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Two multicomponent models for spiral-wound gas permeators are proposed. The basic transport
model is derived from fundamental material balances and permeation relations that account
for permeate-side pressure variations. The resulting model consists of a set of nonlinear
differential-algebraic-integral equations with mixed boundary conditions, as well as an implicit
expression for the local feed-side flow rate. The approximate model is derived from the basic
model by assuming the residue flow rate is constant in the direction of bulk permeate flow.
This assumption yields a set of nonlinear algebraic equations which can be solved very efficiently
and reliably. The two models are compared for the separation of CO2 from hydrocarbons in a
four-component mixture, as well as the separation of an eight-component mixture. The models
show close agreement for a wide range of operating conditions. An estimation technique for
determining uncertain/unknown model parameters from experimental data also is proposed.
The technique is successfully applied to data for a multicomponent mixture containing CO2 and
CH4.

1. Introduction

In recent years, gas separation membranes have
emerged as a viable alternative to more mature tech-
nologies such as absorption and cryogenic distillation.
The use of spiral-wound permeators to separate gas
mixtures encountered in natural gas treatment and
enhanced oil recovery is one of the most important
applications of membrane technology. However, the
lack of appropriate permeator models is a major ob-
struction to effective simulation and design of mem-
brane processes. Further improvements in spiral-
wound membrane systems require the derivation of
accurate permeator models which can be used to inves-
tigate separation performance and develop systematic
design techniques.
A wide variety of permeator models has been reported

for both binary and multicomponent gas mixtures
(Kovvali et al., 1992). The development of multicom-
ponent transport models is of considerable practical
significance since most industrial applications involve
multicomponent separations. Multicomponent gas per-
meators with (Pan, 1986; Giglia et al., 1991) and without
(Brubaker and Kammermeyer, 1954; Pan and Habgood,
1978; Stern and Leone, 1980; Shindo et al., 1985;
Saltonstall, 1987; McCandless, 1990; Li et al., 1990)
permeate-side pressure drop have been investigated. For
asymmetric membranes, Pan (1983) proposes that per-
meation occurs via a cross-flow pattern regardless of the
flow direction of the bulk permeate stream. By using
the local permeate composition rather than the bulk
composition to characterize permeation, binary trans-
port models for hollow-fiber and spiral-wound perme-
ators with permeate-side pressure drop are derived
(Pan, 1983). Pan (1986) also formulates a multicom-
ponent hollow-fiber model that includes pressure drop
inside the fiber. A multicomponent spiral-wound model
without permeate-side pressure drop is proposed by Pan

and Habgood (1978). Surprisingly, we have not found
multicomponent transport models of spiral-wound gas
permeators which include permeate-side pressure varia-
tions.
Basic transport models with permeate-side pressure

drop typically consist of nonlinear ordinary differential
equations with mixed boundary conditions. These
models can be solved with a trial-and-error shooting
method that requires an initial guess of the permeate-
side pressure distribution (Pan, 1983, 1986). The dif-
ferential equations are solved to generate the outlet
permeate concentration, as well as a new pressure
distribution. The procedure is continued until the
permeate concentration converges to the desired ac-
curacy. This solution technique usually yields accurate
results, but it is computationally expensive. As a result,
basic transport models are difficult to use for process
design.
An alternative approach is to develop approximate

models which provide a more reasonable compromise
between prediction accuracy and computational ef-
ficiency. Kovvali et al. (1994) propose an approximate
modeling technique for multicomponent mixtures in
which the hollow-fiber permeator is divided into small
segments, and a linear relationship between the perme-
ate-side and feed-side compositions in each segment is
assumed. This assumption leads to a nonlinear alge-
braic equation model. However, the inherently nonlin-
ear relationship between the permeate-side and feed-
side compositions necessitates the use of a large number
of segments (e.g., 40), which significantly reduces the
efficiency of the method. Chen et al. (1994) propose an
average driving force approximation method for multi-
component separations. Under the assumption that the
driving force for permeation is constant along the length
of the hollow-fiber permeator, a nonlinear algebraic
equation model is obtained by replacing the variable
driving force with its arithmetic average. However, this
assumption is valid only when variations in the feed-
side and permeate-side concentrations are small. Pet-
tersen and Lien (1994) developed an approximate
modeling technique for multicomponent hollow-fiber
permeators by assuming a logarithmic mean driving
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force for permeation analogous to that used in heat
exchanger modeling. Unfortunately, there is no obvious
way to extend this method to spiral-wound permeators.
In a previous paper (Qi and Henson, 1996), we have

developed an approximate modeling technique for spiral-
wound permeators separating binary gas mixtures. The
basic assumption employed is that the residue flow rate
does not vary significantly in the direction of permeate
flow. Under this assumption, the basic transport model
proposed by Pan (1983) can be reduced to a small
number of nonlinear algebraic equations. The ap-
proximate model provides very good agreement with the
basic model, while requiring less than 1% of the
computing effort.
In this paper, we present two multicomponent models

for spiral-wound gas permeators. The basic transport
model is derived directly from material balances and
permeation relations assuming cross-flow patterns for
bulk flow and local permeation. Permeate-side pressure
variations are described by Darcy’s law. As compared
to the binary case, the principal difficulty is that the
multicomponent model does not yield an explicit expres-
sion for the local feed-side flow rate. We show that the
local feed-side flow rate and the local feed-side composi-
tions can be calculated for a given permeate-side pres-
sure distribution by solving an initial value problem.
The basic transport equations then are solved via an
iterative shooting method. The approximate model is
derived directly from the basic transport model by
assuming that the residue flow rate is constant along
the direction of bulk permeate flow. Integral expres-
sions are approximated via Gaussian quadrature, and
the feed-side flow rate and compositions are determined
by solving the associated initial value problem using a
fourth-order Runge-Kutta-Gill algorithm. The basic
and approximate models are compared for gas separa-
tions involving four and eight components. We show
that the approximate model provides very close agree-
ment while requiring significantly less computing effort.
An estimation technique for determining uncertain/
unknown model parameters from experimental data is
proposed and applied to CO2/CH4 mixtures containing
small amounts of N2 and other hydrocarbons.

2. Basic Transport Model

Figure 1 shows the internal structure of a typical
spiral-wound permeator (Coady and Davis, 1982; Mazur
and Chan, 1982). The membrane element is constructed
as follows. Spacing material is placed between two flat
membrane sheets. Three edges of the two membrane
sheets are sealed together, and the open edge is sealed
to a perforated collection tube. A separator grid is
placed on the top of the the resulting membrane leaf.
The assembly is rolled around the collection tube and
placed inside the cylindrical pressure vessel, resulting
in a very large separation area per unit volume as
compared to a simple plate-and-frame configuration.
The development of the basic transport model is based

on Figure 2, which illustrates the feed and permeate
flows in an extended membrane leaf. The variables are
defined in the Nomenclature section. The feed stream
is introduced on the outside of the leaf, and gas
permeates through the two membranes into the spacing
material. The more permeable components preferen-
tially diffuse through the membranes in a cross-flow
pattern, and the bulk permeate stream flows at a right
angle with respect to the feed stream (i.e., the l-direction
shown in Figure 2). The feed-side gas that does not
permeate is collected as the residue stream.

The main assumptions employed are similar to those
used in the binary case (Pan, 1983):
1. Permeation is described by a cross-flow pattern.
2. The feed-side pressure drop is negligible. This is

a reasonable assumption for sufficiently low feed flow
rates and/or short membrane leaf widths.
3. The porous supporting layer of the asymmetric

membrane offers negligible resistance to gas flow.
4. There is no permeate mixing in the direction of

bulk permeate flow.
5. The bulk permeate stream is accumulated by

mixing the local permeate stream, which is perpendicu-
lar to the membrane surface, with the bulk permeate
stream.
6. The permeate pressure varies only in the direction

of permeate flow and the variations are described by
Darcy’s law (Bird et al., 1960).
7. The membrane selectivities are independent of

pressure and concentration.
2.1. Model Derivation. Under the preceding as-

sumptions, the transport equations for a multicompo-
nent spiral-wound permeator are as follows (Pan and
Habgood, 1978; Pan, 1983):

The variables are defined in the Nomenclature section.
Although only n - 1 equations in (1) and (2) are
independent, we list all the equations to facilitate the

Figure 1. Spiral-wound membrane permeator.

permeation

[∂(uxi)∂w ]l ) -2(Qi

d )(Pxi - py′i), i ) 1, ..., n (1)

[∂(uxi)∂u ]l ) y′i, i ) 1, ..., n (2)

permeate pressure

dp2

dl
) -

2RgTµV
gcWtB

(3)

material balance

dV
dl

) uf - ur (4)

d(Vyi)
dl

) uf xi,f - ur xi,r i ) 2, ..., n (5)

composition sums

∑
i)1

n

xi ) 1, ∑
i)1

n

yi ) 1, ∑
i)1

n

y′i ) 1 (6)
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subsequent development. Equations (1)-(5) can be
rewritten in the following dimensionless form:

where

The subscript b represents the base component to which
the selectivities Ri are referred (i.e., Rb ) 1). The base
component can be any component for which Qb * 0.
Equation (8) may be written as

Dividing (7) by (8) yields

Using (6), the right-hand side of (15) can be summed
from i ) 1 to n without changing the ratio value, which

yields

where

Therefore

The following relations between the feed-side and
permeate-side compositions are obtained from (16):

Note that the dimensionless permeate pressure γ only

Figure 2. Gas permeation through an extended spiral-wound
membrane.

[∂(Uxi)∂r ]h ) -Ri(xi - γy′i), i ) 1, ..., n (7)

[∂(Uxi)∂U ]h ) y′i, i ) 1, ..., n (8)

dγ2

dh
) -Cθ (9)

dθ
dh

) 1 - Ur (10)

d(θyi)
dh

) xi,f - Ur xi,r i ) 2, ..., n (11)

r ) (2QbP
duf )w (12)

C )
2RgTµL2uf
gcWtBP2

)
2RgTµLLf

gcWtBP2
(13)

[∂(ln U)∂xi ]h ) 1
y′i - xi

, i ) 1, ..., n (14)

[∂U∂r ]h ) -
xi - γy′i
y′i/Ri

, i ) 1, ..., n (15)

Figure 3. Variations of residue flow rate, permeate pressure, and
permeate flow rate along the membrane length.

xi - γy′i

y′i/Ri

)

∑
i)1

n

(xi - γy′i)

∑
i)1

n

(y′i/Ri)

)
1 - γ

y′m
(16)

y′m ) ∑
i)1

n y′i

Ri

(17)

[∂U∂r ]h ) - 1 - γ
y′m

(18)

xi ) γy′i +
(1 - γ)y′i

Riy′m
(19)

y′i )
Rixiy′m

1 - γ + γRiy′m
(20)

∑
i)1

n Rixiy′m

1 - γ + γRiy′m
) 1 (21)
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is a function of h from assumption 6; thus, (19)-(21)
relate xi, y′i, and y′m at a constant value of h. Therefore,
substituting (19) into (14) yields the following relations
at constant h (or γ):

Equations (19)-(22) are similar to expressions derived
by Pan (1986) in modeling multicomponent hollow-fiber
permeators. However, Pan’s model contains differential
equations with several independent variables. As a
result, the model is difficult to solve. Below we refor-
mulate the model equations to facilitate numerical
solution by allowing y′m to be the only independent
variable.

Rearranging (22) to express dy′i in terms of d(ln U)
and dy′m and then taking the sum from i ) 1 to n, noting
that ∑1

ndy′i, yields an expression for d(ln U) in terms of
dy′m:

where:

Substituting d(ln U) from (23) into (22) and choosing n
- 1 independent equations yields dy′i in terms of dy′m:

At constant γ, solving (23) and (26) simultaneously and
then using (6) to determine the composition of the first
component yields functions U(y′m) and y′i(y′m). Integrat-
ing (18) at constant γ with the boundary conditions

yields

Figure 4. Effect of permeation factor on permeate flow rate and
residue concentrations (four component system).

d(ln U) )
1 + γ(Riy′m - 1)

(1 - γ)(Riy′m - 1)

dy′i
y′i

-
dy′m

(Riy′m - 1)y′m
,

i ) 1, ..., n (22)

d(ln U)

dy′m
) -

∑
j)1

n

Ajy′j

∑
j)1

n

Bjy′j

(23)

Figure 5. Effect of feed composition on permeate flow rate and
residue concentration of the first component (four component
system).

Aj ) 1 - γ
(1 - γ + γRjy′m)y′m

(24)

Bj )
(1 - γ)(Rjy′m - 1)
1 - γ + γRjy′m

(25)

dy′i

dy′m
) y′i(Ai -

Bi∑
j)1

n

Ajy′j

∑
j)1

n

Bjy′j ) i ) 2, ..., n (26)

w ) 0, r ) 0, U ) Uf ) 1, y′m ) y′m,f

w ) W, r ) R, U ) Ur, y′m ) y′m,r

R ) - 1
1 - γ∫1Ury′m dU

) 1
1 - γ

(y′m,f - Ury′m,r + ∫y′m,f

y′m,rU dy′m) (27)

Ind. Eng. Chem. Res., Vol. 36, No. 6, 1997 2323



where R is the the dimensionless permeation factor:

Equations (9)-(11), (19)-(21), (23), (26), and (27) rep-
resent the multicomponent transport model for the
spiral-wound permeator.
2.2. Calculation Procedure. The multicomponent

model can be solved via an iterative shooting method.
As compared to the binary case discussed by Pan (1983),
the major difficulty in solving the multicomponent
model is that an explicit expression for the dimension-
less residue flow rateUr is not available. Consequently,
for each step in integrating the differential equations
(10) and (11), the initial-value differential equations (23)
and (26) and the nonlinear algebraic equation (27) must
be solved to obtain Ur(h) and xi,r(h). As shown below,
this makes the calculation procedure very complicated
and time consuming.
For a spiral-wound permeator with specified separa-

tion properties (Ri, R, and C), outlet pressure ratio (γ0),
and feed composition (xi,f), the iterative solution proce-
dure may be outlined as follows:
1. Calculation of Ur and xi,r for a given value of γ.
(a) For a given xi,f, solve (21) for y′m,f and use (20) to
calculate y′i,f.
(b) Solve (23), (26), and (27) simultaneously with
initial conditions y′m ) y′m,f, y′i ) y′i,f, and U ) Uf ) 1
to obtain y′m,r, y′i,r, and Ur, and then calculate xi,r
using (19).

2. Shooting method to solve the differential equations
(9)-(11).

(a) Initially assume that γ is equal to γ0 for all h.
(b) Using this γ-h relation and the calculation
procedure in step 1, integrate (10) and (11) from h
) 0 (where θ ) θyi ) 0) to h ) 1 to obtain θ-h and
yi - h relations and then evaluate the relations at
h ) 1 to obtain θ0 and yi,0.
(c) Utilizing the θ-h relation obtained in step 2b,
integrate (9) from h ) 1 (where γ ) γ0) to h ) 0 to
obtain a new γ-h relation.
(d) Repeat steps 2b and 2c until θ0 converges to the
desired accuracy. The outlet residue stream flow
rate and concentrations are calculated by the overall
material balance.

3. Approximate Model

3.1. Model Development. As in the binary case (Qi
and Henson, 1996), the approximate model is developed
by assuming that the residue flow rate Ur is constant
with respect to h in order to develop an approximate
pressure distribution function γ(h). It is important to
note that Ur is allowed to vary with h in the subsequent
model development. Under this assumption, the dif-
ferential equation (10) for the dimensionless permeate
flow rate is easily integrated with boundary condition
θ(0) ) 0:

In section 4 we show this assumption is valid for a wide
range of operating conditions by demonstrating that Ur
exhibits a very weak dependence on h, while θ ef-
fectively is a linear function of h. Substitution of (29)
into (9) and integration with the boundary condition

Figure 6. Effect of permeate pressure on permeate flow rate and
residue concentration of the first component (four component
system).

Figure 7. Effect of selectivity on permeate flow rate and residue
concentration of the first component (four component system).

R )
2QbWP
duf

)
2QbLWP

dLf
(28)

θ ) (1 - Ur)h (29)
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γ(1) ) γ0 yields the approximate pressure distribution
function:

The subsequent model development is based on this γ-h
relation.
The integral in (27) is approximated using Gaussian

quadrature (Rice and Do, 1995):

where

Here N is the number of quadrature points, êj and wj
are the quadrature points and quadrature weights,
respectively, and Uj is the feed-side flow rate at the
quadrature point y′m,j. Now the integral equation (27)
can be represented as

The flow rates Uj and Ur are obtained by integrating
the initial-value differential equations (23) and (26).
Numerical solutions are obtained by using a fourth-
order Runge-Kutta-Gill approximation at each quadra-
ture point y′m,j and the outlet point y′m,r. The resulting
expressions are (Rice and Do, 1995)

where

The functions fU, f2, ..., fn represent the right-hand sides
of (23) and (26), and y′i,j represents the permeate

Figure 8. Effect of dimensionless constant C on permeate flow
rate and residue concentration of the first component (four
component system).

Figure 9. Accuracy improvement of the approximate model by
increasing the number of quadrature points M.

γ2 ) γ0
2 + 1

2
C(1 - Ur)(1 - h2) (30)

I ≡ ∫y′m,f

y′m,rU dy′m = (y′m,r - y′m,f)∑
j)1

N

Ujwj (31)

Figure 10. Accuracy improvement of the approximate model by
increasing the number of quadrature points N.

y′m,j ) y′m,f + êj(y′m,r - y′m,f) (32)

R )
1

1 - γ
(y′m,f - Ury′m,r + (y′m,r - y′m,f)∑

j)1

N

Ujwj) (33)

Yj ) Yj-1 + 1
6
(K1 + K4) + 1

3
(λ2K2 + λ4K3) (34)

K1 ) δjF(y′m,j-1,Yj-1) (35)

K2 ) δjF(y′m,j-1 +
δj
2
,Yj-1 + 1

2
K1) (36)

K3 ) δjF(y′m,j-1 +
δj
2
,Yj-1 + λ1K1 + λ2K2) (37)

K4 ) δjF(y′m,j-1 + δj,Yj-1 + λ3K2 + λ4K3) (38)

Yj ) [ln Uj, y′2,j, ..., y′n,j]
T (39)

F ) [fU, f2, ..., fn]
T (40)

δj ) y′m,j - y′m,j-1 (41)

λ1 )
x2 - 1

2
, λ2 ) 2 - x2

2
, λ3 ) -

x2
2
,

λ4 ) 2 + x2
2

(42)
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concentration of the ith component at the quadrature
point y′m,j. The initial conditions are

where y′i,f is determined from y′m,f using (20). Equations
(34)-(38) represent n nonlinear algebraic equations that
must be solved simultaneously at each quadrature point
and the outlet point to yield Uj, y′i,j, Ur, and y′i,r for i ) 2,
..., n. Note that (34)-(38) are solved for a given value
of γ, and therefore y′m is the only independent variable.
When γ is taken as a variable, the resulting functions
for Ur and y′i,r can be expressed as

Substitution of Uj and Ur into (33) yields the relation

Simultaneous solution of the nonlinear algebraic equa-
tions (21), (30), (44), and (46) at each quadrature point
yields y′i,f(hk), γ(hk), Ur(hk), and y′m,r(hk), where hk rep-
resents the value of h at the kth quadrature point.
Substitution of these variables into (45) yields y′i,r(hk),
which then is used to calculate xi,r(hk) via (19).
As in the binary case (Qi and Henson, 1996), Gaussian

quadrature is used to determine the effluent permeate
flow rate and bulk concentration. From (10):

whereM is the number of quadrature points employed,
wk are the quadrature weights, and Ur(hk) is the value
of Ur at the kth quadrature point. By performing a
material balance on a differential length of membrane
and invoking the assumption thatUr does not vary with
h, the permeate compositions are approximated as (Qi
and Henson, 1996)

where

The bulk concentration for the first component is deter-
mined via (6). The flow rate η0 and bulk concentration
xi,0 of the effluent residue stream are determined from
an overall material balance about the permeator:

It will be shown that a single quadrature point (M ) 1)
provides a satisfactory solution for most operating
conditions. In this case h1 ) 0.5 and w1 ) 1, and
thequadrature formulas reduce to

3.2. Parameter Estimation. A potential drawback
of the proposed modeling approach is that detailed
characteristics of spiral-wound permeators often are not
known at the preliminary design stage. Consequently,
the approximate model may contain uncertain and/or
unknown parameters. One way to address this problem
is to use estimation techniques to determine the model
parameters from experimental data. For binary sepa-
ration systems, we have developed a nonlinear pro-
gramming strategy to estimate C (eq 13) and R (eq 28)
by noting that all unknown parameters in the ap-
proximate model appear only via these two terms (Qi
and Henson, 1996). Using the least-squares error
between the measured variables and the estimated
variables as the objective function and all binary model
equations as constraints, “optimal” parameters are
determined by solving a minimization problem. A
similar technique could be developed for multicompo-
nent systems by using the multicomponent model equa-
tions as constraints. Potential difficulties in using the
multicomponent model for parameter estimation include
the following: (1) the permeate concentrations for the
least permeable components normally are very small;
(2) the multicomponent model is considerably more
complicated than the binary model. As a result, pa-
rameter estimation could be less reliable and less
efficient than in the binary case.
A simplified method of parameter estimation for

multicomponent systems may be developed by using the
binary model. Similar to multicomponent distillation
(King, 1980), we divide the different components into
five groups according to their relative permeabilities.
The most important two components are denoted as the
light key component (LK) and heavy key component
(HK). Components more permeable than the LK are
called light components (L), while components less
permeable than the HK are called heavy components
(H). Components between the two key components are
called intermediate components (I). A sharp cut is
defined as a separation in which there are no heavy
components in the permeate stream and no light
components in the residue stream. By assuming a
sharp cut, an analogous binary system may be con-
structed under the following conditions:
1. There are no light components or the concentra-

tions of the light components are sufficiently small.
2. There are no intermediate components or the

concentrations of the intermediate components are
sufficiently small.
Under these conditions, we formulate a binary model

by defining a relative flow rate, a relative pressure, and
relative concentrations:

Y0 ) [0, y′2,f, ..., y′n,f]
T (43)

Ur ) Φ1(γ,y′m,f,y′m,r) (44)

y′i,r ) Φi(γ,y′m,f,y′m,r), i ) 2, ..., n (45)

R ) Ψ(γ,y′m,f,y′m,r) (46)

θ0 ) 1 - ∫01Ur = 1 - ∑
k)1

M

Ur(hk) wk (47)

yi,0 ) ∫01y′i,a dh = ∑
k)1

M

y′i,a(hk) wk, i ) 2, ..., n (48)

y′i,a(hk) )
xi,f - xi,r(hk)Ur(hk)

1 - Ur(hk)
, i ) 2, ..., n (49)

η0 ) 1 - θ0 (50)

xi,0 )
xi,f - θ0yi,0
1 - θ0

(51)

θ0 ) 1 - Ur(h1) (52)

yi,0 ) y′i,a(h1) )
xi,f - xi,r(h1) Ur(h1)

1 - Ur(h1)
(53)

Lf
b ) Lf(xf,LK + xf,HK) (54)

Pb ) P(xf,LK + xf,HK) (55)

x0
b )

xf,LK
xf,LK + xf,HK

(56)

γ0
b )

p0
Pb

)
γ0

xf,LK +xf,HK
(57)
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Because the parameters C and R depend on the feed
flow rate (Lf) and the feed pressure (P), we define two
parameters C′ and P′ that do not vary with the operat-
ing conditions:

From (13) and (28):

In this way, the multicomponent estimation problem is
reduced to estimating the parameters C′ and R′ using
the binary model and the binary variables. Detailed
formulation of the estimation problem is described in a
previous paper (Qi and Henson, 1996).

4. Case Studies

We compare the basic transport model and the
approximate model for the separation of gas mixtures
containing four and eight components. The four-
component example involves CO2 separation from a
hydrocarbon mixture containing CH4, C2H6, and C3H8
(Pan, 1986). The eight-component example does not
represent any specific gas separation system, but it does
demonstrate the potential for modeling mixtures with
a large number of components. The proposed models
are evaluated for a wide range of model parameters and
operating conditions. In addition, the parameter esti-
mation technique is applied to experimental data for the
separation of CO2/CH4 mixtures containing small
amounts of N2 and other hydrocarbons (Lee and Feld-
kirchner, 1993).
For binary mixtures, the multicomponent models

yield the same results as binary models (Qi and Henson,
1996). The models differ only because an explicit
expression for the feed-side flow rate cannot be derived
in the multicomponent case. In this sense, the multi-
component models can be regarded as generalizations
of the binary models. Therefore, results for binary
mixtures are not shown here.
4.1. Four-Component System. The basic trans-

port model and the approximate model are compared
in Figures 3-10. Table 1 contains the parameter values
not shown explicitly in each figure. The operating
conditions are based on data from Pan (1986) for CO2
separation from hydrocarbon mixtures containing CH4,
C2H6, and C3H8. The values of C and R are obtained
from our previous study of binary separations (Qi and
Henson, 1996). The approximate model is solved using
three quadrature points for the integral (31) and one
quadrature point for integrals (47) and (48) (i.e., N ) 3,
M ) 1). The second component CH4 is chosen as the

base component for calculating the selectivities Ri. Note
that any component can be chosen as the base compo-
nent, but the value of the permeation factor R is
determined by the permeability of the selected compo-
nent.
Figure 3 shows the residue flow rate Ur, permeate

flow rate θ, and permeate-side pressure γ as a function
of the membrane length h for three values of the
permeation factor R. As assumed in the development
of the approximate model, Ur is a weak function of h
and θ exhibits a linear dependence on h. The ap-
proximate model produces very accurate predictions of
the three variables for each value of R. Figure 4
illustrates the effect of R on the outlet permeate flow
rate θ0 and the outlet residue concentration xi,0 for all
four components. The two models yield almost identical
predictions for all values of R. Note that, as R increases,
the residue concentration of the most permeable com-
ponent (x1,0) decreases, the concentration of the mod-
erately permeable component (x2,0) exhibits a maximum,
and the concentrations of the least permeable compo-
nents (x3,0 and x4,0) increase.
The permeate flow rate θ0 and the residue concentra-

tion of the first component x1,0 for various combinations
of R and the feed concentrations xi,f are shown in Figure
5. The concentrations of components 1 and 2 are
changed to keep the sum of the mole fraction unity,
while the concentrations of components 3 and 4 are the
same as shown in Table 1. The predictions of θ0 and
x1,0 obtained from the approximate model are very
accurate except for small deviations at large values of
x1,f and R. Figure 6 shows the effect of R and the outlet
permeate pressure γ0 on θ0 and x1,0. The two models
show very close agreement for all operating conditions
considered. The effect of R and the selectivity on θ0 and
x1,0 is illustrated in Figure 7. The selectivity of the first
component R1 is changed, while the selectivities of the
other components remain constant. The predictions of
the approximate model are very accurate for most
conditions, although small deviations in θ0 are observed
for large values of R and R1. Figure 8 shows the effect
of R and the parameter C on θ0 and x1,0. The ap-
proximate model produces accurate predictions for low
values of C, but deviations are observed as C is
increased. This is expected as the approximate pressure
distribution function (30) becomes less accurate as C
increases.
The results in Figures 7 and 8 show that the ap-

proximate model becomes less accurate for large values
of R1 and C. The accuracy of the approximate model
can be improved by increasing the numbers of quadra-
ture points used to approximate integrals in the basic
transport model. Figure 9 shows the improvement
obtained when the number of quadrature points in (47)
is changed from M ) 1 to M ) 2. The operating

Table 1. Nominal Operating Conditions for a
Four-Component Systema

parameter value variable BTM value APM value

xi,f 0.30 xi,0 0.0808 0.0862
0.55 0.7067 0.7027
0.10 0.1405 0.1395
0.05 0.0720 0.0715

Ri 30 yi,0 0.7880 0.7845
1 0.2011 0.2038
0.25 0.0099 0.0104
0.05 0.0010 0.0013

γ0 0.05 η0 0.6900 0.6939
C 0.1 θ0 0.3100 0.3061
R 0.1

a BTM ) basic transport model. APM ) approximate model.
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conditions are identical to those in Figure 8 for C ) 0.50.
The approximate model produces very accurate results
when M ) 2. Figure 10 shows the improvement
obtained by increasing the number of quadrature points
in (31) from N ) 3 to N ) 4. The operating conditions
are the same as in Figure 7 for R1 ) 100. In this case,
we show predictions of the permeate concentration y1,0
rather than x1,0 because the differences are more
pronounced. As expected, improved accuracy is ob-
tained whenN ) 4. Accuracy of the approximate model
also can be improved by adding some intermediate
points between the N quadrature points when perform-
ing integration via the Runge-Kutta-Gill algorithm
(34)-(38); this does not requireN to be increased. Note
that the computation time increases almost linearly
with the increase in M, while increasing N has much
less effect.
The results in Figures 3-10 demonstrate that the

approximate model provides very close agreement to the
basic transport model for the four-component system
over a wide range of operating conditions. The major
advantage of the approximate model is that the result-
ing nonlinear algebraic equations can be solved very
efficiently with little effect on prediction accuracy. On
the other hand, solution of the basic transport model is
very computationally intensive as a result of the non-
linear differential-algebraic-integral equations, mixed
boundary conditions, and implicit expression for the
feed-side flow rate. Running MATLAB on an IBM RS-
6000 workstation, the computing time for a single
simulation is 1.2-3 s with the approximate model as
compared to 6-20 min with the basic model. Thus, the
approximate model can be solved 200-600 faster than
the basic transport model for the cases in Figures 3-10.
This represents a substantial reduction in computing
effort for the optimal design of complex permeator
configurations, in which hundreds of model solutions
may be required.
4.2. Eight-Component System. Figures 11-13

compare the basic transport model and the approximate
model for an eight-component system. Operating condi-
tions not shown explicitly in each figure are listed in
Table 2. The fifth component is taken as the base
component for determining Ri and R. As in the four-
component case, Gaussian quadrature is performed with
M ) 1 and N ) 3.
Figure 11 shows the outlet permeate flow rate θ0 and

the residue concentrations xi,0 of all eight components

as a function of the permeation factor R. The two
models produce almost identical results for all values
of R. The effect of R and γ0 on θ0 and x1,0 is shown in
Figure 12. The approximate model yields accurate
predictions for all operating conditions considered.
Figure 13 shows the effect of R and C on θ0 and x1,0.
The approximate model yields accurate predictions
under most conditions, although small deviations are
observed for large values of C as expected.
These results demonstrate that the basic transport

model and the approximate model can be applied to gas
mixtures with a large number of components. It is
important to note that the computational effort associ-
ated with solving the approximate model does not
increase dramatically as the number of components
increases. The computing time for a single simulation
in Figures 11-13 is 1.5-3.5 s with the approximate
model and 8-25 min with the basic model. As in the
four-component case, the approximate model is 200-
700 times faster than the basic transport model.
4.3. Parameter Estimation. The effectiveness of

the proposed parameter estimation strategy is investi-
gated using experimental data for separation of CO2/
CH4 mixtures containing small amounts of N2 and other
hydrocarbons (Lee and Feldkirchner, 1993). Nine sets
of experimental data are selected for a permeator after
checking the consistency of the operating temperature
and the closure of material balances. The selectivities
are chosen as in Lee et al. (1995): CO2/CH4 selectivity
) 20; N2/CH4 selectivity ) 1.0; C+H/CH4 selectivity )
0.4. The C+H represents all the hydrocarbons higher
than CH4, but it consists mostly of C2H6. Parameter
estimation is achieved by transforming the experimental
measurements into relative values according to (54)-

Table 2. Nominal Operating Conditions for an
Eight-Component Systema

parameter value variable BTM value APM value

xi,f 0.20 xi,0 0.0664 0.0697
0.20 0.1259 0.1281
0.20 0.1973 0.1974
0.20 0.2750 0.2729
0.05 0.0778 0.0771
0.05 0.0830 0.0822
0.05 0.0864 0.0855
0.05 0.0882 0.0872

Ri 20 yi,0 0.3724 0.3723
10 0.2957 0.2951
5 0.2035 0.2035
2 0.1032 0.1036
1 0.0141 0.0142
0.5 0.0074 0.0074
0.2 0.0030 0.0031
0.05 0.0008 0.0008

γ0 0.05 η0 0.5634 0.5694
C 0.1 θ0 0.4366 0.4306
R 0.1

a BTM ) basic transport model. APM ) approximate model.

Figure 11. Effect of permeation factor on permeate flow rate and
residue concentrations (eight-component system).
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(59) and then using the binary model to estimate the
parameters C′ and R′ (Qi and Henson, 1996). The
estimation results are C′ ) 1.884 × 1013 m3/Pa and R′
) 3.578 × 10-9 Pa2 s/m3.
These parameters are used to simulate the multicom-

ponent system. Table 3 shows the operating conditions
and calculated C and R derived from the estimated C′
and R′. Table 4 compares the experimental data and
the predicted values, as well as their average relative
errors. The θi and yi,0 represent experimental measure-
ments, and the θ̂i and ŷi,0 represent values predicted by
the approximate multicomponent model using the es-
timated parameters. The errors are calculated as
follows:

where N represents the number of experiments. The
predictions are sufficiently accurate for preliminary
process design. The large relative errors associated with
the N2 and C+H components are attributable to their
low concentrations in the permeate stream.

5. Summary and Conclusions

Two multicomponent models for spiral-wound gas
permeators which include permeate-side pressure drop

have been proposed. The basic transport model is
derived from fundamental material balances and per-
meation relations, while the approximate model is
derived directly from the basic model by assuming the
residue flow rate is constant along the direction of
permeate flow. The approximate model is developed by
using Gaussian quadrature to approximate integral
expressions and the fourth-order Runge-Kutta-Gill
algorithm to solve the initial value problem for the feed-
side flow rate and compositions. The two models
compare favorably for gas mixtures containing four and
eight components. The major shortcoming of the basic
transport model is the computational effort required to
generate a solution. On the other hand, the ap-
proximate model provides very accurate predictions with
less than 1% of the computation time required for the
basic model. In addition, a simple method for estimat-
ing uncertain/unknown model parameters from experi-
mental data has been proposed and successfully applied
to a CO2/CH4 separation system. As a result of its
accuracy and efficiency, the approximate model is well
suited for simulation and design of complex membrane
separation systems.
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Nomenclature

Ai ) dimensionless constant defined by eq 24

Figure 12. Effect of permeate pressure on permeate flow rate
and residue concentration of the first component (eight-component
system).

eθ0
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∑
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Figure 13. Effect of dimensionless constant C on permeate flow
rate and residue concentration of the first component (eight-
component system).
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B ) permeability of the spacing materials inside the spiral-
wound leaf (m2)

Bi ) dimensionless constant defined by eq 25
C ) dimensionless constant defined by eq 13
d ) effective thickness of the membrane (m)
gc ) Newton’s law conversion factor
h ) l/L, dimensionless leaf length variable
hk ) quadrature points of h
l ) membrane leaf length variable (m)
L ) membrane leaf length (m)
Lf ) feed gas flow rate per membrane leaf (mol/s)
Lo ) residue gas flow rate per membrane leaf (mol/s)
M ) number of quadrature points of θ0 and yi,0
N ) number of quadrature points of the integral I(γ,y′i,r)
N ) number of independent experiments in parameter
estimation

P ) feed-side pressure (Pa)
p ) permeate-side pressure (Pa)
p0 ) permeate outlet pressure (Pa)
Qi ) permeabilities of the ith permeable component (mol/
m‚s‚Pa)

Qb ) permeability of the base component (mol/m‚s‚Pa)
r ) dimensionless permeation variable defined by eq 12
R ) dimensionless permeation factor defined by eq 28
Rg ) ideal gas constant (m3‚Pa/kg-mol‚K)
s ) w/W, dimensionless leaf width variable
t ) membrane leaf thickness (m)
T ) temperature (K)
U ) u/uf, dimensionless feed-side gas flow rate
Uj ) dimensionless feed-side gas flow rate at jth quadra-
ture point

Ur ) ur/uf, dimensionless residue gas flow rate
u ) feed-side gas flow rate per unit length of membrane
leaf (mol/s‚m)

uf ) feed gas flow rate per unit length of membrane leaf
(mol/s‚m)

ur ) residue gas flow rate per unit length of membrane
leaf (mol/s‚m)

V ) permeate flow rate (mol/s)
V0 ) permeate flow rate at permeate outlet (mol/s)
va ) permeate flow rate per unit length averaged over the
width of the membrane (mol/s‚m)

W ) membrane leaf width (m)
w ) membrane leaf width variable (m)
wj ) quadrature weight

xi ) local feed-side concentration (mole fraction)
xi,0 ) bulk residue stream concentration at outlet (mole
fraction)

xi,f ) feed concentration (mole fraction)
xi,r ) local residue concentration along the outlet end of
the membrane leaf (mole fraction)

yi ) permeate concentration in the bulk permeate stream
(mole fraction)

yi,0 ) permeate concentration in the bulk permeate stream
at the permeate outlet (mole fraction)

y′i ) local permeate concentration on the membrane surface
(mole fraction)

y′i,a ) local permeate concentration averaged over the width
of the membrane (mole fraction)

y′i,f ) local permeate concentration along the inlet end of
the membrane leaf (mole fraction)

y′i,j ) local permeate concentration at the jth quadrature
point (mole fraction)

y′i,r ) local permeate concentration along the outlet end of
the membrane leaf (mole fraction)

y′m ) composition variable defined by eq 17
y′m,f ) y′m value at the feed inlet
y′m,r ) y′m value at the residue outlet
y′m,j ) y′m value at jth quadrature point
Ri ) Qi/Qb, membrane selectivity for ith component
γ ) p/P, ratio of permeate pressure to feed pressure
γ0 ) p0/P, ratio of permeate pressure to feed pressure at
the permeate outlet

µ ) viscosity of gas mixture (Pa‚s)
θ ) V/Lf, ratio of permeate flow rate to feed flow rate
θ0 ) V0/Lf, ratio of permeate flow rate to feed flow rate at
permeate outlet

êj ) standard quadrature point
Φi ) function expressed by eqs 44 and 45
Ψ ) function expressed by eq 46
η0 ) L0/Lf, ratio of residue outlet stream flow rate to feed
flow rate
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