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ABSTRACT: An optimization-based procedure for estimating unknown param-
eters in solution—diffusion models of membrane pervaporation is presented.
Permeation of two components through a polymer membrane is described by
distinct solution and diffusion models. The solution model is based on a modi-
fied form of Flory—Huggins theory that accounts for interactions between the
two penetrants. The diffusion model is derived from Fick’s law, where the dif-
fusion coefficients are allowed to depend on the local concentration of each
component in the membrane. A phenomenologic relation is used to account for
the effect of temperature on the component fluxes. The solution and diffusion
models, as well as the temperature—flux relation, contain parameters that are
not directly measurable. It is shown that these parameters can be estimated
effectively from sorption and flux data by the solution of suitably formulated
nonlinear optimization problems. The separation of styrene and ethylbenzene
with a polyurethane membrane is used to illustrate the parameter estimation
procedure.
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INTRODUCTION

Pervaporation is a membrane-based process that has emerged as one of the most
promising technologies for the separation of liquid mixtures.! A unique feature of
pervaporation is that there is a phase change from a liquid on the feed side to a vapor
on the permeate side. The separation is achieved by applying a vacuum on the per-
meate side, such that there is fugacity gradient across the membrane. Because mass
transfer is largely independent of the vapor-liquid equilibrium properties, pervapo-
ration is especially well suited for azeotropic and close boiling mixtures that are dif-
ficult to separate by distillation.? Typical applications include the removal of volatile
organic compounds from water>* and the separation of olefin/paraffin mixtures,
such as ethylene/ethane or propylene/propane.!-
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Although other type: of pervaporation membranes have been developed,’ poly-
mer membranes remain the most common material for the construction of pervapo-
ration modules. The solution—diffusion model is the accepted mechanism for
describing permeation in polymer membranes.®’ According to this mechanism, per-
vaporation involves the following three steps: (1) the liquid species are dissolved
into the membrane surface, (2) the species diffuse through the membrane, and (3) the
species desorb from the downstream membrane surface in the vapor phase. Quanti-
tative prediction of pervaporation membrane performance requires the development
of mathematical models for the sorption of the penetrants into the membrane and the
transport of the penetrants through the membrane. This is commonly achieved by the
development of separate solution and diffusion models. Flory-Huggins thermody-
namics, the UNIQUAC model, and the penetrant solubility model have been used to
describe the solution process.! Diffusion is typically modeled using free volume
theory! or a phenomenologic approach.

Regardless of the specific descriptions employed, solution—diffusion models
invariably contain parameters that are not available in the literature and that cannot
be measured directly. These unknown parameters provide degrees of freedom that
allow the model to be fit to experimental data. Manual adjustment of parameters is
inefficient and results in solution—diffusion models that are suboptimal with respect
to their predictive capability. Despite its obvious importance, the development of
automated parameter estimation techniques for solution—diffusion models has
received little attention.

In this paper, a parameter estimation procedure based on nonlinear optimization is
proposed for solution—diffusion pervaporation models. A specific estimation strategy
is developed for a solution model based on Flory—Huggins theory, a diffusion model
derived from Fick’s law and a phenomenologic relation used to account for the effect
of temperature on the component fluxes. The separation of styrene and ethylbenzene
with a poly(hexamethylene sebacate) based polyurethane membrane®10 is used to
illustrate the parameter estimation procedure. It is important to note that optimization-
based parameter estimation is not restricted to the particular model forms used here.
Similar estimation strategies could be developed for other types of solution—diffusion
models.

ESTIMATION OF SOLUTION MODEL PARAMETERS

Theory

The component volume fractions sorbed into the membrane are predicted from
thermodynamic properties of the liquid—polymer mixture. The solution model is
based on Flory—Huggins theory!! and utilizes the interaction parameter equations
proposed by Mulder et al.}2 When a polymer film is exposed to a pure liquid, Flory—
Huggins theory yields the following relation for the pure component activity a":
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where ¢, is the volume fraction of the polymer; V; and V; are the muolar n'nlﬂ-'l_:'-'\
of the liquid and polymer, respectively; and % is the Flory—Huggins interaction
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parameter. The Gibbs free enerpy of mixing AG g, of @ ternary system COmprising
a binary liquid mixture and a polymer membrane is expressed by

jt‘;u:i\.

RT

where the subscripts | and 2 denote the liquid components and the subscript 3
denotes the polymer; n; and §; are the mole fraction and volume fraction. TEEpeCUES
ly, of component i; ¥; is the interaction parameter between components ; and i, Tis
the temperatare; and R is the gas constant. The volume fraction b, is defined hy

= 0y Indy + malnpy + g dngy + % a0 0y + 137 91+ Kaaala, (2)

%
by = ———t—. (3)
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The interaction parameter %7 involving the two liquid components is L:I'.Lll.'t:lrnud
using excess functions, The following cquation holds for binary mixtures:
Al L
— I = I+ gl + —, ()
Il LN )
where (7 is the excess Gibbs free energy and x; is the mole fraction ol component f
in the liquid phase. The free energy of mixing of the binary mixture i calculated

using Flory—Huggins theory, !
AT / Vs =
M = x oy & 25 0y + 320 Wal Xy X0 ] (3)
RT CERb i = &
where yi; is the volume fraction of component § in the liquid phase:
Vi Vi,
W, = ; W, = — — : {6}
! Vo + Vaxs = Vi + Vo,
The excess Gibbs free energy is expressed by
i
_L v vk 4 xIny s, (7
i1 R

where ,I‘l = .:JI,I- /x, is the activity coefficient of component § in the liguid .phlu.k-: and
af- is the activity of component { in the Tiquid phase. The IiL|u|.-:l.|'!I1;'..u':: activities are
estimated from vapor-liguid equilibrinm data using the two-suffix Margules equa-
ti(m,l'l

RTInylE = Ax3, RTInyk = Axf. (8)

The Margules constant A is determined from vapor-liguid equilibrium data using the

following eyuation:

A& 23 it R R T 9
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where P50 js the vapor pressure of the binary mixture and P s the temperature

dependent vapor pressure of pure component i The following equation for 3215

readily derived by combining Equations (4)-8)

.]:l\.l.r =

LI = A
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The interaction parameters 3 and y,3 between the liquid components and the
polymer in the ternary mixture can be determined from solubilities of the pure
liquids in the polymer. From (1) it follows that the activity of pure component i in
the polymer is

Inaf = In(1-4)+ ol 0> an

where the superscript b denotes a binary property of the ternary mixture and the
superscript bi denotes a binary property between liquid component / and the polymer
in the ternary mixture. Equilibrium between the polymer phase and the pure liquid
phase requires that af = aiL = 1. The following equation for the binary interaction
parameter x,% is obtained from Equation (11):

In(1 - ¢&¢ 1-V./V,)bi
xt% _ n( 039 +( /V3)93 12)
W3 )

The polymer volume fraction ¢§’i for a binary mixture of polymer and liquid com-
ponent i is calculated as follows:

05 = 13)

57
—+1
Pi

where Sib is the solubility of pure component i in the polymer and p; is the density
of component i. Typically the ternary interaction parameters ;3 depend on the com-
ponent concentrations in the polymer. They are calculated from the binary inter-
action parameter x{’3 using the relation proposed in Reference 12,

X13 = APz +agug +ayu, +az(6;- 05, 14

X23 = X3 +byuf +byuy +b3(03-052), 15)

where u; is the volume fraction of component i in the polymer on a polymer free
basis, that is

9 9,

“= O+ 0, 2 0, + 0,

Relation (1) can be extended to the ternary system that results when a polymer is
exposed to a binary liquid mixture:

(16)

P Vi vy
Inaj’ = In¢; +6¢,+ 65~ ¢2V_2 - ¢3V_3 + X120 (0y + 63) + % 303(0, + 03)

vV ax ax 13
~Xababs by T -ty 0,035 17y
Vi Mo Vi 20 VP 2Mc( 13_1 )
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|4 \% \Z
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vV, V Nz Va o Oz Yy 0K
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0% p
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where p3 is the density of the polymer, Mj is the molecular weight of the polymer,
and M, is the molecular weight between two crosslinks of the polymer. Equilibrium
between the two phase requires that

al = af, al = af. 19)

Parameter Estimation Strategy

The objective is to solve the solution model for the component volume fractions
sorbed into the polymer (¢1,®,). To this end, the nonlinear algebraic Equations (17)
and (18) are written to more clearly illustrate their functional dependencies:

fl(a{), $1: Og 935 X105 A3 X23) =0, (20)
fz(af, &1 Op O3, X120 X130 X23) = 0. 21

Clearly, the three volumes fractions must sum to unity. Thus,
01+ 0+ 03 =1= f3(0),0,,03) = 0. (22)

The activities a are determined explicitly from (8) and (19) as follows:
Ax? Ax}
af = af = xyf = xlexp(ﬁ), af = ak = xy¥k = xzexp( ) 23

The interaction parameter ), is determined explicitly from (10). The other inter-
action parameters, %13 and X,3, are computed using (12)—(15). The five nonlinear
algebraic equations, (14), (15), (17), (18), and (22), involving five unknowns
(01,92,93,%13,X23) are solved simultaneously to yield the volume fractions ¢; and
¢,. We use the MATLAB nonlinear equation solver £solve for this purpose.

To use the computation procedure outlined above, it is necessary to generate esti-
mates of the unknown solution model parameters. The unknown parameters are the
Margules constant (A) and the six constants (ay,a,,as,by,b,,b3) associated with the
ternary interaction parameters in (14) and (15). The Margules parameter is estimated
from the nonlinear algebraic Equation (9) using vapor-liquid equilibrium data for
the binary liquid mixture. This equation is rewritten

g(Ta P, xl, x2, A) = O (24)
Given vapor-liquid equilibrium data over a range of conditions, the constant A is
determined by solving the following nonlinear optimization problem:
N
m1n > (8T Pyxy s A)]2
j=1
subjectto: 0<A<A,

(25)
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where N is the number of data points; P}, T}, x; j, and x, j are the pressure, tempera-
ture, component 1 mole fraction, and component 2 mole fraction, respectively, for
the jth daga point; and A, is an upper bound on A. The problem is solved using the
MATLAB constrained optimization routine fmincon.

Estimates of the six constants associated with the ternary interaction parameters

are generated similarly. The nonlinear algebraic Equations (14) and (15) are rewritten
Fay3 X{’y ¢:l;’1, Uy, O3, a1, 0y, a3) = 0 (26)

Fsaz X230 082 Uy, 05, by, by, by) = 0. (27

Assume the availability of solubility data in mass of component i sorbed per unit
mass-of polymer for the ternary mixture over a range of liquid compositions. Given
the densities of the liquid components and the polymer, the binary (S f’) and the ter-
nary (S; ) solubilities of component i in mass of component i sorbed per unit volume
of polymer are readily computed. The binary polymer volume fractions (])é’i and
binary interaction parameters X,-b3 are calculated from the binary solubilities using
(13) and (12), respectively. The ternary volume fractions ¢; are computed from the
ternary solubilities using an equation analogous to (13).

The parameter estimation problem involves the least-squares minimization of the
difference between the measured values of the ternary volume fractions (¢/*) and
those predicted by the solution model (9;),

M
3 m 2

al,alez?,lbl, by b, j§1i§1 [0 - (9) 1% (28)
where M is the number of ternary solubility data points and the subscript j denotes
the data point. The quadratic objective function is minimized subject to equality con-
straints imposed by the solution model equations and inequality constraints corre-
sponding to bounds on the parameter values (if such information is available). The
set of nonlinear algebraic equations that comprise the equality constraints is
obtained by combining (26) and (27) with (20), (21), and (22). These five equations
have the following vector form representation, where only the unknown variables
and parameters are shown explicitly:

F@p5 0g 03, X135 X3 A5 A a3, by, by, b3) = 0. 29

The resulting nonlinear optimization problem is solved using the MATLAB routine
fmincon.

Application to Styrene/Ethylbenzene Pervaporation Membrane

The estimation procedure for solution model parameters is applied to a poly(hexa-
methylene sebacate) (PHS) based polyurethane membrane developed for styrene/
ethylbenzene separations. FIGURE 1 shows the styrene and ethylbenzene uptake for a
membrane of thickness 50pm as a function of the feed styrene concentration.’
The styrene uptake increases with increasing feed styrene concentration, whereas the
ethylbenzene uptake exhibits a maximum. The sorption mechanism favors styrene
permeation. The necessary pure component physical property data are listed in
TABLE 1. The Margules constant, A, was determined by solving the nonlinear optimi-
zation problem (25) us1ng the vapor-liquid equilibrium data and the Antoine equa-
tions shown in TABLE 2.1% The estimate obtained was A = 163.9Pa/molK.
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FIGURE 1. Effect of feed concentration on styrene (O) and ethylbenzene ((J) uptake
in a polyurethane membrane.”

The constants a; and bj were estimated from the data in FIGURE 1, expressed as
mass of component i sorbed per unit mass of polymer. From these estimates the vol-
ume fractions ¢; of the ternary mixture were computed. In these calculations, the
molecular weight between two crosslinks (M) was taken as the PHS molecular
weight and the polymer molecular weight (M3) was assumed to be very large com-
pared to M. Because there are only six data points (styrene and ethylbenzene values
at the three intermediate styrene feed concentrations) available to estimate the six
unknown parameters, there are no degrees of freedom for optimization. In this case,
the nonlinear optimization problem is reduced to solving Equation (29). The result-
ing expressions for the interaction parameters are

TABLE 1. Pure component physical property data

Property Styrene Ethylbenzene Polyurethane
Membrane

Molar volume (cm3/mol) 115.0 122.4 —

Density (g/cm?) 0.9060 0.8670 0.96

Liquid viscosity (cP) 0.725 0.6428

Heat capacity (J/gK) 1.6907 1.752

Heat of vaporization (J/g) 421.7 335.0

Solubility (g/g polymer) 0.307 0.014
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TABLE 2. Vapor-liquid equilibrium data for styrene/ethylbenzene mixtures at
atmospheric pressure

Temperature (°C) 29.15 30.60 31.68 32.40
77}.—‘ 7 1.0 0.777 0.651 0.575 0.433 0.222 0.083 0.000
1.0 0.835 0.732 0.663 0.535 0.310 0.128 0.000

Vapor Pressure Equations

sat _ _ 1649.6)

Pt = 106Xp(7.2788 0+ T

1421.914

= 10X 099300 = S T T)
Pt (mmHg r(°C)
NoTE: 1, styrene; 2, ethylbenzene.

X1z = 1.142 - 8.95114% + 5.866u2 - 5.652(¢3 -0.754) 30)
o3 = 3297 + 13.537u%— 11.157141 + 8.694(¢3 -0.984). 31

The predicted volume fractions obtained with the estimated parameters are shown in
FIGURE 2. The model provides very accurate predictions of this, admittedly, limited
data set. Note that the model captures the maximum in the ethylbenzene volume
fraction. We have found that this effect cannot be captured with interaction param-
eter equations simpler than (14) and (15).

Volume fraction in membrane

0 0.1 02 0.3 0.4 05
Styrene Conc. in feed [ mole fraction

FIGURE 2. Comparison of experimental (@ styrene and % ethylbenzene) and predict-
ed (O styrene and [ ethylbenzene) solubilities in a polyurethane membrane.
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ESTIMATION OF DIFFUSION MODEL PARAMETERS

Theory -

The component fluxes through the membrane are predicted with a diffusion mod-
el in which the component volume fractions on the feed-side surface of the mem-
brane are obtained from the solution model. The diffusion model is based on Fick’s
law and uses the six parameter diffusion coefficient equations for binary liquid mix-
tures proposed by Brun et al.® Under the assumption of moderate membrane swell-
ing, diffusion of component i through the polymer membrane is described by the
following form of Fick’s law:

g = oA (32)
i 1 dZ 4

vi
where J is the mass flux, z is the flux direction, C is the mass concentration, and ois
the volume fraction.

The component diffusion coefficient D; may depend on the concentration of each
component in the liquid mixture. To account for this possibility, the identity C;= p;0;
is used to rewrite (32) as follows:

p D

1
|

L (33)

QO

,/‘r/,

where p; is the density of component i. At z =0 the component volume fraction ¢ is
equal to the sorption value, which is denoted here by ¢? . The volume fraction on the
permeate side of the membrane is approximately zero when the permeate pressure is
maintained near vacuum. Under the assumption that D; is constant, integration of
(33) from z=0to z =1 yields

Jil = p;D;In(1 - ¢?), (34)

where [ is the membrane thickness and J} denotes the component flux obtained
under permeate vacuum.

Equation (34) suggests that a plot of J;I versus In(1— ¢?) should be linear. If
the relationship is significantly nonlinear, then D; is not constant but, rather, is a
function of the component concentrations. In this case, the functional form of the
concentration dependence can be deduced from the shape of the curve.l> Although
other nonlinear functions could be used, the diffusion coefficients are assumed to
dcpenéi exponentially on the concentration of each component, as suggested by Brun
etal.,

D; = Dexp(A,,C, +A,C,) (35)

D, = Dexp(A,,C, + A,,C,), (36)

where D? is the diffusion coefficient at infinite dilution for component i and the Ay
are constant parameters.
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Parameter Estimation Strategy

The diffusion model is solved for the two component fluxes (J{ and J 3 ) by using
the following procedure. The flux Equation (33) is combined with the diffusion coef-
ficient relations (35) and (36) to yield

exp(A}19;+A0,)

J,dz = -D{p- do, (37
1 _wl
exp(A +A,0,)
Jydz = -D%p, P 2;¢_1¢ 292) 4, 38)
2

These equations are integrated from z = 0, where ¢; = ¢? , to z=1, where ¢; = 0:

DOp exp(A;10;+A,9,)
1M1 1171 1272
* = d 39
Jl l 4)? l—(l)l q)] ( )

J3 =

D9py o exp(Ay 9 +Apd,)
do,. (40)
Jﬁg &

l 1-9¢,

Approximating the integrals by Gaussian quadraturel® yields

D%, P exp(A0; (+A 0, 0,
k

‘k=1 1=014

(41)

Df(,)p—,' il exp(A21¢1’ kT A22¢2, k)w
k=1 1=0s ¢

where P is the number of quadrature points used, wy, is the quadrature weight at the
quadrature point &; (the quadrature point &; € [0,1] is obtained as the root of the
appropriate Jacobi polynomial), and

Op = (1-8000, 05, = (1-§)09. (43)

Equations (41)—(43) allow the component fluxes, J l* , to be computed from the
results of the solution model.

To solve the diffusion model, values must be specified for the six empirical con-
stants in the diffusion coefficient Equations (35) and (36). The vector of six unknown
parameters is denoted by 6 = [D?, D9 ,A;1,A15,A2),A]7. Assume that N experi-
ments are performed to obtain the sorption and flux data {J{ ;,J3 ;, ¢?, 92t
where j denotes the data point. The discretized flux equations, (41) and (42), are writ-
ten for each data point to yield 2N nonlinear algebraic equations in the six unknown
parameters 6. Parameter estimates are obtained by solving the following nonlinear
least-squares estimation problem:

N
min 3 =T Iem-J3, (44)
j=1
where J}‘: m = [J’l"’;" g3 m1T and J}‘ = [Jf,j JS’J-]T are the measured and predicted
values, respectively, of ’tﬁe component flux. The minimization is performed subject
to nonlinear equality constraints derived from the 2N component flux equations and
inequality constraints on the estimated parameters (e.g., D? >0).

(42)
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Application to Styrene/Ethylbenzene Pervaporation Membrane

The estimation procedure for diffusion model parameters is applied to the poly-
urethane membrane considered previously. Component fluxes J ; are obtained from
the flux and selectivity data® shown in FIGURE 3. Note that the styrene selectivity
decreases rapidly as the feed styrene concentration is increased due to a loss of sorp-
tion selectivity. First, the assumed form of the diffusion coefficient Equations (35)
and (36) are checked using (34), where ! = 50 um and values of ¢? are obtained from
the sorption data in FIGURE 1. The results in FIGURE 4 verify that the styrene diffusion
coefficient has an exponential concentration dependence. An appropriate functional
form for the concentration dependence of the ethylbenzene diffusion coefficient is
less clear. Based on the styrene behavior, we also used the exponential function (36)
for ethylbenzene. The diffusion model parameters were estimated from the sorption
and flux data in FIGURES 1 and 3, respectively, by solving the constrained nonlinear
optimization problem (44). There are a total of ten data points (styrene and ethylben-
zene values for five styrene feed concentrations) available to estimate the six
unknown parameters. The following relations were obtained:

D, = 8.78x10  “exp(19.9C, - 0.06C,) @5)

D, = 8.13x10™ exp(~13.7C, + 58.5C,), (46)

where styrene and ethylbenzene are designated components 1 and 2, respectively.
Styrene has a slightly higher diffusion coefficient at infinite dilution than does ethyl-
benzene. On the other hand, the ethylbenzene diffusion coefficient increases more
rapidly with increasing ethylbenzene concentration than does the styrene diffusion

2100 —— : . T T
1800
1500 ﬁs
3
= | 18
o
E
s
X b
2 L 14
600 e
300 4
_,
0.9 1

FIGURE 3. Effect of feed concentration on flux (V) and (%) selectivity of a poly
urethane membrane.?
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-in(1-9)

FIGURE 4. Concentration dependence of styrene (O) and ethylbenzene (%) diffusion
coefficients.

600

Flux [g/m? h ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Styrene conc. in feed [ mole fraction |

FIGURE 5. Comparison of experimental (O styrene and (J ethylbenzene) and predict
ed (@ styrene and % ethylbenzene) component fluxes in a polyurethane membrane.
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coefficient with increasing styrene concentration. The ethylbenzene diffusion coef-
ficient is significantly reduced by increasing styrene concentration, whereas the sty-
rene diffusion coefficient is virtually unaffected by the ethylbenzene concentration.
As a result of this behavior, sorption rather than diffusion is the primary mechanism
that controls the styrene permselectivity of the polyurethane membrane.?

In FIGURE 5, component flux data are compared to calculated fluxes derived from
the estimated diffusion coefficient Equations (45) and (46). The diffusion model pro-
vides accurate predictions of both fluxes given the diffusion coefficient form used for
ethylbenzene and the limited number of data points available. Note that the model is
able to predict the maximum in the ethylbenzene flux. We have found that this effect
cannot be captured if the coupling terms (A, and A,) are zero.

ESTIMATION OF TEMPERATURE DEPENDENT FLUX PARAMETERS

The potentially strong effect of temperature on the component fluxes!” should be
included in the solution—diffusion model to ensure accurate predictions of separation
performance. Typically there is insufficient data to account for the temperature effect
separately in the solution and diffusion models. A simpler and more direct alterna-
tive is to correct the fluxes derived from the diffusion model. Let T, denote the fixed
reference temperature used for estimation of the solution and diffusion model
parameters. The following phenomenologic relation!” is used to account for temper-
ature variations:

JA(T) ‘/"/"U\I\L /—l L ‘ 47

where J(T) is the flux of component i generated by the solution—diffusion model,
J7(T) is the temperature corrected flux of component i, E; is an activation energy
parameter for component #, and R is the gas constant.

The parameter estimation problem involves the determination of the unknown
parameters E; from temperature dependent flux data. Equation (47) shows that a plot
of InJ :‘ (T) versus T-1- T, 1 should be linear with slope —E/R. Therefore, non-
linear optimization is not required in this case. FIGURE 6 illustrates the procedure
for the polyurethane membrane considered previously. The required temperature
dependent flux data were obtained from Reference 9 for a feed styrene mole fraction
xp= 0.5 and reference temperature 7 = 25°C. Both styrene and ethylbenzene exhibit
an exponential dependence on temperature. The following activation energy param-
eters were derived: E; = 1.343x10*J/mol and E, = 2.986x 10*J/mol, where styrene
and ethylbenzene are designated components 1 and 2, respectively. The estimated
activation energies demonstrate that the ethylbenzene flux is more strongly affected
by temperature than is the styrene flux.

Membrane mass transfer coefficients can be computed directly from the temper-
ature corrected component fluxes. The following calculation is valid if the permeate
pressure is negligible, the liquid behavior is ideal, and boundary layer resistances are
negligible. Then, the membrane mass transfer coefficient of component i (k,,;) is
related to the component flux (J;") as follows:
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FIGURE 6. Temperature dependence of styrene (O) and ethylbenzene (%) flux.

J;‘ =k _.x.Psat, (48)

mivr o
where x; is the liquid composition of component i and P52 is the saturation pressure
of component i at temperature T. This equation is rearranged to yield
*
Ji
sat’
x;P;
The mass transfer coefficients can be used directly to characterize a dense film mem-

brane, or they can be combined with appropriate expressions for the liquid boundary
layer resistance to determine the separation performance of a membrane module.!®

k .=

mi

(49)

SUMMARY AND CONCLUSIONS

An optimization-based procedure for estimating unknown parameters in solution—
diffusion models of membrane pervaporation has been developed and evaluated.
Although the general methodology is applicable to a wide variety of model types, we
have presented a specific estimation strategy for a solution model based on Flory—
Huggins theory, a diffusion model derived from Fick’s law, and a phenomenologic
temperature dependent flux relation. The parameter estimation problem is posed as
nonlinear optimization problem in which the unknown parameters are the decision
variables and the objective function is the least-squares difference between the mea-
sured data and the model predictions. The objective function is minimized subject to
equality constraints imposed by nonlinear model equations and inequality constraints
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representing known bounds on the parameter values. The resulting nonlinear optiini-
zation problems are solved using the MATLAB routine fmincon, although other
nonlinear programming codes also could be employed. Advantages of the optimiza
tion-based procedure as compared to manual parameter adjustment are illustrated
by application to the separation of styrene and ethylbenzene with a polyuretliane
membrane.
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