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Abstract

An approximate modeling technique for spiral-wound permeators separating binary gas mixtures is developed. The
approximate model is derived directly from a standard fundamental model [1] by assuming that the residue flow rate is
constant in the direction of permeate flow. This assumption reduces the original boundary value problem to a more
computationally tractable problem involving a small number of nonlinear algebraic equations. Theoretical justification for
the modeling technique is obtained via comparison to one-point collocation. A nonlinear programming method for estimating
unknown model parameters from experimental data is proposed. The approximate modeling and parameter estimation
techniques are evaluated for the separation of CO,/CH, mixtures.
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1. Introduction

Over the past fifteen years, membrane systems
have become viable alternatives to conventional gas
separation processes such as amine adsorption and
cryogenic distillation [2]. The emergence of gas sep-
aration membranes is due primarily to three critical
developments: (i) synthesis of high performance
polymer membrane materials [3]; (ii) large scale
production techniques for high flux asymmetric
membranes [4]; and (iii) fabrication techniques for
high surface area membrane permeators [5]. As noted
by Spillman [2], the economic viability of membrane
separation processes also depends critically on pro-
cess design. A major obstruction to effective design
is the lack of appropriate permeator models.

* Corresponding author. Tel.: 504-388-3690; E-mail:
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A wide variety of permeator models have been
proposed for both binary and multicomponent sepa-
rations [6]. For the most part, available models differ
according to assumptions about the flow pattern and
the permeate-side pressure drop. Models based on
the assumption of complete mixing on both sides of
the membrane consist of simple nonlinear algebraic
equations [7,8]. However, such models are not suffi-
ciently accurate for process design since complete
mixing is rarely achieved in practice. Models based
on plug-flow and cross-flow patterns are comprised
of coupled, nonlinear ordinary differential equations
that usually yield boundary value problems [1,9-11].
While such models offer improved accuracy as com-
pared to complete mixing models, they are likely to
result in prohibitive computational requirements
when utilized for process design.

An alternative approach is to develop approximate
permeators models that offer a better tradeoff be-
tween prediction accuracy and computational com-
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plexity. The driving force approximation method [12]
is based on the assumption that the driving force for
permeation varies quadratically with membrane area.
This assumption yields a nonlinear algebraic equa-
tion model that can be efficiently solved to predict
permeator performance. However, the model may
not converge [13] and is not applicable to the cross-
flow pattern present in spiral-wound permeators. Pet-
tersen and Lien [13] recently proposed an alternative
modeling approach for gas permeators analogous to
that commonly used for heat exchangers. The model
describes the component fluxes across the membrane
in terms of log mean partial pressure differences.
However, the model is restricted to hollow fiber
permeators and is based on several unrealistic as-
sumptions including constant permeate-side pressure.
Other approximate models [6,14,15] suffer from sim-
ilar disadvantages.

In this paper, we propose an approximate model-
ing technique for spiral-wound permeators separating
binary gas mixtures. The model is based on the
assumption that the residue flow rate does not vary
in the direction of permeate flow. By applying this
assumption to a standard fundamental model [1], the
original boundary value problem is reduced to a
much simpler set of nonlinear algebraic equations.
Because the resulting model may contain several
unknown parameters, a simple and efficient strategy
for estimating model parameters from experimental
data is developed. The accuracy of the approximate
model is evaluated by comparing the predictions
with those obtained from the fundamental model for
a wide range of CO,/CH, separations.

2. Fundamental model

First we present the fundamental model of a
spiral-wound gas permeator proposed by Pan [1].
The model development is based on Fig. 1, which
depicts permeation through an extended membrane
leaf of a spiral-wound permeator. The notation is
defined in the List of Symbols. The leaf is comprised
of two asymmetric membranes separated by a spac-
ing material. Three edges of the leaf are sealed and
the open edge is attached to a perforated tube. The
feed stream is introduced on the outside of the leaf,
and gas permeates through both of the membranes
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Fig. 1. Gas permeation through a spiral-wound membrane.

into the spacing material. The permeate stream flows
toward the open edge at a 90° angle to the feed
stream. The feed gas that does not permeate is
collected as the residue stream. A large surface area
per volume is obtained by placing a feed spacer on
top of the leaf and rolling the membrane ‘‘sandwich’’
around the collection tube.

The fundamental model is based on the following
assumptions [1]:

1. The feed stream contains a binary gas mixture.

2. Bulk flow and local permeation are described by
a cross-flow pattern.

3. There is no pressure drop on the feed side.

4. The pressure drop on the permeate side is de-
scribed by the Hagen—Poiseuille equation.

5. Membrane permeabilities are independent of pres-
sure and concentration.

6. The porous supporting layer offers negligible re-
sistance to gas flow.

7. There is no mixing in the porous support.

8. The permeate pressure varies only in the direction
of permeate flow.

Several of these assumptions can be relaxed if neces-

sary [6,9,16,17]. '

The fundamental model is comprised of three
ordinary differential equations, two nonlinear alge-
braic equations, and one nonlinear integral equation.
The differential equations describe the dependence
of the dimensionless permeate pressure y(%), dimen-
sionless permeate flow 0(4), and bulk permeate con-
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centration y(4) on the dimensionless leaf length
variable &

dy?
—=—C6 1
in (1)
de ) u, )
dh U
d(6y) u,
=X;—X,— 3
dh “\f xruf ( )

where u; and u,(h) are the feed and residue flow
rates per unit length, x; and x () are the feed and
local residue concentrations, and:

2R, TuLY;
g .WtBP?

(4)

The differential equations are subject to mixed
boundary conditions

6(0) = 6(0)¥(0) =0 (5)
y(1) =7, (6)
where vy, is the ratio of the permeate and feed
pressures at the permeate outlet.

The first nonlinear algebraic equation describes
the relation between the local feed-side concentration
x(h,s) and the local permeate concentration on the
membrane surface y'(k,s)

!

Y o alx—vyy)
1-y 1—=x—vy(1-y)

(7

where o is the membrane selectivity and s is the
dimensionless leaf width variable. The second alge-
braic equation describes the effect of the local per-
meate concentration on the feed-side flow rate per
unit length u(h,s)

u (y) AN EI G

— == 8

ug ye 1 —y; a—(a—1)y (8)
where yi(h) is the local permeate concentration on
the membrane surface at the feed inlet and:

B y(a—1) +1

C(a=1)(1-7)
yo ylamh-a ©)

(a—=1)(1-7)

The nonlinear integral equation describes the relation
between the dimensionless permeation factor

2WQ,P  2WLQ,P
T du, dU

R

(10)

and the local permeate concentration:
1
a(l-7v)

~[a (el

—(a—l)/f(%)ydy’} (11)
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Note that the integration is performed at constant
pressure.

For fixed operating pressures, the model can be
solved if two flow rates and/or concentrations are
specified. The standard case involves the calculation
of the permeate flow rate and concentration for given
feed conditions. The bulk residue flow rate and
concentration then can be determined by material
balances around the permeator. The fundamental
model is difficult to solve as a result of the nonlinear
differential-algebraic-integral equations and mixed
boundary conditions. For the standard calculation
problem, Pan [1] proposed an iterative solution tech-
nique based on the shooting method. However, this
method is computationally expensive and therefore is
not well suited for process design applications.

3. Approximate model

We propose an approximate modeling technique
for spiral-wound gas permeators based on the funda-
mental model of Pan [1]. The key assumption is that
the residue flow rate is constant in the direction of
permeate flow, which implies that the permeate flow
rate varies linearly along the direction of permeate
flow. We show that this condition is satisfied approx-
imately by the fundamental model under most oper-
ating conditions. The assumption is used to reduce
the original boundary value problem to a small num-
ber of nonlinear algebraic equations that can be
solved much more efficiently. In the Appendix, the
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approximate modeling technique is compared to the
one-point collocation method. Finally, a nonlinear
programming method for estimating unknown pa-
rameters of the approximate model from experimen-
tal data is presented.

3.1. Model development

Fig. 2 shows predictions from the fundamental
model for several feed concentrations and perme-
ation factors. For each case, the dimensionless per-
meate flow rate 6 and dimensionless residue flow
rate u,/u; are plotted as a function of the dimension-
less leaf length variable 4. Note that u, /u; exhibits a
very weak dependence on h, while 8 essentially is a
linear function of A. This trend is observed for a
wide range of operating conditions. Motivated by
this result, we assume that the residue flow rate u, is
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Fig. 2. Variations of the residue and permeate flow rates along the
membrane length for the fundamental model.

independent of 4. This assumption means that u,
does not vary along the direction of permeate flow,
but it does not preclude u variations in the direction
of feed flow (see Fig. 1). Under this condition, the
differential Eq. (2) with boundary condition (5) is
ecasily integrated:

u,

o={1-—L\|n (12)
Ug

Note that 6 is a linear function of h, as expected.

Substitution of (12) into (1) and integration with the

boundary condition (6) yields:

vz=v5+ic(l—ﬁ)(1—h2) (13)
2 Ug
Note that we allow u_ to vary with £ in the subse-
quent development. Thus, the assumption is invoked
primarily to derive the approximate pressure distribu-
tion function (13).

The integral in (11) is evaluated as follows. We
define the function in (8) as:

YN =Y e (a1
‘f’(”):(ﬂ (l—y;) (a—(a—wy;)
(14)

It follows that:
ul"

—=¢(v.5) (15)

iy

The integral is represented as

vif U , ¥ , ,
[1=) av=["¢,(Nay  (16)
¥t v yi

1

I(y.%) "
where ¢, (') denotes that the integration is per-
formed at constant pressure, and qby( y;)=1. The
integral is approximated using Gaussian quadrature
[18]. The change of variable

Y =¥

¢= (17)

’ K
Yo ™ s

yields the expression
7 ! ’ l
1(7,yr)=(yr—yf)f0 ¢, (£)d¢
N

= (3 - X &, (5)w; (18)

=1
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where N is the number of quadrature points, ¢; and
w; are the quadrature points and weights, respec-
tively, and y; = y;+ &(y — y;). Thus, the integral
Eq. (11) can be represented as:

R=;(—1_—'7—){a—(a—l)y}

—[a=(a—1)y]é(y.y)
—(a—l)l(%y;)] (19)

Simultaneous solution of (13), (15), (19), and (7)
solved for y; with x=ux,; [1] at each quadrature
point yields y(h,), u(h)/u;, y/(h), and y,(h).
Here h; represents the value of A at the ith quadra-
ture point.

The nonlinear algebraic Eq. (7) can be rearranged
as:

Lo trv(e=-D0-¥)
T yta(loy) T

(20)

This allows the value of the residue concentration
x,(h;) at each quadrature point to be computed from
y(h,) and y/(h;). Material balances on a differential
length of membrane yield,

up=u, +u, (21)
ufxf=urxr+vay:(1 (22)

where v,(h) and y(h) are the permeate flow rate per
unit length and local permeate concentration, respec-
tively, averaged over the entire width of the mem-
brane. Therefore:

ur
Xp—x,—
’ Uy
ya= ur (23)
1 - —
Ug

The flow rate and concentration of the effluent
permeate stream are calculated as follows. The flow
rate is obtained from (2) using Gaussian quadrature

ur(hi) W

Ug

1, ad
00=1—f0—dh51—2

Ug i=1

(24)

i

where M is the number of quadrature points. By
invoking the assumption that u_ is a ‘‘weak’” func-

tion of A, it is easy to show that the permeate
composition can be computed as:

M
1, ,
vo= [ vdh= Lyi(h)w, (25)

i=1
The flow rate n, and concentration x,, of the efflu-
ent residue stream are determined from an overall
material balance about the permeator:

M =1-16, (26)
xe— by ¥,

R . L 27

o 1-6, (27)

The flow rates and concentrations of the effluent
streams are easily calculated given the values y(hi),
u,(h,)/us, and y/(h,). Therefore, the original bound-
ary value problem effectively is reduced to solution
of the four nonlinear algebraic equations (7), (13),
(15), and (19) at the quadrature points h,. Solution
complexity is not strongly affected by the number of
quadrature points N used to approximate the integral
in (18). By contrast, the four nonlinear algebraic
equations must be solved simultaneously for each
quadrature point used in the computation of the
permeate flow rate and concentration. Our experi-
ence indicates that one quadrature point (M =1)
generally provides a satisfactory solution. In this
case h; = 0.5 and w, = 1, and the quadrature formu-
las reduce to

u,(hy)

0y =1~ “ (28)
u.(h,
x;—x,(hy) r(uf )
Yo=Yu(ly) = j u,(h,) (29)

where u,(h,) and x,(h,) are obtained by solving the
four nonlinear algebraic equations at ;.

It is interesting to note that the pressure distribu-
tion (13) has the following form in this case:

ur(hl)}

1 -

3
Yz(hl) =7(§+—C

. (30)

Ug

In the Appendix, we show that the approximate
model with M =1 is closely related to the model
obtained when one-point collocation [18] is applied
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to the fundamental model. The only difference is that
the collocation method yields the following pressure
distribution
1

¥i(h) =¥ +5C|1 - (31)
where h, now is interpreted as the interior colloca-
tion point. The two relations are identical with the
exception of the constant coefficient. While this
appears to be a minor difference, the subsequent
simulation results show that the proposed modeling
technique can yield significant improvements in pre-
diction accuracy.

ur(hl)j|

Ug

3.2. Parameter estimation

A potential disadvantage of the proposed tech-
nique is that the approximate model contains all the
parameters in the original fundamental model. In
most applications, detailed characteristics of the per-
meator are not known at the preliminary design
stage. Consequently, the approximate model may
contain uncertain and/or unknown parameters. We
present a nonlinear programming strategy [19-21]
that provides a simple and efficient means of esti-
mating unknown /uncertain model parameters from
experimental data. The primary advantage of the
proposed method is that nonlinear implicit equations
can be handled. Although the estimation technique is
presented for one-point quadrature, it is readily ex-
tended to the more general case.

The objective is to estimate model parameters
associated with the internal characteristics of the
permeator. We assume that the membrane selectivity
a is known. Unknown parameters may include the
membrane leaf length L, the leaf width W, the leaf
thickness f, and the asymmetric membrane thickness
d. Note that these four parameters appear in the
approximate model only via the terms C (4) and R
(10). However, these terms are not easily estimated
since they also depend on the feed flow rate U; and
feed pressure P. This problem is handled by defining
parameters that do not depend on the feed condi-
tions:

4 P“
C= ch (32)
’ Uf

Therefore, the problem is reduced to estimating the
parameters C' and R’

To facilitate parameter estimation, the model
equations are formulated as follows. Eq. (28) is
rearranged as:

ur( hl)
Ue

=1-0,=f(6,) (34)

Combining this result with (29), the residue concen-
tration is expressed as:

() = 2 = x50 (39)
The following relations are obtained from (7)

yi(hy) =fs[y(hy).x, ()] (36)
vi(hy) =fi[v(h).x] (37)

where f; represents the function obtained when (7)
is solved for y' [1]. The following result is obtained
by combining (30) and (34):

3
Vi(h) =7+ SCO=hrb0C)  (3B)
Eq. (19) is represented as:
R=fs[v(h).y: (k). 5 (k)] (39)

The parameters C' and R’ are estimated using a
nonlinear programming approach. The measurement
vector z and parameter vector v are defined as:

T
2= [ x5 6y ¥o Us P] (40)
v=[CR]" (41)
Assume that N independent experiments are per-
formed to generate the data set {z,, z,,..., zy}. Let
Z; represent an estimate of the outcome of the ith

experiment. The parameters are determined by solv-
ing the following minimization problem,

N
min¥(2,....5y.v)= 2 (% — 2) Vi85 -z,)
i=1

(42)
subject to the constraints,
F(%,v)=0,i=12,...,N (43)
where V, are covariance matrices, and F represents
the vector function obtained from the scalar equa-



R. Qi, M.A. Henson / Journal of Membrane Science 121 (1996) 11-24 17

tions (34)—(39). In practice, the V, are taken to be a
constant, diagonal matrix with elements that reflect
the relative accuracy of the measurements. It is
important to note that reliable algorithms are avail-
able to solve the nonlinear optimization problem
(42)—(43) [22,23]. A simpler estimation problem is
obtained if the feed flow rate and pressure are held
constant during the experiments. In this case, the
parameters C and R can be estimated directly and
the dimensionality of the problem is reduced:

ZE[xf Yo o .VO]T (44)

v=[CR]" (45)

4. Results and discussion

We evaluate the approximate modeling technique
via a case study of CO,/CH, separations. The
nominal model parameters and operating conditions
for the spiral-wound permeator are shown in Table 1.
These values do not correspond to any particular
application, but the range of parameters considered
cover a wide variety of CO,/CH, separations. Note
that a nominal value is not given for the feed pres-
sure P because we work exclusively with the dimen-
sionless model. The approximate modeling technique
utilizes three quadrature points in the integral evalua-
tion (N = 3) and one quadrature point in the compu-
tation of the effluent stream properties (M = 1). The
resulting model is compared to the fundamental
model and the model obtained using one-point collo-
cation (see Appendix). The effectiveness of the pa-
rameter estimation strategy also is investigated.

Table 1

Nominal model parameters for case study

Parameter Value Variable Value
X¢ 0.45 0, 0.472
Yo 0.05 Yo 0.844
« 30 Mo 0.528
C 0.1 Xq 0.099
R 0.1

0.30 0.6

o 8 for fundamental model
—— @ for approximate model
v for fundamental model
----- v for approximate model

0.25F 0.5

0.20 0.4
-
0.15} ) 03 @
0.10) 0.2
0.05 0.1
0.004 - 0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.5
o Fundamental model
—— Approximate model
0.4f
R = 0.02
————g
0.3f

R = 0.05

o.z'-*—‘_\‘\

0.1F

! R =0.15

0.0 0.2 0.4 0.6 0.8 1.0
h

Fig. 3. Variations of the permeate pressure, permeate flow rate,
and residue concentration along the membrane length.

4.1. Comparison to the fundamental model

The fundamental and approximate models are
compared in Figs. 3-7. In each figure, parameters
values that are not stated explicitly are given in
Table 1. Fig. 3 shows the predicted permeate pres-
sure 7y, permeate flow rate , and residue concentra-
tion x, as a function of the membrane length # for
three value of the permeation factor R. The approxi-
mate model produces very accurate predictions of
the spatial variations for each value of R. The
effluent permeate flow rate 8, and effluent residue
concentration x,, for various combinations of R and
the feed concentration x, are shown in Fig. 4. The
variable x, is shown rather that the effluent perme-
ate concentration y, because the residue concentra-
tion exhibits larger variations and therefore is more
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Fig. 4. Effect of the feed composition on the permeate flow rate
and residue concentration.

illustrative. The approximate model yields accurate
predictions of both variables for all operating condi-
tions considered. It is interesting to note that higher
feed compositions yield lower residue concentrations
for large value of R. Consequently, results are not
shown when both x; and R assume large values
because x is close to zero under these conditions.
Fig. 5 shows the effluent permeate flow rate and
residue concentration for several combinations of R
and the permeate outlet pressure y,. The approxi-
mate model produces very accurate predictions for
each case. The effect of R and the selectivity a on
the effluent stream properties is shown in Fig. 6. The
approximate model yields good predictions for all
conditions considered, although small deviations be-
tween the two models are observed at intermediate
values of «. Results are not shown for high values
of o and R since x, is close to zero in this case.

Fig. 7 shows the effect of the parameters R and C
on the effluent permeate flow rate and residue con-
centration. The approximate model produces good
predictions for low values of C, but becomes slightly
inaccurate as C increases. The result is expected
because the approximation (13) is less valid when C
assumes large values. Despite this discrepancy, the
approximate model yields predictions that are suffi-
ciently accurate for process design even for large
values of C.

The results in Figs. 3-7 demonstrate that the
approximate model provides accurate predictions
over a wide range of operating conditions. The moti-
vation for developing the approximate model is that
the resulting nonlinear algebraic equations can be
solved very efficiently. By contrast, the fundamental
model consists of a set of nonlinear differential-alge-
braic-integral equations with mixed boundary condi-

0.8

° Fundamental model
——  Approximate modei 1= 0.01 Y, =02

0.5

o Fundamental medel
—— Approximate model

0.1F

Yo = 0.01

0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 5. Effect of the permeate pressure on the permeate flow rate
and residue concentration.
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Fig. 6. Effect of the selectivity on the permeate flow rate and
residue concentration.

tions. This model is solved using an iterative tech-
nique based on the shooting method [1]. Running
MATLAB on an IBM RS-6000 workstation, we have
found that the approximate model can be solved
200-400 times faster than the fundamental model.
Consequently, the approximate model is well suited
for process design studies.

4.2. Comparison to one-point collocation

Next we compare the proposed model to the
approximate model obtained using one-point colloca-
tion (see Appendix). Results also are shown for the
fundamental model to provide a basis for compari-
son. Fig. 8 shows the effluent permeate flow rate and
residue concentration for several combinations of the
feed concentration and permeation factor. Both ap-
proximate models yield good predictions, but the

proposed model is slightly more accurate for some
operating conditions. The effect of the parameters C
and R on the effluent stream properties is shown in
Fig. 9. While both models yield satisfactory results
for small values of C, the proposed model is more
accurate for large C values. In this case, more
interior collocation points are required for an accu-
rate solution. It is important to note that the accuracy
of the proposed model also can be improved by
increasing the number of quadrature points M. Con-
sequently, the proposed method is preferred since
both models require the same computing effort.

4.3. Parameter estimation
Finally, the effectiveness of the proposed parame-

ter estimation strategy is investigated. As discussed
previously, we assume that the membrane selectivity

0.8
C =0.01
C=02
C =01
0.6} o
3 C=05
[*)
< C,
0.4 o
0.2f
o Fundamental model
~——  Approximate model

0.0 ) L \ o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.5

o Fundamental model
——  Approximate model

0.41

X5

0.2f

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 7. Effect of the dimensionless constant C on the permeate
flow rate and residue concentration.
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R
0.7
<] Fundamental model
0.6 —— Approximate model
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Xo

0.30

0.20 0.25

R

0.35

Fig. 8. Comparison of the approximate model and one-point
collocation for different feed compositions.

o is known. Two data sets are collected by utilizing
the fundamental model as the actual permeator. The
feed concentration x, and effluent permeate pressure
v, are varied systematically, while the feed flow rate
U; and feed pressure P are held constant. This
allows the unknown model parameters (C =0.1, R
=0.1) to be estimated directly. In the second data
set, we add a randomly distributed signal with stan-
dard deviation ¢ =0.01 to the measurements to
simulate the effects of noise.

Table 2 shows the result of parameter estimation
for nine independent sets of data without noise. The
left-hand side of the table contains the measure-
ments, while the right-hand side shows the estimated
permeate stream properties obtained with the esti-
mated parameters listed at the bottom of the table.
The parameter R is identified almost perfectly, while
C has an error of 10%. However, this discrepancy

0.8
0.8f
&

0.4f

o.2r
o Fundamental model
—— Approximate model
----- One-point collocation

0.0 1 L L L s L

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
R

0.5

o Fundamental medel
Approximate model
o™ L One-point collecation

0.25

0.20
R

0.0
0.00

0.05 0.10

Fig. 9. Comparison of the approximate model and one-point
collocation for different values of the dimensionless constant C.

has very little effect on prediction accuracy. Parame-
ter estimation for nine sets of data with noise is
shown in Table 3, where the true values of the

Table 2
Parameter estimation using 9 data sets without noise
Data set Measurements Estimates

X¢ Yo ty Yo by Yo
1 0.2000 0.0500 0.2403 0.6470 0.2391 0.6457
2 0.2000 0.1000 0.2230 0.6313 0.2225 0.6305
3 0.2000 0.2000 0.1771 05755 0.1771 0.5751
4 0.4000 0.0500 04223 0.8201 0.4218 0.8191
5 04000 0.1000 0.4059 0.8182 0.4057 0.8174
6 0.4000 0.2000 0.3526 0.8076 0.3525 0.8073
7 0.6000 0.0500 0.6270 0.8939 0.6311 0.8909
8 0.6000 0.1000 0.6151 0.8952 0.6190 0.8926
9 0.6000 0.2000 0.5722 0.8974 0.5745 0.8962

¢=10.0897, R =0.1001
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Table 3
Parameter estimation using 9 data sets with noise
Data set Measurements Estimates

¢ Yo By Yo b Yo
1 0.2070 0.0556 0.2467 0.6474 0.2408 0.6666
2 0.1995 0.0987 0.2317 0.6065 0.2184 0.6414
3 0.2202 0.2055 0.1947 0.5871 0.1832 0.6153
4 04092 0.0390 0.4191 0.8099 04319 0.8314
5 0.3819 0.0927 04045 0.8297 03879 0.8154
6 0.4003 0.2140 0.3587 0.7998 0.3377 0.8118
7 0.5819 0.0438 0.6368 0.9003 0.6113 0.8911
8 0.6103 0.1024 0.6040 0.9034 0.6278 0.8999
9 0.6039 0.1841 0.5667 0.8957 0.5834 0.9015

¢=0.0704, R =0.0948

measured variables are the same as in Table 2. The
estimates ¢ and R have errors of approximately
30% and 5%, respectively, and therefore the model
predictions are slightly less accurate than in the
noise-free case.

Table 4 shows the results of parameter estimation
using ten experimental data sets from [24]. Binary
CO,/CH, data are generated from the original mul-
ticomponent data by considering the additional com-
ponents (N, and hydrocarbons) as the slower perme-
ating component (CH,). Because the feed flow rate
U; and feed pressure P vary, it is necessary to
estimate the parameters C' and R’ rather than the
dimensionless parameters. Note that the predictions
are much less accurate than those obtained from the
simulation data. This i1s expected since the experi-

mental system has complications that are not present

in simulation:

1. The separation is multicomponent.

2. There are differences in operating conditions that
are not completely reflected in the experimental
data sets (e.g. temperature variations).

3. The approximate model does not account for
non-ideal effects such as concentration polariza-
tion, flow channelling, CO, plasticization, etc.

Nevertheless, predictions suitably accurate for pre-

liminary process design are obtained by systematic

estimation of the unknown model parameters.

5. Conclusions

An approximate modeling technique for spiral-
wound permeators separating binary gas mixtures
has been proposed and evaluated. The approach is
based on the assumption that the residue flow rate is
constant in the direction of permeate flow. The
approximate model is derived by applying this as-
sumption to an accepted fundamental model [1]. The
original boundary value problem is reduced to a
more tractable problem involving a small number of
nonlinear algebraic equations. Additional justifica-
tion for the modeling technique is obtained via com-
parison to one-point collocation. Because the approx-
imate model may contain unknown /uncertain pa-
rameters, a nonlinear programming strategy for esti-
mating parameters from experimental data has been

Table 4

Parameter estimation using experimental data from [24]

Data set Measurements Estimates

Uy (m*/s) P (MPa) Xf Yo fy Yo 8, Yo

1 0.0331 3.7557 0.0523 0.0272 0.3762 0.1318 0.3780 0.1338
2 0.0318 2.3767 0.0528 0.0429 0.2887 0.1564 0.2527 0.1726
3 0.0331 3.8247 0.1161 0.0267 0.4059 0.2676 0.4420 0.2570
4 0.0466 3.2041 0.1213 0.0318 0.3310 0.3345 0.2958 0.3550
5 0.0695 4.8589 0.1234 0.0210 0.3538 0.3319 0.3098 0.3609
6 0.0692 3.9626 0.1241 0.0258 0.2796 0.3732 0.2629 0.3930
7 0.0370 3.2386 0.1272 0.0315 0.3628 0.3212 0.3619 0.3266
8 0.0774 4.8589 0.1298 0.0210 0.3051 0.3766 0.2011 0.3927
9 0.0672 3.8936 0.1339 0.0262 0.2537 0.4081 0.2728 0.4114

10 0.0367 3.8936 0.2134 0.0262 0.5000 04115 0.5029 0.4164

¢'=208x 10" Pa’ s/m®, R

=319%x107° m’/Pas
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proposed. A case study of CO,/CH, separations has
shown that the proposed model yields accurate pre-
dictions with considerably less computing time than
the fundamental model. Future work will focus on
the development of an approximate model for multi-
component separations and the use of the approxi-
mate models for membrane system design.

6. List of symbols

a dimensionless constant defined by Eq. (9)

B permeability of the spacing materials inside
the spiral-wound leaf (m?)

b dimensionless constant defined by Eq. (9)

C dimensionless constant defined by Eq. (4)

C constant defined by Eq. (32) (Pa® s/mol)

d effective thickness of membrane (m)

8. Newton’s law conversion factor

h = [ /L, dimensionless leaf length variable

h; quadrature points of h

l membrane leaf length variable (m)

l,,l,  Lagrange interpolation polynomials
1.5 Lagrange interpolation polynomials

L membrane leaf length (m)

M number of quadrature points of 6, and y,

N number of quadrature points of the integral
1(y, y)

number of independent experiments in pa-
rameter estimation

P feed-side pressure (Pa)

P permeate-side pressure (Pa)

Do permeate outlet pressure (Pa)

0, permeability of the more permeable compo-
nent (mol /m s Pa)

0, permeability of the less permeable compo-
nent (mol /m s Pa)

R dimensionless permeation factor defined by
Eq. (10)

R constant defined by Eq. (33) (mol /Pa s)

R, ideal gas constant (m* Pa/kg mol K)

s = w/W, dimensionless leaf width variable

t membrane leaf thickness (m)

T temperature (K)

U feed gas flow rate per membrane leaf
(mol /s)

Uy residue gas flow rate per membrane leaf

(mol /s)

feed-side gas flow rate per unit length of
membrane leaf (mol /s m)

feed gas flow rate per unit length of mem-
brane leaf (mol /s m)

residue gas flow rate per unit length of
membrane leaf (mol /s m)

permeate flow rate (mol /s)

permeate flow rate at permeate outlet
(mol /s)

covariance matrices in parameter estimation
permeate flow rate per unit length averaged
over the width of the membrane (mol /s m)
membrane leaf width (m)

membrane leaf width variable (m)
quadrature weights

local feed-side concentration (mole fraction)
bulk residue stream concentration at outlet
(mole fraction)

feed concentration (mol fraction)

local residue concentration along the outlet
end of the membrane leaf (mole fraction)
permeate concentration in the bulk permeate
stream (mole fraction)

permeate concentration in the bulk permeate
stream at the permeate outlet (mole fraction)
local permeate concentration on the mem-
brane surface, (mole fraction)

local permeate concentration averaged over
the width of the membrane (mole fraction)
local permeate concentration along the inlet
end of the membrane leaf (mole fraction)
local permeate concentrations at quadrature
points (mole fraction)

local permeate concentration along the out-
let end of the membrane leaf (mole fraction)
experimental data sets expressed in Eq. (40)
estimated data sets expressed in Eq. (40)

= Q,/0,, membrane selectivity

= p/P, ratio of permeate pressure to feed
pressure

= p,/ P, ratio of permeate pressure to feed
pressure at the permeate outlet

viscosity of gas mixture (Pa s)

=V/U;, ratio of permeate flow to feed
flow

=V,/U, ratio of permeate flow to feed
flow at permeate outlet
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& standard quadrature points expressed in Eq.
(17)

¢ =u/u;, function defined by Eq. (14)

Mo = U,/ U, ratio of residue outlet stream flow
to feed flow

v estimated parameters expressed in Eq. (41)
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Appendix A

We apply the one-point collocation method to the
fundamental permeator model of Pan [1]. Only a
brief presentation of the technique is provided here;
detailed descriptions of the collocation method are
available elsewhere [18,25]. The solution of the dif-
ferential Egs. (1)—(3) is approximated as

y2(h) =y (h)L(R) + v (hy) L, (R) (46)
0(h) = 6(h) (k) + 6(H,)15(h) (47)
0(h)y(h) = 0(h,) y(h)1i(h)

+0(Hy) y(Hy) 1h(h) (48)

where the coefficients y(4,), 6(h;), and y(h;) are
function values at the collocation point #;, and /,(h)
and I'(h) are Lagrange interpolation polynomials.
The first collocation point is k2, = 0.5, and the sec-
ond point is chosen according to the boundary condi-
tion as A, =0 or h, = 1. The Lagrange polynomials
are:

LR = 4= —2(h =) (49)

L(h) = :2__}21 =2(h-0.5) (50)
h—H,

LW = 4 = 2 (51)

pwy =M o) (52)

hlz - hl

The boundary conditions (5)-(6) are enforced as:
y(hy) = v, 0(Hy) =0, 6,(h)y,(h2) =0

(53)

Therefore, the approximate solution is:
YA(h) = Y2 (h)L(R) + ¥L(h) (54)
0(h) = 6(h,)1(h) (55)
B(h)y(h) = 6(h,) y(h)L(R) (56)

The derivatives of the Lagrange polynomials are:
di(h dl,(h dli(h

), dh) i)

dh dh dh ‘

By using the approximate solution to evaluate the
derivatives, the differential Eqs. (1)-(3) are reduced
to:

=2y*(hy) +2y5 = —CO(hy) (58)
u(h
20(hy) =1- () (59)
Us
ur(hl)
20(h) y(h) =x;—x,(hy) » (60)
f
These algebraic equations can be written as:
2(hy) = 2y Lefy o ) (61)
DAL Yo 4 ”
ur(hl)
xp—x.(hy) p
£
h) = 62
y(hy) _u[(hl) ( )
U
1 ulh
e(h1)=—{1— ! 1)] (63)
2 f

Similar to the proposed modeling technique, the
values yi(h,). y(h,), ulh)/u;, and y(h)) are
determined via simultaneous solution of the nonlin-
ear algebraic Egs. (7), (61), (15), and (19). The
effluent permeate flow rate is:

ur(hl)

f

0y =0(h)(hy) =20(h) =1~ (64)
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The effluent permeate concentration is determined
as:

_ H(hl)y(hl)lll(hZ)
B b,

]
= 5 v(h)G(h) = (k)

ur(hl)
xe—x,(hy) »
f

ur(h) (65)

Ug

Note that the approximate models obtained with the
proposed technique when M =1 and one-point col-
location are identical with the exception of the pres-
sure distribution functions in (30) and (61).
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