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Abstract

A mathematical model is derived to simulate the performance of spiral wound membrane modules for the pervaporative
separation of binary liquid mixtures. Permeation through the polymer membrane is described by a detailed solution–diffusion
model. Flory–Huggins theory is used to predict solubility of the penetrants, while the composition and temperature dependence
of the diffusion coefficients are described by phenomenological relations. Unknown parameters of the solution–diffusion model
are determined from sorption and flux data using nonlinear least-squares estimation. Standard correlations are used to estimate
the mass transfer resistance due to the liquid boundary layer on the feed side of the module. The solution–diffusion model
is coupled to differential mass, momentum and energy balances on the feed and permeate sides of the module to predict
separation performance. The resulting model is two-dimensional as the feed-side and permeate-side stream properties vary
in both the feed and permeate flow directions. Required input data to the model includes the feed flow rate, composition
and temperature, the outlet permeate pressure, the membrane properties and the module dimensions. A numerical solution
technique based on the use of the shooting method in the permeate flow direction and numerical integration in the feed flow
direction is proposed. The model yields predictions of the feed-side and permeate-side stream properties as a function of
both spatial coordinates. The separation of styrene and ethylbenzene with a polyurethane membrane is used to illustrate the
modeling approach. A single module and a 10-module system with interstage heating are simulated to demonstrate potential
uses of the pervaporation model. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The separation of styrene/ethylbenzene mixtures
is a problem of considerable industrial importance.
Styrene is an important petrochemical product and is
used extensively in the manufacturing of plastic ma-
terials. The dehydrogenation of ethylbenzene is the
dominant technology for styrene production [24]. An
upper limit on the reaction temperature must be en-
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forced to avoid polymerization and thermal cracking
of the styrene. As a result, the ethylbenzene conver-
sion is approximately 75% and the reactor effluent
contains a significant amount of ethylbenzene in ad-
dition to the styrene product. The effluent stream is
separated to produce ethylbenzene for recycle to the
reactor and to remove undesirable reaction byprod-
ucts. The styrene/ethylbenzene separation currently
is performed via conventional distillation [24]. Be-
cause the boiling points of styrene and ethylbenzene
are very similar, a distillation column with as many
as 100 theoretical stages and a high reflux ratio is
required to achieve the desired styrene purity of

0376-7388/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0376-7388(01)00629-9



118 B. Cao, M.A. Henson / Journal of Membrane Science 197 (2002) 117–146

Nomenclature

a activity
a1–a3 solution model parameters
A constant in the Margules equation
A11–A22 diffusion coefficient model parameters
b1–b3 solution model parameters
C mass concentration (g/cm3)
Cp heat capacity at constant pressure

(J/g K)
d flow channel width (cm)
D diffusion coefficient (cm2/s)
D0 diffusion coefficient at infinite dilution

(cm2/s)
Dl

12 diffusion coefficient of liquid
phase components (cm2/s)

f Fanning friction factor
F mass flow rate (g/s)
GE excess Gibbs free energy (J/mol)
�Gmix Gibbs free energy of mixing (J/mol)
H membrane element height (cm)
J mass flux (g/cm2 s)
J̃ molar flux (mol/cm2 s)
J ∗ flux at zero permeate pressure

(g/cm2 s)
k mass transfer coefficient (s/cm)
l membrane thickness (�m)
L membrane element length (cm)
m permeate-side molar flux (mol/cm2s)
M molecular weight (g/mol), number of

quadrature points
Mc molecular weight between two

crosslinks of the polymer
membrane (g/mol)

n mole fraction, feed-side molar flux
(mol/cm2 s), number of grid points

P permeate-side pressure (Pa)
PH permeate-side pressure at the

collection tube (Pa)
P sat saturation vapor pressure (Pa)
Q feed-side volumetric flow rate (cm3/s)
R gas constant (J/mol K)
Re Reynolds number
S solubility of pure component in the

polymer membrane (g/cm3 of polymer)
Sc Schmidt number
Sh local Sherwood number

ShL average Sherwood number
T feed-side temperature (K)
u permeate-side velocity (cm/s), volume

fraction in the polymer membrane on
a polymer free basis

v feed-side velocity (cm/s)
V molar volume (cm3/mol), specific

volume (cm3/g)
w quadrature weight
W membrane element width (cm)
x mole fraction in liquid mixture,

membrane leaf length variable (cm)
�x discretized length element (cm)
y mole fraction in vapor mixture,

membrane leaf height variable (cm)
�y discretized height element (cm)
z membrane leaf width variable (cm)

Greek letters
α selectivity
β update constant for shooting

calculations
χ Flory–Huggins interaction parameter
ε tolerance for shooting calculations
φ volume fraction in membrane
φ0 volume fraction at membrane surface
γ activity coefficient
ϕ stage cut
λ latent heat of vaporization (J/g)
µ viscosity (cP)
θ unknown parameters vector
ρ mass density (g/cm3)
ρ̃ molar density (mol/cm3)
ξ quadrature point
Ψ volume fraction in liquid mixture

Subscripts
f feed
l liquid property
m membrane property
p polymer property, local permeate

property
t total property
v vapor property
x x-component
z z-component
0 reference



B. Cao, M.A. Henson / Journal of Membrane Science 197 (2002) 117–146 119

1 liquid component in binary and
ternary mixtures

2 polymer in binary mixture and liquid
component in ternary mixture

3 polymer in ternary mixture

Superscripts
b binary property of the ternary mixture
bi binary property between liquid component

i and the polymer in the ternary mixture
L liquid property
P polymer property
sat property of the saturated vapor
V vapor property
∗ average property, dimensionless variable

99.9%. The distillation process is very capital and
energy intensive, so there is considerable motivation
to develop simpler and more cost effective separation
technologies.

Pervaporation has been proposed as an eco-
nomically viable technology for the separation of
azeotropic and close-boiling mixture that pose diffi-
culties for conventional distillation [11]. It has been
estimated that the development of a high performance
styrene/ethylbenzene pervaporation membrane could
produce energy savings as large as 84% compared
to distillation [14]. A poly(hexamethylene sebacate)
(PHS)-based polyurethane membrane for pervapo-
rative separation of styrene/ethylbenzene mixtures
has been synthesized and analyzed by the first au-
thor [4,5]. While the polyurethane membrane cannot
be characterized as a high performance material
according to the specifications in [14], the styrene
permselectivity is sufficient for bulk separation. Con-
sequently, the membrane could be used to develop a
hybrid pervaporation–distillation process that offers
the potential for lower capitals costs and better energy
efficiency than conventional distillation.

To realize such a hybrid process, it is necessary to
construct a membrane module that provides adequate
flux of the styrene enriched permeate stream. Many
industrial pervaporation units consist of stainless
steel plate and frame modules [9]. This configuration
is relatively expensive compared to other types of
membrane modules due to the low separation area to

volume ratios achievable. Commercial spiral wound
modules have been developed for some solvent de-
hydration applications [9,22], but to our knowledge
spiral wound modules for bulk separation of hydrocar-
bons are not available. The polyurethane membrane
investigated in [4,5] appears to have the necessary
material properties to construct a spiral wound mod-
ule. In this paper, the spiral wound configuration is
assumed for derivation of the pervaporation model.
Indeed, it is likely that such a module configuration
would be required for styrene/ethylbenzene separa-
tions due to the large flow rates involved.

Transport models of pervaporation modules have
been proposed by several investigators. Rautenbach
and Albrecht [20,21] derive transport equations for a
hollow fiber module to study the pervaporative sepa-
ration of benzene and cyclohexane. The permeation
behavior is described by a solution–diffusion model
similar to that presented in Section 2.1. However, the
other transport equations are inappropriate for spiral
wound modules where the feed-side and permeate-side
flow directions are perpendicular and the problem is
two-dimensional. Hickey and Gooding [13] develop a
transport model to evaluate the performance of spiral
wound modules for pervaporative removal of volatile
organic compounds (VOCs) from water. Because
VOCs typically are present in small concentrations,
a very simple flux model based on Raoult’s law for
water and Henry’s law for the VOCs is proposed.
These assumptions are invalid for bulk hydrocarbon
separations where both components are present in ap-
preciable amounts and the mass transfer coefficients
are concentration and temperature-dependent. The
model in [13] consists of permeate-side mass and mo-
mentum balances as well as a feed-side VOC balance.
The momentum balance is crucial because permeate
pressure buildup has a strong effect on the mass trans-
fer driving force. By introducing several simplifying
assumptions, the transport equations are reduced to a
set of nonlinear ordinary differential equations with
mixed boundary conditions. However, the assump-
tions of constant feed-side flow rate and isothermal
operation are invalid for hydrocarbon separations.

In this paper, a transport model for spiral wound
pervaporation modules is derived by coupling a de-
tailed solution–diffusion model to differential mass,
momentum and energy balances on the feed and per-
meate sides of the module. We believe this is the
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most detailed pervaporation model available in the
open literature for describing bulk separation of bi-
nary mixtures with solution–diffusion membranes.
The model consists of coupled nonlinear ordinary
differential equations with two spatial coordinates
and mixed boundary conditions. Efficient and reliable
model solution is a non-trivial problem that motivates
the development of specialized numerical techniques
that exploit the unique structure of the model.

The remainder of the paper is organized as follows.
In Section 2, the solution–diffusion model is described
and a nonlinear least-squares estimation technique for
determining the model parameters from sorption and
flux data is presented. The solution–diffusion model
is evaluated for the separation of styrene and ethyl-
benzene with a polyurethane membrane. Differential
mass, momentum and energy balances for the feed and
permeate sides of the module are derived in Section
3. An iterative algorithm to solve the resulting nonlin-
ear differential equation model based on the use of the
shooting method in the permeate flow direction and
numerical integration in the feed flow direction is pro-
posed. In Section 4, the pervaporative separation of
styrene/ethylbenzene mixtures is used to illustrate the
modeling approach. A 10-module system with inter-
stage heating is simulated to demonstrate the potential
for hybrid pervaporation–distillation process develop-
ment.

2. Solution–diffusion model

The solution–diffusion model is the accepted
mechanism for describing permeation in polymer
membranes [15,25]. According to this mechanism,
pervaporation involves the following three steps: (i)
the liquid species are dissolved into the membrane
surface; (ii) the species diffuse through the membrane;
(iii) the species desorb from the downstream mem-
brane surface in the vapor phase. The solution and dif-
fusion models used in this paper are presented in Sec-
tions 2.1 and 2.2, respectively. Also discussed in these
subsections is the estimation of the solution–diffusion
model parameters from sorption and flux data. A
simple correlation model for capturing the effect of
the feed-side liquid boundary layer resistance on the
overall mass transfer coefficient is described in
Section 2.3.

2.1. Solution model

2.1.1. Theory
The component volume fractions sorbed into the

membrane are predicted from thermodynamic proper-
ties of the liquid–polymer mixture. The solution model
is based on Flory–Huggins theory [12] and utilizes the
interaction parameter equations proposed by Mulder
et al. [16]. When a polymer film is exposed to a pure
liquid, Flory–Huggins theory yields the following re-
lation for the pure component activityaP:

ln aP = ln(1 − φ2) +
(

1 − V1

V2

)
φ2 + χφ2

2 (1)

whereφ2 is the volume fraction of the polymer,V1
and V2 the molar volumes of the liquid and poly-
mer, respectively, andχ is the Flory–Huggins inter-
action parameter. The Gibbs free energy of mixing
�Gmix of a ternary system comprised of a binary liq-
uid mixture and a polymer membrane can be expressed
as

�Gmix

RT
= n1 ln φ1 + n2 ln φ2 + n3 ln φ3 + χ12n1φ2

+χ13n1φ3 + χ23n2φ3 (2)

where the subscripts 1 and 2 denote the liquid com-
ponents and the subscript 3 denotes the polymer,ni

andφi the mole fraction and volume fraction, respec-
tively, of componenti, χij the interaction parameter
between componentsi andj , T the temperature, and
R is the gas constant. The volume fractionφi is defined
as

φi = niVi∑3
i=1niVi

As discussed below, the interaction parametersχij are
allowed to be concentration-dependent.

The interaction parameterχ12 between the two
liquid components can be calculated using excess
functions. The following equation holds for binary
mixtures [18]:

�Gmix

RT
= x1 ln x1 + x2 ln x2 + GE

RT
(3)

where GE is the excess Gibbs free energy, andxi
is the mole fraction of componenti in the liquid
phase. The free energy of mixing of the binary
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mixture can be calculated using Flory–Huggins theory
[12]:

�Gmix

RT
= x1 ln Ψ1 + x2 ln Ψ2

+χ12Ψ1Ψ2

(
x1 + x2

V2

V1

)

whereΨi is the volume fraction of componenti in
the liquid phase:

Ψ1 = V1x1

V1x1 + V2x2
, Ψ2 = V2x2

V1x1 + V2x2

The excess Gibbs free energy can be expressed as

GE

RT
= x1 ln γ L

1 + x2 ln γ L
2 (4)

whereγ L
i = aL

i /xi is the activity coefficient of com-
ponenti in the liquid phase, andaL

i is the activity
of componenti in the liquid phase. The liquid phase
activities are estimated from vapor–liquid equilibrium
data using the two-suffix Margules equation [18]:

RTln γ L
1 = Ax2

2, RTln γ L
2 = Ax2

1 (5)

The Margules constantA is determined from
vapor–liquid equilibrium data using the following
equation:

P sat=
2∑

i=1

xiγ
L
i P sat

i

= x1P
sat
1 exp

[
A

RT
x2

2

]
+ x2P

sat
2 exp

[
A

RT
x2

1

]
(6)

whereP sat is the vapor pressure of the binary mixture,
andP sat

i is the temperature-dependent vapor pressure
of pure componenti. The following equation forχ12
is readily derived by combining Eqs. (3)–(5):

χ12 = 1

x1Ψ2

[
x1 ln

(
x1

Ψ1

)
+ x2 ln

(
x2

Ψ2

)
+ Ax1x2

RT

]
(7)

The interaction parametersχ13 andχ23 between the
liquid components and the polymer in the ternary
mixture can be determined from solubilities of the
pure liquids in the polymer. From Eq. (1) it follows
that the activity of pure componenti in the polymer is

ln aP
i = ln(1−φbi

3 )+
(

1 − Vi

V3

)
φbi

3 + χb
i3(φ

bi
3 )2 (8)

where the superscript ‘b’ denotes a binary property of
the ternary mixture, and the superscript ‘bi’ denotes a
binary property between liquid componenti and the
polymer in the ternary mixture. Equilibrium between
the polymer phase and the pure liquid phase requires
that

aP
i = aL

i = 1

The following equation for the binary interaction
parameterχb

i3 is obtained from Eq. (8):

χb
i3 = − ln(1 − φbi

3 ) − (1 − (Vi/V3)) φ
bi
3

(φbi
3 )2

(9)

The polymer volume fractionφbi
3 for a binary mixture

of polymer and liquid componenti is calculated as

φbi
3 = 1

(Sb
i /ρi) + 1

whereSb
i is the solubility of pure componenti in the

polymer, andρi is the density of componenti. Typ-
ically the ternary interaction parametersχi3 depend
on the component concentrations in the polymer.
They are calculated from the binary interaction pa-
rameterχb

i3 using the empirical relation proposed in
[16]:

χ13 = χb
13 + a1u

2
2 + a2u2 + a3(φ3 − φb1

3 ) (10)

χ23 = χb
23 + b1u

2
1 + b2u1 + b3(φ3 − φb2

3 ) (11)

whereui is the volume fraction of componenti in the
polymer on a polymer free basis:

ui = φi

φ1 + φ2

As discussed below, the constant parametersaj andbj
can be estimated from solubility data for the ternary
mixture.

The relation (1) can be extended to the ternary sys-
tem that results when a polymer is exposed to a binary
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liquid mixture [17]:

ln aP
1 = ln φ1 + φ2 + φ3 − φ2

V1

V2
− φ3

V1

V3

+χ12φ2(φ2 + φ3) + χ13φ3(φ2 + φ3)

−χ23φ2φ3
V1

V2
− u1u2φ2

∂χ12

∂u2

−u1u2φ3
∂χ13

∂u2
− φ1φ

2
3
∂χ13

∂φ3

+V1

V2
u2

2φ3
∂χ23

∂u1
− V1

V2
φ2φ

2
3
∂χ23

∂φ3

+V1ρ3

Mc

(
1 − 2Mc

M

)(
φ

1/3
3 − 1

2
φ3

)
(12)

ln aP
2 = ln φ2 + φ1 + φ3 − φ1

V2

V1
− φ3

V2

V3

+χ12φ1
V2

V1
(φ1 + φ3) + χ23φ3(φ1 + φ3)

−χ13φ1φ3
V2

V1
− V2

V1
u2

1φ2
∂χ12

∂u2

+V2

V1
u2

1φ3
∂χ13

∂u2
− V2

V1
φ1φ

2
3
∂χ13

∂φ3

−u1u2φ3
∂χ23

∂u1
− φ2φ

2
3
∂χ23

∂φ3

+V2ρ3

Mc

(
1 − 2Mc

M3

)(
φ

1/3
3 − 1

2
φ3

)
(13)

whereρ3 is the density of the polymer,M3 the molec-
ular weight of the polymer, andMc is the molecular
weight between two crosslinks of the polymer. For the
PHS-based polyurethane membrane discussed previ-
ously, Mc is taken as the molecular weight of PHS
andM3 is assumed to be very large compared toMc.
Equilibrium between the polymer phase and the bi-
nary liquid phase requires that

aL
1 = aP

1 , aL
2 = aP

2 (14)

As shown below, Eqs. (12)–(14) allow the volume
fractionsφi to be computed.

2.1.2. Estimation of the solution model parameters
Solubilities of the two liquid components in the

polymer are obtained by solving Eqs. (12) and (13) for
the volume fractionsφ1 andφ2. These two nonlinear
algebraic equations can be represented as

f1(a
P
1 , φ1, φ2, φ3, χ12, χ13, χ23) = 0 (15)

f2(a
P
2 , φ1, φ2, φ3, χ12, χ13, χ23) = 0 (16)

Clearly the volumes fractions must sum to unity:

φ1 + φ2 + φ3 = 1 (17)

The activitiesaP
i are determined from Eqs. (5) and

(14) as follows:

aP
1 = aL

1 = x1γ
L
1 = x1 exp

(
Ax2

2

RT

)

aP
2 = aL

2 = x2γ
L
2 = x2 exp

(
Ax2

1

RT

)

The interaction parameterχ12 is determined from
Eq. (7), while the interaction parametersχ13 andχ23
are computed from Eqs. (9)–(11). The five nonlin-
ear algebraic equations (10)–(13) and (17), are solved
simultaneously to yield the volume fractionsφ1 and
φ2. We use the MATLAB nonlinear equation solver
fsolve for this purpose.

To determine solubilities of the two components
in the polymer, it is necessary to obtain the required
physical property data and to estimate the unknown
parameters of the solution model. The unknown pa-
rameters are the Margules constant (A) and the six
constants (a1, a2, a3, b1, b2, b3) associated with the
ternary interaction parameters. The Margules parame-
ter is estimated from the nonlinear algebraic equation
(6) using vapor–liquid equilibrium data for the binary
liquid mixture. This equation can be represented as

f3(T , P, x1, x2, A) = 0 (18)

Given vapor–liquid equilibrium data over a range of
liquid compositions, the constantA is determined by
solving the following nonlinear optimization problem:

min
A

N∑
j=1

[f3(Tj , Pj , x1,j , x2,j , A)]2 subject to

0 < A ≤ Au (19)

whereN is the number of data points,Pj , Tj , x1,j
andx2,j the experimental values of the pressure, tem-
perature, component 1 mole fraction, and component
2 mole fraction, respectively, for thej th data point,
andAu is an upper bound on the estimate of A. This
problem is solved using the MATLAB nonlinear con-
strained optimization routinefmincon.
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Estimates of the six constants associated with the
ternary interaction parameters are generated similarly.
The nonlinear algebraic equations (10) and (11) can
be represented as

f4(χ13, χ
b
13, φ

b1
3 , u2, φ3, a1, a2, a3) = 0 (20)

f5(χ23, χ
b
23, φ

b2
3 , u1, φ3, b1, b2, b3) = 0 (21)

Assume the availability of solubility data in mass of
componenti sorbed per unit mass of polymer for the
ternary mixture over a range of liquid compositions.
Given the densities of the liquid components and the
polymer, the binary solubility of componenti in mass
of componenti sorbed per unit volume of polymer
(Sb

i ) and the ternary solubility of componenti in vol-
ume of componenti sorbed per unit volume of poly-
mer (Si) are readily computed. The binary polymer
volume fractionsφbi

3 and binary interaction parame-
tersχb

i3 are calculated from the binary solubilities. The
ternary solubilities are used to compute the ternary
volume fractionsφi . The set of algebraic equations

Fig. 1. Effect of feed concentration on styrene and ethylbenzene uptake in the polyurethane membrane.

used to formulate the nonlinear least-squares estima-
tion problem is obtained by combining Eqs. (20) and
(21) with Eqs. (15)–(17). The decision variables in the
optimization are the unknown constantsa1, a2, a3, b1,
b2, andb3. The optimization problem is solved using
the MATLAB routinefmincon.

2.1.3. Styrene/ethylbenzene pervaporation membrane
In previous research by the first author [4,5], PHS

was used to synthesize a styrene selective pervapora-
tion membrane for styrene/ethylbenzene separations.
A polyurethane membrane of thickness 50�m was
prepared by crosslinking PHS with multifunctional
polyisocyanate. The permeation properties of the
polyurethane membrane were investigated via sorp-
tion and flux experiments. Fig. 1 shows the styrene
and ethylbenzene uptakes in the membrane as a func-
tion of the feed styrene concentration. The styrene
uptake increases with increasing feed styrene con-
centration, while the ethylbenzene uptake exhibits a
maximum due to the effects of membrane swelling.
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Table 1
Pure component physical property data

Property Styrene Ethylbenzene Polyurethane membrane

Molar volume (cm3/mol) 115.0 122.4 –
Density (g/cm3) 0.9060 0.8670 0.96
Liquid viscosity (cP) 0.725 0.6428 –
Heat capacity (J/g K) 1.6907 1.752 –
Heat of vaporization (J/g) 421.7 335.0 –
Solubility (g/g polymer) 0.307 0.014 –

Clearly the sorption mechanism favors styrene per-
meation.

The sorption data in Fig. 1 allow determination
of the solution model parameters using the nonlin-
ear estimation technique described above. Pure com-
ponent physical property data are listed in Table 1.
The Margules constantA is determined by solving
the nonlinear optimization problem (19). The neces-
sary vapor–liquid equilibrium data is shown in Table 2
along with the Antoine equations used to compute the
pure component vapor pressures [6]. The estimate ob-
tained isA = 163.9 Pa/mol K.

The constantsaj andbj are estimated from the data
in Fig. 1 expressed as mass of componenti sorbed
per unit mass of polymer. From these estimates the
volume fractionsφi of the ternary mixture are com-
puted. Because there are only six data points available
to estimate the six unknown parameters, there are no
degrees of freedom for optimization. In this case, the
parameter estimation problem is reduced to solving a
set of coupled nonlinear algebraic equations. The re-
sulting expressions for the ternary interaction param-
eters are as follows:

χ13 = 1.142− 8.951u2
2 + 5.866u2

−5.652(φ3 − 0.754)

Table 2
Vapor–liquid equilibrium data for styrene/ethylbenzene mixtures at atmospheric pressure (1= styrene; 2= ethylbenzene)a

Temperature (◦C)

25.88 26.92 27.73 28.27 29.15 30.60 31.68 32.40

x2 1.0 0.777 0.6505 0.575 0.433 0.222 0.0825 0.000
y2 1.0 0.835 0.732 0.6625 0.535 0.310 0.128 0.000

a Vapor pressure equations areP sat
1 mm Hg = 10 exp(7.2788−(1649.6/(230+T ◦C))) andP sat

2 = 10 exp(6.95366−(1421.914/(212.931+
T ◦C))).

χ23 = 3.297+ 13.537u2
1 − 11.157u1

+8.694(φ3 − 0.984)

The predicted volume fractions obtained with the es-
timated parameters are shown in Fig. 2. The model
provides very accurate predictions of this admittedly
limited data set. Note that, the model captures the
maximum in the ethylbenzene volume fraction. We
have found that this effect cannot be captured with
interaction parameter equations simpler than those in
Eqs. (10) and (11).

2.2. Diffusion model

2.2.1. Theory
The component volume fractions obtained from the

solution model are used to calculate component fluxes
under the idealized conditions that the feed-side com-
position and temperature are constant and the perme-
ate side of the membrane is maintained at vacuum.
As shown in Section 2.3, these idealized fluxes can
be used to compute membrane mass transfer coeffi-
cients that allow the calculation of component fluxes
under the varying feed and permeate stream conditions
encountered in a spiral wound pervaporation module.
The diffusion model is based on the six parameter
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Fig. 2. Comparison of experimental and predicted solubilities of styrene and ethylbenzene in the polyurethane membrane.

diffusion coefficient equations for binary liquid mix-
tures proposed by Brun et al. [3]. Under the assump-
tion of moderate membrane swelling, diffusion of a
pure liquid in a polymer membrane can be described
by the following form of Fick’s law:

J = − D

1 − φ

dC

dz
(22)

whereJ is the mass flux,z the direction of the flux,
C the mass concentration of the diffusing species,φ

the volume fraction of the species in the membrane,
andD is the diffusion coefficient. For binary liquid
mixtures, Eq. (22) holds for each componenti:

Ji = − Di

1 − φi

dCi

dz
(23)

The diffusion coefficientDi may depend on the con-
centration of each component in the mixture. To ac-
count for this possibility, the identityCi = ρiφi is
used to rewrite Eq. (23) as

Ji dz = − ρiDi

1 − φi

dφi (24)

whereρi is the density of componenti. At z = 0 the
volume fractionφi is equal to the sorption value, which
is denoted here asφ0

i . The volume fraction on the
permeate side of the membrane is approximately zero
if the permeate pressure is maintained near vacuum.
Under the assumption thatDi is constant, integration
of Eq. (24) fromz = 0 to z = l yields

J ∗
i l = ρiDi ln(1 − φ0

i )

where l is the membrane thickness, andJ ∗
i denotes

the component flux obtained with a permeate vac-
uum. This equation suggests that a plot ofJ ∗

i l versus
ln(1 − φ0

i ) should produce a straight line. If the rela-
tionship is significantly nonlinear, thenDi is a function
of the component concentrations in the membrane.
In this case, the functional form of the concentration
dependence can be deduced from the shape of the
curve [7].
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Fig. 3. Effect of feed concentration on flux and selectivity of the polyurethane membrane.

The procedure is illustrated for a polyurethane
membrane of thickness 50�m. Component fluxes
J ∗
i are obtained from the flux and selectivity data

[4] shown in Fig. 3. Note that the styrene selectivity
decreases rapidly as the feed styrene concentration is
increased due to a loss of sorption selectivity. This
indicates that the polyurethane membrane is most
appropriate for bulk separation of styrene and ethyl-
benzene. Fig. 4 suggests that the styrene diffusion co-
efficient has an exponential concentration dependence.
An appropriate functional form for the concentration
dependence of the ethylbenzene diffusion coefficient
is less clear. Based on the styrene behavior, we utilize
the six parameter diffusion coefficient model proposed
by Brun et al. [3] for both components. The diffusion
coefficients are assumed to depend exponentially on
the concentration of each component:

D1 = D0
1 exp(A11C1 + A12C2) (25)

D2 = D0
2 exp(A21C1 + A22C2) (26)

whereD0
i are diffusion coefficients at infinite dilution,

and theAij are constant parameters. As shown below,
these six parameters can be estimated from sorption
and flux data.

2.2.2. Estimation of the diffusion model parameters
The equations used to compute the component

fluxes are obtained by combining Eqs. (25) and (26)
with Eq. (24):

J1 dz = −D0
1ρ1

exp(A11φ1 + A12φ2)

1 − φ1
dφ1

J2 dz = −D0
2ρ2

exp(A21φ1 + A22φ2)

1 − φ2
dφ2

These equations are integrated fromz = 0 whereφi =
φ0
i to z = l whereφi = 0:

J ∗
1 = −D0

1ρ1

l

∫ 0

φ0
1

exp(A11φ1 + A12φ2)

(1 − φ1)
dφ1 (27)
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Fig. 4. Concentration dependence of the styrene and ethylbenzene diffusion coefficients.

J ∗
2 = −D0

2ρ2

l

∫ 0

φ0
2

exp(A21φ1 + A22φ2)

(1 − φ2)
dφ2 (28)

Approximation of the integrals using Gaussian quadra-
ture [10] yields

J ∗
1 ≈ −D0

1ρ1

l

M∑
k=1

exp(A11φ1,k + A12φ2,k)

(1 − φ1,k)
wk (29)

J ∗
2 ≈ −D0

2ρ2

l

M∑
k=1

exp(A21φ1,k + A22φ2,k)

(1 − φ2,k)
wk (30)

where M is the number of quadrature points,wk

the quadrature weight at the quadrature pointξk, the
quadrature pointsξk ∈ [0,1] are obtained as roots of
the appropriate Jacobi polynomial, and

φ1,k = (1 − ξk)φ
0
1, φ2,k = (1 − ξk)φ

0
2

Given the diffusion model parameters, the equations
above allow the component fluxesJ ∗

i to be computed

from the volume fractionsφ0
i supplied by the solution

model.
Parameters of the diffusion coefficient model

are estimated from sorption and flux data. Given
a set of N data points {J ∗

1,j , J
∗
2,j , φ

0
1,j , φ

0
2,j },

the nonlinear algebraic equations (29) and (30)
are rewritten for each data point to yield 2N

equations in the six unknown parametersθ =
[D0

1D
0
2A11A12A21A22]T. The parameters are deter-

mined by solving the nonlinear least-squares estima-
tion problem:

min
θ

N∑
j=1

[J ∗
j − Ĵ ∗

j ]T[J ∗
j − Ĵ ∗

j ]

where J ∗
j = [J ∗

1,j J
∗
2,j ]T and Ĵ ∗

j = [Ĵ ∗
1,j Ĵ

∗
2,j ]T

are experimental and predicted values, respec-
tively, of the component fluxes. The minimiza-
tion is performed subject to nonlinear equality
constraints derived from the 2N component flux
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equations. We use the MATLAB routinefmincon
to solve the constrained nonlinear optimization prob-
lem.

2.2.3. Styrene/ethylbenzene pervaporation membrane
The diffusion model is used to predict the styrene

and ethylbenzene fluxes of a polyurethane membrane
of 50�m thickness. The diffusion model parameters
are estimated from the sorption and flux data in Figs. 1
and 3, respectively. There are a total of 10 data points
(styrene and ethylbenzene data for five styrene feed
concentrations) available to estimate the six unknown
parameters. The estimated parameter values are listed
in Table 3. Styrene has a slightly higher diffusion co-
efficient at infinite dilution than does ethylbenzene.
On the other hand, the ethylbenzene diffusion coef-
ficient increases more rapidly with increasing ethyl-
benzene concentration than does the styrene diffusion
coefficient with increasing styrene concentration. The
ethylbenzene diffusion coefficient is significantly re-
duced by increasing styrene concentration, while the

Fig. 5. Comparison of experimental and predicted component fluxes in the polyurethane membrane.

Table 3
Diffusion coefficient model parameters

Component D0 (m2/s) Aii Aij

Styrene 8.78× 10−12 19.9 −0.06
Ethylbenzene 8.13× 10−12 58.5 −13.7

styrene diffusion coefficient is virtually unaffected by
the ethylbenzene concentration. As a result of this be-
havior, sorption rather than diffusion is the primary
mechanism that controls the styrene permselectivity
of the polyurethane membrane [4].

In Fig. 5, component flux data are compared to cal-
culated fluxes derived from the estimated parameters
in Table 3. The diffusion model provides accurate pre-
dictions of both fluxes given the diffusion coefficient
form used for ethylbenzene and the limited number
of data points available. Note that the model is able
to predict the maximum in the ethylbenzene flux. We
have found that this effect cannot be captured if the
coupling terms (A12, A21) are zero.
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2.3. Overall mass transfer coefficient

In addition to the polymer solution–diffusion prop-
erties, the permselectivity of a pervaporation mem-
brane can be affected strongly by boundary layer
resistances. It is generally accepted that the mass
transfer resistance on the permeate side is negligible
because the permeate stream is in the vapor phase.
By contrast, the feed-side liquid boundary layer re-
sistance can dominate the membrane resistance for
low Reynolds number flows [19]. Using a simple
resistance-in-series model [13], the overall mass
transfer coefficients are calculated as
1

kti
= 1

kmi

+ 1

kl
(31)

where kti is the overall mass transfer coefficient of
componenti, kmi the membrane mass transfer coef-
ficient of componenti, and kl is the mass transfer
coefficient associated with the liquid boundary layer.

The membrane mass transfer coefficient is com-
puted as follows. Under the assumptions of negligible
boundary layer resistance and ideal liquid and vapor
behavior,kmi is related to the component fluxJi as

Ji = kmi (xiP
sat
i − yiP ) (32)

wherekmi is expressed in units of s/m,xi andyi the
liquid and vapor compositions, respectively, of compo-
nenti, P the permeate pressure andP sat

i is the satura-
tion pressure of componenti at temperatureT . Recall
that the component fluxJ ∗

i in the solution–diffusion
model is computed assuming the permeate side of the
membrane is maintained at vacuum. This leads to the
following simplification of Eq. (32):

J ∗
i = kmixiP

sat
i (33)

The idealized component fluxJ ∗
i is computed at a

fixed reference temperatureT0. The following phe-
nomenological relation [20] is used to account for
temperature variations encountered in a spiral wound
pervaporation module:

J ∗
i (T ) = J ∗

i (T0)exp

[
−Ei

R

(
1

T
− 1

T0

)]
(34)

whereJ ∗
i (T0) is the idealized flux of componenti that

is obtained from the solution–diffusion model,J ∗
i (T )

the temperature corrected idealized flux of compo-
nent i, andEi is the activation energy of component

i. This relation suggests that a plot of lnJ ∗
i (T ) ver-

sus(1/T ) − (1/T0) should yield a straight line with
slope−(Ei/R). Fig. 6 illustrates the procedure for a
polyurethane membrane of thickness 50�m. The re-
quired temperature-dependent flux data are obtained
from [4] for a feed styrene mole fractionxf = 0.5.
The reference temperature is chosen asT0 = 25◦C.
Both styrene and ethylbenzene exhibit an exponential
dependence on temperature. The estimated activa-
tion energies listed in Table 4 demonstrate that the
ethylbenzene flux is more strongly affected by tem-
perature than is the styrene flux. The membrane mass
transfer coefficient is calculated from the temperature
corrected idealized flux as follows:

kmi = J ∗
i (T )

xiP
sat
i

(35)

It is important to emphasize that Eq. (35) is used only
for calculation ofkmi .

The liquid boundary layer resistance is estimated
from the following empirical relations [1]:

• local value for laminar flow:

Sh= k̃lx

Dl
12

= 0.33Re1/2Sc1/3

• average value for laminar flow:

ShL = k̂lL

Dl
12

= 0.66Re1/2
L Sc1/3

• local value for turbulent flow:

Sh= k̃lx

Dl
12

= 0.0292Re4/5Sc1/3

• average value for turbulent flow:

ShL = k̂lL

Dl
12

= 0.0365Re4/5
L Sc1/3

whereShandShL are the local and average Sherwood
numbers, respectively,̃kl andk̂l the local and average
liquid boundary layer mass transfer coefficients, re-
spectively, expressed in units of m/s,x the distance
from the module entrance,L the length of the mod-
ule, andDl

12 is the diffusion coefficient of the two
liquid phase components calculated using the method
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Fig. 6. Temperature dependence of the styrene and ethylbenzene fluxes.

Table 4
Model parameters for temperature-dependent flux

Component E (J/mol) J0 (kg/m2 h)

Styrene 1.343× 104 17.286
Ethylbenzene 2.986× 104 7.147

in [23]. The Reynolds numbersRe and ReL and the
Schmidt numberScare defined as

Re= xvρl

µl
, ReL = Lvρl

µl
, Sc= µl

ρlD
L
12

wherev is the feed-side liquid stream velocity, and
µl andρl are the viscosity and density, respectively,
of the liquid. Because the feed-side properties vary in
the x-direction, the local mass transfer coefficientk̃l
is used to calculate the overall mass transfer coeffi-
cient kti . The average mass transfer coefficientk̂l is
introduced simply for convenience in presenting the

subsequent simulation results. Note that the local and
average mass transfer coefficients are different even at
x = L.

The overall mass transfer coefficient is used to cal-
culate component fluxes for operating conditions en-
countered in an actual spiral wound pervaporation
module with non-zero permeate pressure and liquid
boundary layer resistance. The component flux equa-
tion is a straightforward generalization of Eq. (32):

Ji = kti (xiP
sat
i − yiP ) (36)

wherekti is expressed in units of s/m. It is important
to emphasize that the component fluxes vary with both
the feed-side and permeate-side stream conditions.

3. Spiral wound pervaporation model

To predict the separation performance of a spiral
wound pervaporation module, the solution–diffusion
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model must be combined with mass, momentum and
energy balances that govern the module transport
behavior. The component fluxes produced by the
solution–diffusion model vary with the feed-side and
permeate-side stream conditions. Therefore, trans-
port equations must be derived for both the feed
and permeate sides of the module. For bulk hydro-
carbon separations, the proposed model will yield
more accurate predictions than the simpler pervapo-
ration model in [13], that is based on a constant mass
transfer coefficient and includes only permeate-side
balances. The feed-side and permeate-side transport
equations are derived in Section 3.1. The resulting
model consists of a coupled set of nonlinear ordinary
differential equations with two spatial coordinates and
mixed boundary conditions. A numerical procedure
for solving the pervaporation model is presented in
Section 3.2.

3.1. Module transport equations

Fig. 7 depicts permeation of a binary mixture
through an extended membrane leaf of a spiral wound
pervaporation module. The bulk feed flow is in

Fig. 7. Extended membrane leaf of a spiral wound pervaporation module.

the x-direction while the bulk permeate flow is the
y-direction. Permeation through the membrane takes
place in thez-direction. The mass transfer driving
force is reduced along thex-direction as the feed
becomes depleted in the more permeable component,
while it is increased along they-direction as the per-
meate pressure decreases. Because there is momentum
transport in thez-direction due to flux through the
membrane, the feed-side and permeate-side stream
properties can be viewed as varying with respect to
all three spatial coordinates. This would yield a very
complex modeling problem and the resulting partial
differential equation model would not be amenable to
numerical solution.

In this paper, the module transport equations are
derived under the following simplifying assumptions:

1. Feed-side variations in they-direction are small.
2. Permeate-side variations in thex-direction are

small.
3. Feed-side and permeate-side variables can be aver-

aged with respect to thez-direction.
4. Feed-side and permeate-side diffusion are negligi-

ble compared to convection.
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5. The feed liquid is an ideal solution.
6. The permeate vapor is an ideal gas.

The first two assumptions imply that feed-side and
permeate-side variables vary primarily in the direc-
tion of bulk feed and permeate flow, respectively.
This is a reasonable simplification for momentum
related variables such as velocity. These assumptions
may appear to be questionable for the feed and per-
meate concentrations since the driving force for mass
transfer varies with respect to both flow directions.
This effect is captured in the transport model by al-
lowing the component fluxes to vary with respect to
both x andy. Therefore, the feed-side concentration
and permeate-side concentration depend indirectly
on they-direction andx-direction, respectively, due
to their coupling through the component fluxes. It is
worth noting that these assumptions also are invoked
by Hickey and Gooding [13] in their spiral wound
pervaporation model for removal of volatile organic
compounds from water. The third assumption is com-
monly used in transport models where the description
of such spatial variations is considered unnecessary.
The fourth assumption is reasonable for convection
dominated flows that are expected in bulk hydrocar-
bon separations. The validity of the fifth assumption
is dependent on the particular components in the bi-
nary mixture. It is a reasonable simplification for the
styrene/ethylbenzene mixtures considered in this pa-
per [6]. The sixth assumption is reasonable due to the
low pressures and moderate temperatures typically
present on the permeate side of the module.

3.1.1. Feed-side balances
First, the feed-side momentum balance is derived.

To generate a suitable differential equation for the
feed-side velocity, it is necessary to determine the
feed-side pressure drop that results from flux across
the membrane. Because permeation occurs in the
z-direction, thex-component of the velocityvx varies
with z and thez-component of the velocityvz is
non-zero. However,vz � vx , since, the permeation
flux typically is much smaller than the convective
flux. Also note that feed-side flow takes place in a
narrow channel, since the module lengthL is much
greater than the widthW . These conditions allow the
use of the lubrication approximation under which the
feed-side momentum balance is reduced to [8]

∂2vx

∂z2
= 1

µl

dP

dx
(37)

where the feed-side pressureP is independent ofz
and the liquid viscosityµl is assumed to be constant.
When combined with a feed-side mass balance and
appropriate boundary conditions on the velocity, this
equation allows the calculation of bothvx(x, z) and
P(x). As shown in Appendix A, the following equa-
tions for the pressure and thez-averaged velocityv(x)
are obtained by neglecting frictional effects:

dP

dx
= −12µlv

W2
(38)

dv

dx
= −2J̃Mp

ρpW
(39)

whereJ̃ is the total molar flux through the membrane,
and W is the width of the membrane element. The
molecular weightMp and densityρp of the local per-
meate are computed from the component molar fluxes
J̃1 andJ̃2:

Mp = M1J̃1 + M2J̃2

J̃1 + J̃2
(40)

ρp = M1J̃1 + M2J̃2

(M1J̃1/ρ1) + (M2J̃2/ρ2)
(41)

where M1 and M2 are the component molecular
weights, andρ1 andρ2 are the pure component den-
sities. The molar fluxes are related to the mass fluxes
introduced in the solution–diffusion model as

J̃1 = J1

M1
, J̃2 = J2

M2
,

J̃ = J̃1 + J̃2 = J1

M1
+ J2

M2
(42)

A feed-side mass balance on componenti over the
differential element�x and�y yields

W �y(nix|x − nix|x+�x) − 2�x�y J̃i = 0

wherenix is the feed-side component molar flux. Di-
viding by �x�y and taking the limit as�x → 0
yields

−W
∂nix

∂x
− 2J̃i = 0 (43)

The convective flux can be expressed as

nix = xinx = xiρ̃lv (44)
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wherenx is the total feed-side molar flux, andxi is the
feed-side component mole fraction. The liquid molar
densityρ̃l can be expressed as

ρ̃l = ρl

Ml

= (M1x1 + M2x2)/((M1x1/ρ1) + (M2x2/ρ2))

M1x1 + M2x2

= 1

(M1x1/ρ1) + (M2x2/ρ2)
(45)

whereρl is the liquid mass density, andMl is the liquid
molecular weight. Substitution of Eqs. (44) and (45)
into Eq. (43) yields

xi

(Mixi/ρi) + (Mj (1 − xi)/ρj )

dv

dx

+Mj

ρj

v

[(Mixi/ρi) + (Mj (1 − xi)/ρj )]2
dxi
dx

= −2J̃i
W

(46)

The feed-side differential energy balance is written as

W �y[ρlC
L
pv(T − T0)|x − ρlC

L
pv(T − T0)|x+�x ]

+2�x�y J [λ + CL
p(T − T0)] = 0 (47)

whereT is the feed-side temperature,CL
p andλ the

heat capacity and latent heat of vaporization, respec-
tively, of the liquid mixture,T0 the reference temper-
ature, and the mass fluxJ is related to the molar flux
J̃ as in Eq. (42). This equation is derived by equating
the energy removed from the feed stream to the en-
ergy required to vaporize the permeate which fluxes
through the membrane. The heat capacity and heat of
vaporization are assumed to be constant for simplic-
ity. Dividing Eq. (47) by�x�y and taking the limit
as�x → 0 yields

d

dx
[ρlv(T − T0)] = 2J [λ + CL

p(T − T0)]

WCL
p

Expansion of the derivative yields

v(T − T0)
dρl

dxi

dxi
dx

+ ρl(T − T0)
dv

dx
+ ρlv

dT

dx

= 2J [λ + CL
p(T − T0)]

WCL
p

(48)

where dρl/dxi can be evaluated from Eq. (45). The dif-
ferential equations (39), (46) and (48) for the feed-side
velocity, composition and temperature are subject to
the following boundary conditions:

v(0) = vf , xi(0) = xf , T (0) = Tf

wherex = 0 denotes the location where feed is intro-
duced to the module, andvf , xf andTf are the veloc-
ity, composition and temperature, respectively, of the
feed stream.

3.1.2. Permeate-side balances
A permeate-side mass balance on componenti over

the differential element�x and�y is written as

W�x(miy|y − miy|y+�y) + 2�x�y J̃i = 0

wheremiy is the permeate-side component molar flux.
Dividing by �x�y and taking the limit as�y → 0
yields

−W
dmiy

dy
+ 2J̃i = 0 (49)

The convective flux can be expressed as

miy = yimy = yiρ̃vu (50)

wheremy is the total permeate-side molar flux,yi the
permeate-side component mole fraction, andu is the
permeate-side velocity. The vapor molar densityρ̃v is
calculated assuming ideal gas behavior:

ρ̃v = P

RTp
(51)

whereP and Tp are the permeate-side pressure and
temperature, respectively. Substitution of Eqs. (50)
and (51) into Eq. (49) yields

Pu
dyi
dy

+ yiP
du

dy
+ yiu

dP

dy
= 2J̃iRT

W
(52)

A permeate-side differential mass balance is written as

W�x(ρvu|y − ρvu|y+�y) + 2�x�y J̃Mv = 0

where the vapor molecular weightMv and vapor mass
densityρv are calculated as

Mv = M1y1 + M2y2 (53)

ρv = ρ̃vMv = P

RTp
Mv (54)



134 B. Cao, M.A. Henson / Journal of Membrane Science 197 (2002) 117–146

Dividing by �x�y and taking the limit as�y → 0
yields

−d(ρvu)

dy
+ 2MvJ̃

W
= 0 (55)

Substitution of Eqs. (53) and (54) into Eq. (55) and
expansion of the derivative produces

Pu(Mi − Mj)
dyi
dy

+ PMv
du

dy
+ uMv

dP

dy

= 2MvJ̃RT

W
(56)

The permeate-side momentum balance can be written
as [2]

d(ρvu
2)

dy
+ dτyy

dy
+ dP

dy
= 0 (57)

where the tensorτyy depends on the Fanning friction
factorf as

dτyy

dy
= 2ρvu

2

W
f (58)

The friction factor is computed as [2]

f = A

Ren
, Re= Wρvu

µv

whereA is a constant that depends on the module ge-
ometry, andµv is the viscosity of the vapor. In the sub-
sequent simulations, the parameters are chosen asn =
1 andA = 24. Substitution of Eqs. (53), (54) and (58)
into Eq. (57) and expansion of the derivatives produces

(Mi − Mj)Pu2 dyi
dy

+ 2uPMv
du

dy

+(Mvu
2 + RTp)

dP

dy
+ 2PMvu

2

W
f = 0 (59)

The differential equations (52) (56) and (59) for the
permeate-side composition, velocity and pressure are

subject to the following boundary conditions:

yi(0) = J̃i (0)

J̃ (0)
, u(0) = 0, P (H) = PH

where y = 0 and y = H denote the location of
the closed end and collection tube, respectively, on
the permeate side of the module, andPH denotes
the permeate pressure in the collection tube. The
boundary condition for the composition is determined
by the ratio of local molar fluxes because there is
no bulk permeate stream at the closed end of the
module.

3.2. Model solution

The pervaporation model consists of the six non-
linear ordinary differential equations (39), (46), (48),
(52), (56) and (59) with two spatial coordinates
and mixed boundary conditions. In this section, we
present a numerical solution procedure that yields
predictions of the feed-side velocity, composition
and temperature and the permeate-side composition,
velocity and pressure as a function of the feed and
permeate flow directions. First, the model is sim-
plified such that each differential equation contains
a single derivative. Straightforward but laborious
algebraic manipulations yield the following model
equations:

dxi
dx

= ρiVl(2J̃Mpxi − 2J̃iVlρp)

MjvWρp

dv

dx
= −2J̃Mp

Wρp

dT

dx
= − 2JMpλ

ρlvWCl
p

dyi
dy

= 2J̃iRTpMv − 2J̃RTpMpyi

WPuMj

du

dy
= 2RTp(RTpJ̃iMv − RTpJ̃iMj − RTpJ̃ yiMp − J̃ u2MpMjyi) − 2PMvu

3fyiMj

WPyiMj (Mvu2 − RTp)

dP

dy
= 2RTpu(MvJ̃Mpyi − M2

v J̃i + Mj J̃Mpyi + Mj J̃iMv) + 2PMvu
2fyiMj

WyiMj (Mvu2 − RTp)
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where the specific volume of the liquidVl is defined as

Vl = 1

ρl
= Mixi

ρi

+ M2x2

ρ2

Next the model equations are non-dimensionalized to
improve scaling and to reduce the number of param-
eters. Utilizing the scaling factors introduced in [13],
the dimensionless variables are defined as

x∗ = x

L
, y∗ = y

H
, x∗

i = xi,

v∗ = v

vf
, T ∗ = T

Tf
,

y∗
i = yi, u∗ = u

√
M1

RTp
, P ∗ = P

P sat
1

where the subscript 1 denotes the first component, and
Tp is the permeate temperature. The dimensionless
model equations are as follows:

dx∗
i

dx∗ = LρiVl(2J̃Mpx
∗
i − 2J̃iVlρp)

Mjv∗vfWρp

dv∗

dx∗ = −2LJ̃Mp

vfWρp

dT ∗

dx∗ = − 2LJMpλ

ρlv∗vf WCl
pTf

dy∗
i

dy∗ = H
√
M1/RTp(2J̃iRTpMv − 2J̃RTpMpy

∗
i )

WP∗P sat
1 u∗Mj

du∗

dy∗ = −H

√
M1

RTp

2RTp(RTpJ̃iMv − RTpJ̃iMj − RTpJ̃ y
∗
i Mp − J̃ u2MpMiy

∗
i ) − 2P ∗P sat

1 Mvu
3fy∗

i Mj

WP∗P sat
1 y∗

i Mj (Mvu2 − RTp)

dP ∗

dy∗ = H
2RTpu(MvJ̃Mpy

∗
i − M2

v J̃i + Mj J̃Mpy
∗
i + Mj J̃iMv) + 2P ∗P sat

1 Mvu
2fy∗

i Mj

WPsat
1 y∗

i Mj (Mvu2 − RTp)

where the mass component flux (36) expressed in
terms of the dimensionless variables is

Ji = kti (x
∗
i P

sat
i − y∗

i P
∗P sat

1 ) (60)

Recall that the molar component fluxesJ̃i can be com-
puted fromJi as in Eq. (42). The boundary conditions
become:

x∗
i (0) = xf (61)

v∗(0) = 1 (62)

T ∗(0) = 1 (63)

y∗
i (0) = J̃i (0)

J̃ (0)
(64)

u∗(0) = 0 (65)

P ∗(1) = PH

P sat
1

(66)

The input data required to solve the pervaporation
model are: (i) feed-side inlet composition, velocity
and temperature; (ii) permeate-side temperature and
outlet pressure; (iii) membrane element dimensions;
(iv) membrane thickness; (v) pure component ther-
modynamic properties; (vi) solution–diffusion model
parameters. Note that the feed-side and permeate-side
differential equations involve spatial derivatives only
with respect tox∗ andy∗, respectively. On the other
hand, the component fluxes vary with respect to both
x∗ andy∗, since the mass transfer rate depends on the
feed-side and permeate-side stream conditions. There-
fore, numerical solution of the dimensionless model
yields predictions of each dependent variable as a
function of both the feed and permeate flow directions.

The numerical solution algorithm is inspired by
the work of Hickey and Gooding [13]. The key ob-
servation is that the feed side is governed by initial
value differential equations, while the permeate side

is governed by boundary value differential equations.
This allows the development of a customized solution
algorithm in which numerical integration is used in
the feed flow direction and the shooting method is
used in the permeate flow direction. The spiral-wound
element is discretized in both thex∗ andy∗ directions
to produce a two-dimensional grid with elements of
length�x∗ and height�y∗. The number of grid points
in the x∗ and y∗ directions are denotednx + 1 and
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ny + 1, respectively, where

�x∗ = L

nx

, �y∗ = H

ny

The position on the grid is denoted by the pair(x∗
j , y

∗
j ),

where

x∗
j = j

�x∗

L
, 0 ≤ j ≤ nx

y∗
j = j

�y∗

H
, 0 ≤ j ≤ ny

Recall that feed-side and permeate-side variables vary
in both the feed and permeate flow directions due to
their coupling through the component fluxes. The feed
enters the module atx∗ = x∗

0 = 0, where the feed-side
compositionxi(x, y), velocity v(x, y) and tempera-
ture T (x, y) are known and constant with respect to
y∗ due to the boundary conditions (61)–(63):

x∗
i (0, y

∗
j ) = xf , v∗(0, y∗

j ) = 1, T ∗(0, y∗
j ) = 1

The permeate-side velocity at the closed end of
the module, wherey∗ = y∗

0 = 0 is known due to
the boundary condition (65):u∗(x∗

j ,0) = 0. The
permeate-side composition at any point(x∗

j ,0) is
calculated as follows. By substituting Eq. (60) ex-
pressed in terms of molar flux into the boundary
condition (64), the following quadratic equation for
the permeate-side composition of the first component
at the point(x∗

j ,0) can be derived:

a[y∗
1(x

∗
j ,0)]2 + by∗

1(x
∗
j ,0) + c = 0

The constants are defined as

a ≡ P ∗(x∗
j ,0)P sat

1 (kt1 − kt2),

b ≡ −[x∗
1(x

∗
j ,0)(kt1P

sat
1 − kt2P

sat
2 )

+P ∗(x∗
j ,0)P sat

1 (kt1 − kt2) + kt2P
sat
2 ],

c ≡ x∗
1(x

∗
j ,0)kt1P

sat
1

where the subscripts 1 and 2 denote the first compo-
nent and second component, respectively. Only one
solution of the quadratic equation is physically mean-
ingful:

y∗
1(x

∗
j ,0) = −b − √

b2 − 4ac

2a

The feed-side boundary conditions are used to com-
pute the permeate-side variables at the points(0, y∗

j )

using the shooting method. The overall mass transfer
coefficientkti (0, y∗

j ) is computed from the feed-side
boundary conditions. An initial guess of the unknown
permeate-side pressure at the point(0,0) is generated
using the method of Rautenbach and Albrecht [21].
This yields the relation

P ∗
0 (0,0) ≈

√
[P ∗(1)P sat

1 ]2 + 24RTpJ (0,0)µvH 2

W2

(67)

where the fluxJ (0,0) is estimated from Eq. (60)
by replacing P ∗(0,0) with P ∗(1). The estimated
pressureP ∗

0 (0,0) from Eq. (67) and the feed-side
compositionx∗(0,0) are used to compute the com-
ponent fluxesJi(0,0). Then the three dimensionless
permeate-side differential equations are integrated
from y∗ = 0 toy∗ = �y∗ assuming the feed-side and
permeate-side properties are approximately constant
over this small interval. We use the variable step size
integratorODESSA with a fixed output interval to
achieve high accuracy with a reasonably coarse grid.
The permeate-side compositiony∗

i (0,�y∗) and pres-
sureP ∗(0,�y∗) are used to compute the component
flux Ji(0,�y∗), and the permeate-side differential
equations are integrated fromy∗ = �y∗ to y∗ =
2�y∗. This procedure is continued up to the point
(0,1) where the permeate collection tube is located.
If the difference between the estimated permeate-side
pressure at the collection tube and the associated
boundary condition satisfies|P ∗(0,1) − P ∗(1)| > ε,
the estimated permeate pressure at the closed-end of
the module is updated as follows:

P ∗
k+1(0,0) = P ∗

k (0,0) − β

where P ∗
k (0,0) denotes the estimated value of

P ∗(0,0) at thekth iteration of the shooting method,
andβ is a constant value. Albeit somewhat inefficient
compare to more sophisticated updating techniques,
this simple method leads to convergence because the
initial estimatedP ∗

0 (0,0) given by (67) invariably is
too large. The shooting calculation is repeated using
the updated permeate pressure value until conver-
gence is achieved. This yields the component fluxes
as well as the permeate-side composition, velocity
and pressure at the points(0, y∗

j ).
Using the component fluxesJi(0, y∗

j ) and the
feed-side boundary conditions, the three dimension-
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less feed-side differential equations are integrated
from x∗ = 0 to x∗ = �x∗ assuming the feed-side
and permeate-side properties are approximately con-
stant. This yields the feed-side composition, veloc-
ity and temperature at the points(�x∗, y∗

j ). The
permeate-side velocity and composition at the point
(�x∗,0) are determined as before. The initial guess
of the permeate pressure at the closed-end of the
module is estimated from the converged solution at
the point (0,0): P ∗(�x∗,0) ≈ P ∗(0,0). Then the
shooting method is used to obtain convergence of
the permeate-side variables at the points(�x∗, y∗

j ).
These results are used to integrate the feed-side equa-
tions fromx∗ = �x∗ to x∗ = 2�x∗. This procedure
continues up the points(1, y∗

j ) where the feed stream
exits the module.

4. Simulation studies

4.1. Results

The proposed model is used to predict the perfor-
mance of a spiral wound pervaporation module for
the separation of binary styrene/ethylbenzene mix-
tures. The solution–diffusion model parameters de-
rived previously for the polyurethane membrane are
used in the simulation studies. Table 5 lists the other
model parameters and the nominal operating condi-
tions whereFf is the feed mass flow rate. Note that
the two-dimensional grid used for numerical solution
of the differential equation model consists of 10,000
points. A single simulation requires approximately
50 min of CPU time on a 550 MHz Pentium III proces-
sor. The simulation time can be reduced below 10 min-

Table 5
Model parameters and nominal operating conditions for simulation
studies

Parameter Value Parameter Value

xf 0.5 L (cm) 100
Ff (g/s) 2000 H (cm) 500
vf (cm/s) 4.52 W (cm) 0.5
Tf (K) 298.15 l (�m) 1.0
Tp (K) 298.15 nx 100
PH (Pa) 66.65 ny 100
ε 10−5 β 10−4

Table 6
Dependent variables at the four corners of the membrane leaf

Variable Location

(0,0) (L,0) (0, H) (L,H)

x1 0.5 0.4955 0.5 0.4950
v 4.52 4.373 4.52 4.366
T 298.15 290.48 298.15 290.39
y1 0.6740 0.6023 0.6748 0.603
u 0 0 3858 2291
P 77.83 66.65 72.82 66.65

utes by increasing the tolerance for the permeate-side
shooting calculation toε = 10−4.

The feed-side styrene composition, feed-side tem-
perature, permeate-side styrene composition and
permeate-side pressure as a function of position
along the membrane leaf are shown in Figs. 8–11,
respectively. Plots of the feed-side and permeate-side
velocities are omitted for the sake of brevity. To fa-
cilitate visualization of the three-dimensional graphs,
Table 6 contains values of all six dependent variables
in physical units at the four corners of the membrane
leaf. Most spatial variations are small due to the rather
low permselectivity of the polyurethane membrane.
As shown in Figs. 8 and 9, the feed-side variables
are equal to their boundary conditions at the entrance
of the module. The feed-side composition varies in
the feed flow (x) direction but changes very little in
the permeate flow (y) direction. Similar behavior is
observed for the feed-side temperature. Despite the
fact that bulk permeate flow is in they-direction, the
permeate-side composition is almost constant with re-
spect toy but varies strongly in thex-direction. This is
attributable to coupling of the feed and permeate sides
of the module through the component fluxes. This be-
havior, which also has been observed by Hickey and
Gooding [13], motivates the development of more
sophisticated pervaporation models that account ex-
plicitly for permeate-side spatial variations in both
flow directions. On the other hand, the permeate-side
pressure exhibits large variations in they direction
and is essentially constant in thex-direction. Note
that the pressure is equal to its boundary condition
at the location of the permeate collection tube. These
simulations demonstrate that the pervaporation model
can provide a detailed spatial description of the key
feed-side and permeate-side variables.
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Fig. 8. Feed-side styrene concentration as a function of position.

Fig. 9. Feed-side temperature as a function of position.
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Fig. 10. Permeate-side styrene concentration as a function of position.

Fig. 11. Permeate-side pressure as a function of position.
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Fig. 12. Styrene mass transfer coefficients as a function of feed flow rate.

Fig. 12 shows the effect of the liquid boundary layer
resistance on the overall styrene mass transfer coef-
ficient over a wide range of feed flow rates (Ff ) that
cover both laminar and turbulent flow regimes. For
simplicity of presentation, the average liquid boundary
layer mass transfer coefficientk̂l is used to compute
the overall styrene mass transfer coefficient (kt1) and
the mass transfer coefficients are expressed in units
of m/s. The membrane styrene mass transfer coeffi-
cient (km1) is essentially constant, while the boundary
layer resistance increases with decreasing feed flow
rate. The boundary layer resistance is negligible only
at very high flow rates where the feed-side Reynolds
number is large. Mass transfer is dominated by the
membrane resistance under these conditions. At low

flow rates, the boundary layer resistance is the domi-
nant effect.

Due to the low permeability of the polyurethane
membrane, a rather large membrane area is re-
quired to achieve an acceptable flux. Even if the
membrane is used for bulk separation in a hybrid
pervaporation–distillation process, it is necessary to
use multiple modules to achieve the required mem-
brane area. The next set of figures show results for
the separation of styrene and ethylbenzene with the
10-module system depicted in Fig. 13. Ten modules
are placed in series with the residue stream from the
each module serving as the feed stream for the next
module. The permeate stream from all the modules
are mixed to produce the permeate product. The feed
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Fig. 13. Ten modules in series with interstage heating.

Fig. 14. Effect of feed composition on stage cut for 10-module system.
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temperature for each module is increased to the nom-
inal value shown in Table 5 by interstage heating.
The separation capability of the system is investigated
over a range of feed flow rates and compositions.
Feed-side properties are calculated from the residue
stream exiting the 10th module, while permeate-side
properties are flow weighted averages of the per-
meate streams from the 10 modules. The properties
of interest are the stage cutϕ and the selectivity
α:

ϕ =
∑10

k=1Fpk

Ff
, α = yp(1 − xf )

xf (1 − yp)

whereFpk is the permeate flow rate of thekth mod-
ule, andyp is the styrene composition of the permeate
product stream.

The effect of styrene feed composition (xf ) on
the stage cut of the 10-module system is shown in
Fig. 14. Because the membrane is styrene selective,
the stage cut increases approximately linearly with

Fig. 15. Effect of feed composition on selectivity for 10-module system.

increasing feed composition. Fig. 15 shows the effect
of feed composition on the selectivity. The selectivity
decreases rapidly with increasing feed composition
for xf < 0.5; the decrease is less dramatic for higher
xf . Fig. 16 shows the effect of feed flow rate (Ff ) on
the stage cut. The stage cut exhibits an exponential
decrease with increasingFf . Fig. 17 shows the effect
of feed flow rate on the selectivity. The selectivity
increases approximately linearly forFf > 3000 g/s.
For lower flow rates, the selectivity decreases rapidly
with decreasing feed flow rate due to the effect of
the feed-side liquid boundary layer resistance. These
results demonstrate that the pervaporation model can
be used to perform process design calculations for
non-trivial module configurations.

4.2. Discussion

We have developed a differential equation model to
simulate the performance of spiral wound membrane
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Fig. 16. Effect of feed flow rate on stage cut for 10-module system.

modules for the pervaporative separation of binary liq-
uid mixtures. A detailed solution–diffusion model is
utilized to describe permeation through the membrane.
Unknown model parameters are determined from
sorption and flux data using nonlinear least-squares
estimation. The solution–diffusion model is coupled
to transport equations for the feed-side composition,
velocity and temperature and the permeate-side com-
position, velocity and pressure. Numerical solution
of the model provides predictions of the feed-side
and permeate-side variables as a function of position
on the two-dimensional membrane leaf. The model
has been used to simulate spiral wound pervaporation
modules for the separation of styrene and ethylben-
zene with a polyurethane membrane. As compared
to other pervaporation models available in the liter-
ature, the proposed model offers several important
advantages for simulating bulk hydrocarbon separa-
tions including feed-side balances and a variable mass
transfer coefficient.

In addition to providing a general purpose
model for spiral wound pervaporation modules,
this work is motivated by our interest in hybrid
pervaporation–distillation processes for bulk hy-
drocarbon separations. The proposed model is a
useful tool for investigating the economic viabil-
ity of such hybrid processes. We primarily are in-
terested in hybrid processes for the separation of
styrene/ethylbenzene mixtures. As shown in this
paper, spiral wound modules constructed from the
polyurethane membrane studied in [4] are suitable
only for bulk separation due to their modest perms-
electivity properties. Possible configurations of the
hybrid system include processing of the distilla-
tion column feed stream, overhead stream, bottom
stream or a sidestream by the pervaporation unit.
Design studies on hybrid pervaporation–distillation
processes for bulk styrene/ethylbenzene sepa-
rations will be reported in our future publica-
tions.
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Fig. 17. Effect of feed flow rate on selectivity for 10-module system.
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Appendix A

Derivation of the feed-side pressure and velocity
equations (38) and (39) begins with the lubrication
approximation (37). Because the feed-side pressureP

is independent ofz, integration of Eq. (37) with respect
to z yields

∂vx

∂z
= 1

µl

dP

dx
z + C1

Let z = 0 define the centerline of the module with
respect to its width. Then the constant of integration
C1 = 0, since∂vx/∂z = 0 at z = 0. Integrating with
respect toz a second time yields

vx(x, z) = 1

2µl

dP

dx
z2 + C2

Let z0 = (1/2)W denote the location of the mem-
brane surface. The following relation is obtained by
evaluating the constantC2 using the boundary condi-
tion vx = 0 atz = z0:

vx = 1

2µl

dP

dx
(z2 − z2

0) (A.1)

The feed-side volumetric flow rateQ is calculated as

Q(x) = 2H
∫ z0

0
vx dz = −2H

3µl

dP

dx
z3

0
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whereH is the height of the module. Thez-averaged
velocity v̄x is

v̄x(x) = Q

2z0H
= − 1

3µl

dP

dx
z2

0 (A.2)

This equation can be rearranged to yield

dP

dx
= −3µl v̄x

z2
0

which is equivalent to Eq. (38), where the average ve-
locity v̄x(x) has been denotedv(x) for simplicity. An
equation that relates the velocityvx and thez-averaged
velocity v̄x is obtained by combining Eqs. (A.1) and
(A.2):

vx = 3

2
v̄x

[
1 −

(
z

z0

)2
]

Because they-component of the feed-side velocity is
zero, the continuity equation takes the form [2]

∂vx

∂x
+ ∂vz

∂z
= 0

This equation is rearranged to yield

∂vz

∂z
= −∂vx

∂x
= −3

2

dv̄x
dx

[
1 −

(
z

z0

)2
]

Integrating this equation using the boundary condition
vz = 0 atz = 0 produces

vz(x, z) = −3

2

dv̄x
dx

(
z − z3

3z2
0

)

At the membrane surfacez = z0, thez-component of
the velocity is equal to the velocity of the permeate
stream fluxing through the membrane:

vz(x, z0) = −z0
dv̄x
dx

= J̃Mp

ρp
(A.3)

where J̃ is the total molar flux, and the molecular
weight Mp and densityρp of the local permeate are
defined by Eqs. (40) and (41), respectively. By setting
z0 = (1/2)W and v̄x = v, Eq. (A.3) can be manip-
ulated to yield the differential equation (39) for the
average feed-side velocity.
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