not shown). The relative performance of
the strategies was also insensitive to the final batch time with
the exception of Dgdh1 glt1 gln1, which performed better
than the wild-type at longer batch times but still under-
performed all the other strategies.
Dynamic Screening of the KEGG Ligand Library

The ten genetic manipulations suggested by Bro et al. (2006)
were identified through classical FBA. In the previous two
subsections, we subjected these manipulations to further
screening with DFBA. Our results demonstrated that steady-
state analysis alone was inadequate for screening manipula-
tions according to their achievable fed-batch performance
where dynamic effects are critical. Therefore, we investigated
the possibility that novel gene insertions for ethanol
overproduction in fed-batch culture could be identified
directly through dynamic analysis.

As explained in the Methods section, we assembled a set of
340 candidate gene insertions from the KEGG Ligand
database by subjecting cytosolic reactions to charge, hydrogen
and carbon balancing to allow their direct incorporation into
the iND750 metabolic reconstruction. First the fed-batch
performance of each candidate insertion was assessed by
optimizing the aerobic–anaerobic switching time to deter-
mine maximal ethanol productivity under the assumption of
reaction reversibility due to lack of such information in the
KEGG database. Promising insertions were further scruti-
nized if the reverse reaction direction was used either
aerobically or anaerobically. In addition to examining the
available literature on S. cerevisiae, we checked other genome-
scale models for reactions corresponding to gene insertion
Hjersted et al.: Genome-Scale Analysis of Yeast Fed-Batch Culture 1199
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Figure 8. Dynamic screening of a gene insertion library derived from the KEGG

database for optimal fed-batch ethanol productivity with glucose and xylose media.

Insertions proposed by Bro et al. (2006) are shown as black bars. The number indicated

to the right of each bar indicates the optimal aerobic–anaerobic switching time.

Figure 7. Dynamic screening of a gene insertion library derived from the KEGG

database for optimal fed-batch ethanol productivity with glucose media. Insertions

proposed by Bro et al. (2006) are shown as black bars. The number indicated to the

right of each bar indicates the optimal aerobic–anaerobic switching time.
candidates natively found in those species (Reed et al., 2006).
If available data suggested that a particular inserted reaction
was irreversible, fed-batch optimization was repeated with the
corresponding flux appropriately constrained.

Figure 7 shows the dynamic screening results for glucose
media where the eight insertions suggested by Bro et al.
(2006) are indicated by black bars. The insertions are labeled
by their entries in the KEGG LIGAND database and the
corresponding reactions are listed in the Appendix. In
addition to the eight previously analyzed insertions, the
procedure identified 21 new insertion strategies with
productivity enhancements greater than 3% over the
wild-type value. The insertions could be grouped into three
sets, each with the same aerobic–anaerobic switching
time and very similar productivities. The switching time
varied only slightly between these three groups. The two new
candidate insertions with the highest productivities corre-
spond to expression of a NADP-specific 1-pyrroline-5-
carboxylate dehydrogenase (R00708) and a NADP-malic
enzyme (R00216). A NAD-specific 1-pyrroline-5-carbox-
ylate and the same NADP-malic enzyme are already
expressed in the mitochondria, so identification of these
1200 Biotechnology and Bioengineering, Vol. 97, No. 5, August 1, 2007
cytosolic insertions required a compartmentalized meta-
bolic network model. Both of the proposed insertions
maintain a favorable redox balance for ethanol production
by generating NADPH, and therefore they represent similar
design alternatives to those previously proposed (Bro et al.,
2006).

Dynamic screening results for glucose and xylose media
are shown in Figure 8. As with glucose media, insertions that
yielded ethanol productivity enhancements larger than 3%
of the wild-type value were analyzed in more detail. The
dynamic screen revealed 15 new insertions that matched the
performance of the top five insertions from Bro et al. (2006).
The top 25 insertions could be divided into two sets
according to their optimal switching time and predicted
ethanol productivity. These two sets appeared in both the
glucose and mixed-media screens, but their relative
performance was reversed such that the top 5 insertions
from the glucose media screen were surpassed by the set of
20 insertions in the mixed-media screen. This result
emphasizes the importance of explicitly considering the
DOI 10.1002/bit



media composition when utilizing DFBA to identify
mutants for metabolite overproduction.
Discussion

A dynamic flux balance model based on a genome-scale
reconstruction of S. cerevisiae was developed to analyze
cellular metabolism and ethanol production in fed-batch
culture. The problem of maximizing ethanol productivity in
glucose and glucose/xylose media was addressed by
computing optimal aerobic–anaerobic switching times for
candidate metabolic engineering strategies. The first set of
ten genetic manipulations considered was proposed by Bro
et al. (2006) through the application of steady-state FBA.
These manipulations were subjected to an additional round
of DFBA in which optimal fed-batch ethanol productivities
were computed to assess possible limitations of steady-state
FBA. Amore comprehensive set of gene insertion candidates
generated from the KEGG LIGAND database allowed direct
DFBA screening for achievable ethanol overproduction in
fed-batch culture.

Our dynamic flux balance model was based on the
genome-scale reconstruction iND750 (Duarte et al., 2004),
which is an improved version of the iFF708 reconstruction
(Forster et al., 2003) used by Bro et al. (2006) for their
steady-state FBA. When FBA was performed with the
iND750 model, we obtained significantly lower ethanol
yields than in the original study. The iND750model includes
full compartmentalization and charge balancing, and as a
result the reactions present in iFF708 only comprise 56% of
the total reactions in iND750.While the precise causes of the
observed discrepancies were not determined, an analysis of
reactions inserted with and without proper charge balancing
revealed that model predictions were sensitive to charge
balances (not shown). Because iND750 has more detailed
charge balancing and yields predictions in better agreement
with data (Bro et al., 2006), we believe that iND750 is a
superior metabolic reconstruction for evaluating ethanol
overproduction strategies that are inherently sensitive to the
global redox balance.

While providing valuable information about metabolic
engineering strategies, FBA was shown to have several
shortcomings that limit its applicability to metabolite
overproduction studies in dynamic cell culture. The
productivity of growth associated metabolites such as
ethanol is determined both by the biomass yield and the
metabolite yield, and tradeoffs between these two measures
are not easily handled within the FBA framework. This
problem is exasperated in batch and fed-batch culture due to
dynamic effects that result in time varying yields. Conse-
quently, genetic manipulations for optimal ethanol produc-
tion in fed-batch culture where an aerobic growth phase is
followed by an anaerobic growth phase cannot be directly
determined without further analysis. DFBA addresses this
problem by embedding stoichiometric equations of intra-
cellular metabolism within transient mass balances on the
extracellular environment, thereby providing dynamic
predictions of extracellular metabolite concentrations. We
extended the DFBA framework to allow the integrated
design of metabolic engineering strategies and fed-batch
operating policies by computing optimal aerobic-anaerobic
switching times that maximized ethanol production for
candidate genetic alterations. While more computationally
demanding than FBA, our DFBA procedure allowed an
explicit ranking of candidate strategies according to their
predicted ethanol productivity in fed-batch culture.

Our DFBA results for glucose media showed that the ten
genetic manipulations of Bro et al. (2006) produced
different fed-batch ethanol productivities and that the
aerobic–anaerobic switching times were dependent on the
gene deletion/overexpression/insertion used. Small addi-
tional improvements in ethanol productivities were pre-
dicted when microaerobic growth was allowed following the
switch from the aerobic phase. The predicted productivities
were sensitive to the parameter for glucose uptake inhibition
with respect to ethanol (Kie) as evidenced by a rearrange-
ment in the relative performance of the wild-type strain and
a gene overexpression/deletion strategy occurring at a
particular Kie value.

A desirable feature of the DFBA framework is that
additional substrates and products can be included by
adding the necessary extracellular mass balances and
substrate uptake expressions to the dynamic flux balance
model. We showed that DFBA could be applied to mixed
substrates by investigating the achievable fed-batch ethanol
productivities of the Bro et al. (2006) manipulations in
glucose and xylose media. A rearrangement of the most
favorable manipulations compared to the glucose media
results was observed, demonstrating that the media is a
critical factor in metabolic engineering for fed-batch ethanol
production. This reordering suggested that a direct dynamic
screen of candidate genetic manipulations for mixed
substrates should be conducted to avoid omitting promising
strategies. While predicted productivities were sensitive to
the parameter for xylose uptake inhibition with respect to
glucose (Kig), the relative performance obtained with the ten
manipulations was not affected by the parameter value.

To explore the possibility that novel gene insertions for
ethanol overproduction in fed-batch culture could be
identified directly with DFBA, we assembled a library of
340 candidate reactions from the KEGG Ligand database.
Each reaction was charge, carbon, and hydrogen balanced to
ensure consistency with the iND750 metabolic reconstruc-
tion. Dynamic screening of the library for optimal fed-batch
performance in glucose media revealed two novel insertions
that produced the same ethanol productivity as the three
highest ranked manipulations of Bro et al. (2006), while
the mixed-media screen revealed 15 new insertions with the
same ethanol productivity as predicted for the top 5
insertions proposed by Bro et al. (2006). The metabolic
engineering strategies identified through direct DFBA
represent alternative and potentially more easily implemen-
table targets for experimental evaluation.
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Collectively, the results reported in this paper demon-
strate the potential power of DFBA for in silico metabolic
engineering of batch and fed-batch microbial cultures. This
initial study motivates several possible enhancements of the
DFBA framework. In our current formulation, the only
mechanism for incorporating known regulatory effects is
through the substrate uptake expressions. Previous work
with classical FBA has shown that gene expression data can
be used to constrain regulated fluxes within genome-scale
metabolic networks (Åkesson et al., 2004; Covert et al.,
2001). The incorporation of such data within the DFBA
framework is more challenging due to the difficulty of using
steady-state snapshots of gene expression to constrain an
inherently dynamic model.

We showed that previously proposed metabolic engineer-
ing strategies and libraries of candidate single gene
insertions could be dynamically screened through a brute
force strategy involving enumeration and evaluation.
Because this approach may be infeasible for screening large
libraries and/or multiple gene insertions, extensions of
Label EC

R00012 2.7.7.45 2 GTPþHþ,P4-Bis(50-guan
R00105 2.7.1.86 ATPþNADH,ADPþHþþ
R00112 1.6.1.1 NADþNADPH,NADHþN

R00209 1.2.1.51 CoAþNADþ Pyruvate,Ace

R00211 1.2.3.6 CoAþHþþO2þ Pyruvate,
R00216 1.1.1.40 L-MalateþNADP!O2þNAD

R00228 1.2.1.10 AcetaldehydeþCoAþNAD,
R00343 1.1.1.82 L-MalateþNADP,HþþNA

R00365 1.4.1.10 GlycineþH2OþNAD,Glyo

R00396 1.4.1.1 L-AlanineþH2OþNAD,Hþ
R00453 2.6.1.71 L-LysineþPyruvate, L-2-Am

R00457 2.6.1.36 2-Oxoglutarateþ L-Lysine, L

R00472 2.3.3.9 CoAþHþþ L-Malate,Acety

R00688 1.4.1.20 H2OþNADþ L-Phenylalanine

R00708 1.5.1.12 1-Pyrroline-5-carboxylateþ 2 H

R00710 1.2.1.3 AcetaldehydeþH2OþNAD,
R00713 1.2.1.24 H2OþNADþ Succinic semial

R00716 1.5.1.8 H2OþNADPþ L-Saccharopin

R00746 1.1.1.2 EthanolþNADP,Acetaldehy

R00764 2.7.1.90 D-Fructose 6-phosphateþDiph

R00844 1.1.1.94 Glycerol 3-phosphateþNADP

R00845 1.1.1.177 Glycerol 3-phosphateþNADP

R01039 1.1.1.156 GlycerolþNADP,Dihydroxy

R01058 1.2.1.9 Glyceraldehyde 3-phosphateþ
R01063 1.2.1.13 Glyceraldehyde 3-phosphateþ
R01088 1.4.1.9 H2Oþ L-LeucineþNAD, 4-M

R01434 1.4.1.9 H2OþNADþ L-Valine, 3-M

R01708 1.1.1.65 NADPþPyridoxine,HþþN

R01817 1.1.1.224 D-Mannitol 1-phosphateþNA

R01866 1.3.1.15 (S)-DihydroorotateþNADP,
R02196 1.4.1.9 H2Oþ L-IsoleucineþNAD,
R02313 1.5.1.9 H2OþNADþ L-Saccharopine

R03103 1.2.1.31 L-2-Aminoadipate 6-semialdeh
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existing mixed-integer linear programming methods
(Burgard and Maranas, 2001; Pharkya et al., 2004) that
account for culture dynamics are needed. We computed
optimal fed-batch operating policies by considering the
dissolved oxygen switching time and the post-switch
dissolved oxygen concentration as the only decision
variables under the assumption of constant substrate
feeding. Amore complete strategy would allow optimization
of the initial batch conditions, the substrate feeding policies,
and the final batch time. Our initial work with small-scale
dynamic flux balance models (Hjersted and Henson, 2006)
suggests that this goal is also achievable for genome-scale
flux models. Ultimately, computational strategies that allow
simultaneous optimization of the cellular design, media
components, and dynamic operating policies for maximiza-
tion of metabolite production in batch and fed-batch culture
should be developed. Our future work will focus on
incorporating dynamic regulation, developing more sophis-
ticated optimization strategies, and experimental model
validation and mutant strain evaluation.
Reaction

osyl) tetraphosphateþDiphosphate

NADPH

ADP

tyl-CoAþCO2þNADH

Acetyl-CoAþCO2þH2O2

PHþPyruvate

Acetyl-CoAþHþþNADH

DPHþOxaloacetate

xylateþHþþNADHþNH4

þNADHþNH4þPyruvate

inoadipate 6-semialdehydeþ L-Alanine

-2-Aminoadipate 6-semialdehydeþ L-glutamate

l-CoAþGlyoxylateþH2O

,HþþNADHþNH4þ Phenylpyruvate

2OþNADP! L-GlutamateþHþþNADPH

Acetateþ 2 HþþNADH

dehyde, 2 HþþNADHþ Succinate

e, 2-OxoglutarateþHþþ L-LysineþNADPH

deþHþþNADPH

osphate, D-Fructose 1,6-bisphosphateþHþþ Phosphate

,Dihydroxyacetone phosphateþHþþNADPH

,Glyceraldehyde 3-phosphateþHþþNADPH

acetoneþHþþNADPH

H2OþNADP! 3-Phospho-D-glycerateþ 2 HþþNADPH

NADPþPhosphate, 3-Phospho-D-glyceroyl phosphateþHþþNADPH

ethyl-2-oxopentanoateþHþþNADHþNH4

ethyl-2-oxobutanoateþHþþNADHþNH4

ADPHþPyridoxal

DP,Hþþ D-Mannose 6-phosphateþNADPH

HþþNADPHþOrotate

(S)-3-Methyl-2-oxopentanoateþHþþNADHþNH4

, L-2-Aminoadipate 6-semialdehydeþ L-GlutamateþHþþNADH

ydeþH2OþNADP, L-2-Aminoadipateþ 2 HþþNADPH
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Nomenclature
DO d
issolved oxygen concentration [%]
E e
thanol concentration [g/L]
F fe
ed flowrate [L/h]
G g
lucose concentration [g/L]
Gf
fe
ed glucose concentration [g/L]
Kie
g
lucose uptake inhibition constant with respect to ethanol [g/L]
Kig
x
ylose uptake inhibition constant with respect to glucose [g/L]
Kg
g
lucose uptake saturation constant [g/L]
Ko
o
xygen uptake saturation constant [mmol/L]
Kz
x
ylose uptake saturation constant [g/L]
O li
quid oxygen concentration [mmol/L]
Osat
s
aturation liquid oxygen concentration [mmol/L]
V li
quid volume [L]
X b
iomass concentration [g/L]
Z x
ylose concentration [g/L]
Zf fe
ed xylose concentration [g/L]
ve e
thanol exchange rate [mmol/gdw/h]
vg g
lucose uptake rate [mmol/gdw/h]
vo o
xygen uptake rate [mmol/gdw/h]
vz x
ylose uptake rate [mmol/gdw/h]
m s
pecific growth rate [h�1]
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