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Abstract

An optimal design strategy for membrane networks separating multicomponent gas mixtures based on an approximate
permeator model and mixed-integer nonlinear programming (MINLP) is proposed. A permeator system superstructure is used to
embed a very large number of possible network configurations and allows the permeator feed-side pressure to be fixed or a design
variable. A MINLP design model is developed to minimize the total annual process cost by simultaneous optimization of the
permeator configuration and operating conditions. Case studies for the separation of acid gases (CO2 and H2S) from crude natural
gas mixtures with spiral-wound permeators are presented. Permeator configurations are derived for different number of separation
stages for both continuous and discrete membrane areas. The method is sufficiently robust to handle product compositions that
vary five orders of magnitude. The proposed approach provides an efficient methodology for preliminary screening of multi-stage
membrane separation systems for multicomponent gas mixtures. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Membrane systems have become viable alternatives
to conventional gas separation technologies such as
pressure swing adsorption and cryogenic distillation.
The economics of membrane separation processes de-
pend critically on process design. The design of a
membrane system consists of two subproblems: (i) se-
lection of an appropriate permeator configuration; and
(ii) determination of the operating conditions of the
individual permeators. Membrane systems currently are
designed via a sequential procedure in which the perme-
ator configuration is chosen a priori and the operating
conditions are determined using some type of optimiza-
tion procedure. Many design studies for multi-stage gas
membrane systems are based on this approach. Spill-
man, Barrett and Cooley (1988) investigate several per-
meator configurations for the separation of CO2/CH4

mixtures encountered in natural gas treatment and en-
hanced oil recovery. Babcock, Spillman, Goddin and
Cooley (1988) evaluate the economics of single- and
three-stage membrane systems for natural gas treatment
by providing comparisons with amine treatment pro-
cesses. Bhide and Stern propose a grid search method
to design membrane separation systems for natural gas
treatment (Bhide & Stern, 1993a,b) and oxygen enrich-
ment of air (Bhide & Stern, 1991a,b). Xu and Agrawal
(1996), Agrawal (1997), Agrawal and Xu (1996a,b)
develop a stepwise procedure for design of membrane
cascades using a limited number of recycle compressors.

The sequential design approach is well suited for
detailed evaluation of a small number of alternative
flowsheets. However, the lack of systematic methodolo-
gies for selecting the candidate permeator configura-
tions restricts this approach to experienced design
engineers. Another potential shortcoming is that the
final flowsheet may be suboptimal because the enumer-
ation and evaluation of all reasonable network configu-
rations is infeasible. Consequently, there is considerable
motivation to develop more systematic flowsheet opti-
mization techniques for multi-stage gas membrane sep-
aration systems.
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A wide range of process design problems can be
posed as mixed-integer nonlinear programming
(MINLP) problems that allow simultaneous optimiza-
tion of the process configuration and operating condi-
tions (Floudas, 1995). This mathematical framework
has been utilized to solve process synthesis problems for
heat exchanger networks, distillation column sequences,
reactor networks, and mass-exchange networks (Flou-
das, 1995; Floudas & Grossmann., 1994; Grossmann &
Kravanja, 1995; Grossmann & Daichendt, 1996). The
most common approach is to postulate a superstructure
that embeds many process configurations, each of
which is a candidate for the optimal process flowsheet.
The superstructure is mathematically described by a
model that contains both continuous and integer vari-
ables that represent operating conditions, as well as
processing units and their interconnections. The
MINLP model is posed as a set of constraints in an
appropriate optimization problem. Several algorithms
for solving the resulting MINLP problems have been
developed (Floudas, 1995). The most widely used is
DICOPT+ + (Viswanathan & Grossmann, 1990)
within the General Algebraic Modeling System
(GAMS; Brooke, Kendrick & Meeraus, 1992). Re-
cently, there have been many advances in algorithm
development for global optimization of nonconvex
MINLP problems (Grossmann & Daichendt, 1996; Ad-
jiman, Androulakis & Floudas, 1997).

For gas membrane separation systems, a major
difficulty in developing MINLP synthesis techniques is
that fundamental permeator models are comprised of
differential–algebraic–integral equations with mixed
boundary conditions. Multicomponent permeator mod-
els are particularly difficult to use for MINLP design
due to their computational complexity. An alternative
approach is to utilize approximate models that provide
a more reasonable compromise between prediction ac-
curacy and computational efficiency. Recently, we pro-
posed an approximate modeling technique for
spiral-wound permeators separating binary (Qi & Hen-
son, 1996) and multicomponent (Qi & Henson, 1997)
gas mixtures. The model development involves the ap-
plication of simplifying assumptions to basic transport
models that include permeate-side pressure drop. The
resulting models are well suited for process design
because the nonlinear algebraic equations can be solved
very efficiently and yield excellent prediction accuracy
over a wide range of operating conditions. We have
utilized the binary model to develop a MINLP design
technique for multi-stage membrane systems that allows
simultaneous optimization of the permeator network
and operating conditions (Qi & Henson, 1998a).

In this paper, we solve the more challenging and
industrially important problem of MINLP design of
multi-stage membrane systems for multicomponent gas
mixtures. The permeator system superstructure allows

the feed-side pressure to be fixed or a design variable.
The optimal design strategy is applied to spiral-wound
membrane systems separating acid gases (CO2 and H2S)
from crude natural gas mixtures in natural gas treat-
ment and enhanced oil recovery.

2. Optimal design strategy

2.1. Problem statement

The problem of designing membrane systems for
multicomponent gas separations can be stated as:

Given a feed mixture of known conditions, synthesize
the minimum cost network of membrane permeators
and recycle compressors that separate the feed stream
into two products of specified composition. The
membrane properties and cost related parameters are
assumed to be known.

The design task involves the determination of the
optimal system configuration, as well as specification of
the process unit sizes and operating conditions. It is
necessary to derive a permeator system superstructure
that embeds all network configurations of practical
interest, formulate the superstructure as a MINLP
model and develop a suitable solution methodology.
The optimal design strategy is based on the following
assumptions:
1. The feed stream contains a multicomponent gas

mixture at known conditions.
2. The feed-side pressure drop is negligible for each

permeation stage.
3. There is no pressure drop between permeation

stages.
4. The product permeate stream pressure is predeter-

mined, while the permeate stream pressures between
stages are design variables.

5. All permeators and compressors operate under
isothermal conditions.

It is possible to relax some of these assumptions at the
expense of a more complex MINLP model.

2.2. Multicomponent permeator model

The MINLP design strategy requires a robust and
computationally efficient model of a multicomponent
gas permeator. In Appendix A, we present an approxi-
mate model for spiral-wound permeators that is derived
directly from the fundamental transport equations by
assuming the residue flow rate to be constant in the
direction of permeate flow. A detailed justification of
this assumption is available elsewhere (Qi & Henson,
1997). The multicomponent model contains initial value
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differential equations for the feed-side flow rate and
permeate concentrations on the membrane surface that
are not present in the binary case. These equations are
reduced to algebraic equations using a fourth-order
Runge–Kutta–Gill algorithm. As a result of these
equations and the multicomponent mass balances, the
resulting algebraic design model is substantially more
complex than its binary counterpart (Qi & Henson,
1996). We have shown that the approximate multicom-
ponent model compares favorably with the fundamen-
tal transport model in terms of prediction accuracy.
The major advantage of the approximate model is that
the nonlinear algebraic equations can be solved 200–
700 times faster than the basic transport model equa-
tions (Qi & Henson, 1997).

2.3. Permeator system superstructure

The superstructure approach to process design pro-
vides a systematic framework for simultaneous opti-
mization of the process configuration and operating
conditions (Floudas, 1995). Superstructures have been
proposed for a number of membrane separation sys-
tems, including reverse osmosis (Zhu, El-Halwagi &
Al-Ahmad, 1997) and pervaporation (Srinivas & El-
Halwagi, 1993) networks. For gas separation systems,
the basic components of the superstructure are perme-
ators, compressors, stream mixers and stream splitters.
The superstructure for multicomponent membrane sep-
aration systems is derived as described below. Note that
each separation stage may comprise several permeators
in parallel.
1. The fresh feed stream is compressed if a higher

feed-side operating pressure is needed.
2. The fresh feed stream is split into individual feed

streams for each permeation stage.

3. The inlet stream to a particular stage consists of its
individual fresh feed stream; recycle streams ob-
tained from the permeator’s effluent streams; and
recycle streams obtained from the effluent streams
of all other stages.

4. For each stage the permeate and residue streams are
split into recycle streams for the particular stage;
recycle streams for all other stages; and streams that
are sent to the final product mixers. The permeate
recycle streams must be compressed to the feed
pressure before being sent to the feed stream mixers.

5. The inlet streams for the final permeate (residue)
mixer are obtained from the permeate (residue)
streams of all stages.

As an illustration, the superstructure for three sepa-
ration stages is shown in Fig. 1. This superstructure is
capable of representing a very large number of perme-
ator configurations, each of which is a candidate for the
optimal flowsheet. Superstructures containing different
number of separation stages are developed similarly.

2.4. Mathematical formulation

The permeator system superstructure is modeled as
the following MINLP problem:

min: cZ+ f(X)

s.t.: U1Z+h(X)=0

U2Z+g(X)50

X�Rn

Z�{0, 1}l (1)

where X is a vector of n continuous variables that
represent flow rates, pressures and compositions of the
process streams, as well as continuous properties of the

Fig. 1. Permeator system superstructure with three permeation stages.
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process units; Z is a vector of l binary variables that
denote the existence (Zi=1) or nonexistence (Zi=0) of
process units and connections, as well as discrete prop-
erties of the process units; cZ+ f(X) is an objective
function that represents the annual cost of the mem-
brane system; U1Z+h(X) are m equality constraints
that denote permeator model equations and other ma-
terial balances; and U2Z+g(X) are p inequality con-
straints that correspond to separation requirements,
operational restrictions and logical constraints. Note
that all the binary variables appear linearly, while the
continuous variables may appear nonlinearly in the
functions f(X), g(X), and h(X).

2.4.1. Annual process cost
The optimal design of a membrane system entails a

tradeoff between capital investments and operating ex-
penses. The annual process cost should take into ac-
count capital investments associated with permeators
and compressors, as well as operating expenses due to
replacement of membrane elements, maintenance, con-
sumption of utilities and product losses. We utilize the
approximate costing procedures presented by Spillman,
Barrett and Cooley (1988) and Babcock et al. (1988) for
removal of acid gases from natural gas mixtures. It is
important to emphasize that this method only provides
an estimate of the annual process cost. As a result, the
MINLP design strategy is most appropriate for deriv-
ing flowsheets that can be subjected to more detailed
analysis. The mathematical formulation of the process
cost function is shown in Appendix B.

2.4.2. Constraints
The annual process cost is minimized subject to

following types of constraints,
1. material balance constraints;
2. permeator model constraints;
3. composition sum constraints;
4. operating requirement constraints;
5. logic constraints;
6. discrete membrane area constraints;
7. nonnegativity and integrality constraints.
Detailed mathematical formulation of the constraint
equations is presented in Appendix C. Solution of the
MINLP model provides the optimal system configura-
tion and unit sizes, as well as optimal operating condi-
tions for the individual streams.

2.5. Solution strategy

The MINLP design model is solved using the al-
gorithm of Viswanathan and Grossmann (1990), which
is available in the General Algebraic Modeling System
(GAMS; Brooke et al., 1992) as the solver DICOPT+
+ . The MINLP problem is decomposed into a series of
nonlinear program (NLP) and MILP subproblems us-

ing an outer approximation formulation (Quesada &
Grossmann, 1992). These subproblems can be solved
using any NLP and MILP solvers that run in the
GAMS environment. In this paper, CONOPT2 is used
for the NLP problem and XA is used for the MILP
problem. It is important to note that the MINLP
problem is nonconvex due to the nonlinear constraint
equations. As a result, the solution obtained represents
only a local optimum. We address this problem by
initializing the variables at several different points, set-
ting reasonable bounds on the variables, and adjusting
the DICOPT++ options to facilitate convergence to
the global optimum. However, there is no guarantee
that the global optimum will be found using this
procedure.

3. Case studies

The MINLP design strategy is used to derive optimal
spiral-wound permeator networks for acid gas separa-
tions in natural gas treatment and enhanced oil recov-
ery. The crude natural gas can be regarded as a binary
mixture (CO2 and CH4), a four-component mixture
(CO2, H2S, CH4 and heavier hydrocarbons C+H) or a
five-component mixture (CO2, H2S, CH4, C2H6 and
heavier hydrocarbons C2

+H) depending on the natural
gas composition and accuracy requirements. We do not
include N2 as a separate component because the perme-
abilities of N2 and CH4 in cellulose acetate membrane
are very similar (Lee, Feldkirchner, Stern, Houde,
Gamez & Meyer, 1995; Ettouney, Al-Enezi & Hughes,
1995). We investigate multi-stage permeator system de-
sign with different number of components while allow-
ing the membrane area to be either a continuous
variable or a discrete variable. The feed-side pressure is
fixed or considered to be a design variable with an
upper limit.

The nominal economic parameters and operating
conditions in Table 1 are obtained from Babcock et al.
(1988), Spillman et al. (1988), Lee and Feldkirchner
(1993) and Lee et al. (1995). The gas volumes are
calculated at standard conditions of 0.102 MPa and 273
K. The pressure parameter C¦ is an estimated value
from experimental data (Qi & Henson 1996). The per-
meability coefficients used in this study have been
derived from available sources (Pan, 1986; Ettouney et
al., 1995; Lee et al., 1995). These values are consistent
with data presented in the more recent literature
(Bhide, Voskericyan & Stern, 1998).

3.1. Two-component mixture

In our previous work on binary gas separations (Qi
& Henson, 1996), an MINLP design strategy was devel-
oped using an approximate permeator model. We have
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Table 1
Nominal operating conditions and economic parameters

Operating Uf00 10 mol/s (19 353 m3/day)
conditions

0.105 Mpapout

T 40°C
Pf Specified in text

Specified in textxf0

xout,CO2
Operating 52%

requirements
55% (for EOR)yout,CH4

0.105 MPapout

Qb/d (CH4)Membrane 1.48×10−3 mol/MPa m2 s
properties

a(CO2/CH4) 20 (All cases)
16 (Four- and five-componenta(H2S/CH4)
cases)

a(C+H/CH4) 0.4 (Four-component case)
0.4 (Five-component case)a(C2H6/CH4)
0.1 (Five-component case)a(C2

+H/CH4)
C¦ 9.32 MPa2 m2 s/mol
fmhCapital 200 $/m2 membrane

investment
1000 $/kWfcp

hcp 70%
10% of fixed capitalfwk

27% per yearfcc

fmrOperating 90 $/m2 membrane
expenses

3 yearsTm

5% of fixed capital/yearfmt

300 days/yeartwk

35 $/km3fsg

43 MJ/m3fhv

73.0% CH4 and 7.0% C+H, and the fresh feed pressure
is 3.5 MPa. These conditions are representative of
actual applications (Lee & Feldkirchner, 1993; Lee et
al., 1995). As discussed earlier, N2 is not included
explicitly because it has the same permeability as CH4

in cellulose acetate membrane. The permeator feed-side
pressure is taken as the fresh feed pressure. We apply
the MINLP design strategy to design membrane sys-
tems for both natural gas treatment and enhanced oil
recovery applications.

For natural gas treatment, the CO2 concentration of
the residue product must be no greater than 2% to
produce pipeline grade gas. No concentration con-
straint is placed on the permeate stream because it is a
low-grade fuel or a waste gas. Flowsheets with two and
three separation stages that minimize the annual pro-
cess cost are synthesized. A configuration with continu-
ous membrane area provides a lower bound on the
annual cost for a particular number of separation
stages. A configuration with discrete membrane area
generally will yield a higher process cost, but the result-
ing flowsheet is more realistic since vendors offer mem-
brane area in discrete increments.

The optimal flowsheet for a two-stage system with
continuous membrane area is shown in Fig. 2. The
corresponding flowsheet for a discrete membrane ele-
ment area of 20 m2 is shown in Fig. 3. Note that both
flowsheets satisfy the 2% CO2 purity constraint placed
on the product residue stream. While the system
configurations for the two cases are identical, the oper-
ating conditions are significantly different. The total
membrane area changes only slightly, but the mem-
brane area for each individual stage is quite different.
The total compressor power and CH4 recovery differ
because of the different distribution of membrane area.
As expected, the process cost for the discrete area case
is slightly higher than that obtained for the continuous
area case.

Fig. 4 shows the optimal flowsheet for a three-stage
system with continuous membrane area. This design
represents a slight modification of the two-stage
configuration (Fig. 2) in which a small third-stage
permeator is used to separate the second-stage perme-
ate stream. The total process cost is slightly lower than
that of the two-stage system because of increased CH4

recovery. The optimal flowsheet for a three-stage sys-
tem with discrete membrane element area of 20 m2 is
shown in Fig. 5. The system configuration is different
from that obtained for the continuous area case (Fig. 4)
in that the third-stage residue stream recycles to the
second stage rather than to the first stage. Even though
the process costs for the two configurations are quite
close, the distributions of membrane area and CH4

recoveries are significantly different. As a result, the
flow rates and compositions of the product streams
differ between the two cases. We have performed a

shown that this binary model and the approximate
multicomponent model utilized here yield virtually
identical predictions for binary gas mixtures and single-
stage permeation systems (Qi & Henson, 1997). It is
useful to determine if the multicomponent MINLP
design strategy proposed here reduces to the binary
formulation when applied to binary separation prob-
lems. To this end, we have compared the two MINLP
strategies for the design of three-stage systems for
binary CH4/CO2 separations in natural gas treatment
and enhanced oil recovery. Although not shown here
for the sake of brevity, the resulting flowsheets are
identical except for very small differences in operating
conditions. Of course the multicomponent formulation
is not computationally efficient for binary separations
due to the complexity of the associated permeator
model.

3.2. Four-component mixture

We assume that the natural gas mixture is composed
of CO2, H2S, CH4, and heavier hydrocarbons C+H.
The fresh feed composition is 19.0% CO2, 1.0% H2S,
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Fig. 2. Two-stage, four-component system with continuous membrane area (natural gas treatment).

Fig. 3. Two-stage, four-component system with membrane element area of 20 m2 (natural gas treatment).

consistency check of the flowsheets in Figs. 4 and 5 by
using NLP to determine the optimal unit sizes and
operating conditions when the flowsheet is constrained
appropriately. Although not shown here, the NLP gen-
erated flowsheets are identical to those synthesized via
the MINLP strategy.

The significance of the configurational differences
between Figs. 4 and 5 have been investigated by using
NLP (Qi & Henson, 1998b) to determine optimal flow-
sheets when the configuration is fixed to be that in Fig.
4 and the membrane areas are fixed at discrete values of
180, 200 and 20 m2 (case 2); and the configuration is
fixed to be that in Fig. 5 and the membrane area is
allowed to vary continuously (case 3). Table 2 provides
a comparison of the resulting flowsheets to those in Fig.
4 (case 1) and Fig. 5 (case 4). The configuration in Fig.
4 (case 1) has a slightly lower cost than does the
configuration in Fig. 5 (case 3) when the membrane
area is varied continuously. In contrast, the configura-
tion in Fig. 5 (case 4) has a slightly lower cost than does
the configuration in Fig. 4 (case 2) for a discrete
membrane element area of 20 m2. These results suggest
that the MINLP strategy is generating the optimal
flowsheet for each scenario. Since the process costs for
the four flowsheets differ only by a very small amount,
both configurations should be judged as viable candi-

dates for the final design. This illustrates the impor-
tance of sound engineering judgement in interpreting
the MINLP synthesis results.

To check the optimality of the flowsheets in Figs. 2
and 4, the system configuration is fixed and the result-
ing NLP is solved to determine the optimal unit sizes
and operating conditions (Qi & Henson, 1998b). The
membrane area is treated as a continuous variable.
Table 3 summarizes the results for the configurations
shown in Fig. 6. Configuration H corresponds to the
three-stage configuration shown in Fig. 4. A result for
configuration B is not shown because it reduces to
configuration A. Configuration D yields the lowest cost
for the two-stage systems considered. This flowsheet is
virtually identical to that derived for two separation
stages using the MINLP strategy (Fig. 2). The lowest
cost for three separation stages is obtained with
configuration H, which yields an identical flowsheet as
that derived with the MINLP strategy for a three-stage
system (Fig. 4). These results are consistent with the
MINLP strategy generating the optimal flowsheets.
Note that the two-stage configuration D and the three-
stage configurations F and H yield very similar costs. A
possible explanation for this result is that the lack of a
purity constraint on the permeate stream leads to an
optimization problem that only is mildly constrained.
This allows the total membrane area to be allocated
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Fig. 4. Three-stage, four-component system with continuous membrane area (natural gas treatment).

Fig. 5. Three-stage, four-component system with membrane element area of 20 m2 (natural gas treatment).

differently with similar overall process costs. Due to its
simplicity, the two-stage configuration D would
be preferred despite yielding a slightly higher process
cost.

For acid gas separations in enhanced oil recovery,
both the residue and permeate streams must satisfy
composition constraints. Figs. 7 and 8 show the opti-
mal designs for three- and four-stage systems, respec-
tively, with a discrete membrane element area of 20 m2.
Results for continuous membrane area are not pre-
sented for the sake of brevity. Increasing the number of
membrane stages significantly decreases the process cost
because the separation requirements on both the
residue and permeate streams severely restrict the opti-
mal flowsheet. This example demonstrates the advan-
tage of investigating more than three separation stages,
which is very difficult with sequential design procedures
where the configurations are chosen a priori. Note that
the residue product concentration of H2S and permeate

product concentration of C+H are very small compared
with the major components CH4 and CO2.

Table 2
Effect of the discrete membrane area constraint on three-stage separa-
tion systems

Case 4Case 3Case 2Parameter Case 1

Membrane area I (m2) 220182.75 180 167.75
Membrane area II 200 195.95 140197.92

(m2)
Membrane area III 20 30.19 2013.33

(m2)
393.90400394.00 380Total membrane area

(m2)
12.61 12.06 12.46 8.20Compressor power

(kW)
89.29 86.64CH4 recovery (%) 89.1789.04

10.9911.1010.97Annual process cost 11.08
($/km3)
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Table 3
Optimal flowheets for fixed process configurations

Parameter A C D E F G H

141.41 222.91 409.35 167.75 317.98 182.75Membrane area I (m2) 349.97
202.92 164.47 70.150 195.95Membrane area II (m2) 96.12 197.92

0 0 0Membrane area III (m2) 30.190 61.37 13.33
344.33 387.37 479.50349.97 393.90Total membrane area (m2) 475.47 394.00

0Compressor power (kW) 0 10.07 35.57 12.46 34.07 12.61
80.37 87.68 96.8180.00 89.17CH4 recovery (%) 97.34 89.28
11.58 11.09Annual process cost ($/km3) 12.3511.78 10.99 11.99 10.97

Fig. 6. Selected process configurations for optimality analysis (natural gas treatment).

3.3. Fi6e-component mixture

The MINLP design strategy is applied to a five-com-
ponent natural gas mixture to investigate its robustness
for wider variations in membrane selectivities and
stream compositions. We choose the feed compositions
for a typical enhanced oil recovery application (Lee and
Feldkirchner, 1993; Lee et al., 1995), 19.5% CO2, 0.5%
H2S, 73.0% CH4, 4.0% C2H6 and 3.0% heavier hydro-
carbons C2

+H. The feed-side pressure is chosen as the
fresh feed pressure (3.5 MPa). Figs. 9 and 10 show the

optimal designs obtained for three-stage and four-stage
systems, respectively, with continuous membrane area.
The configuration in Fig. 9 is identical to that in Fig. 7,
while the configuration in Fig. 10 is very similar to that
in Fig. 8. Note that very small concentrations of H2S in
the residue products (about 0.08%) and C2

+H in the
permeate product (about 20 ppm) are obtained. These
results indicate that the permeator design model and
MINLP strategy are sufficiently robust to synthesize
membrane systems in which component concentrations
vary five orders of magnitude.
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3.4. Optimization of feed-side pressure

To generate the previous results, we assumed a rela-
tively high fresh feed pressure and set the permeator
feed-side pressure equal to this pressure. In some appli-
cations, optimization of feed-side pressure may be nec-
essary to enhance process economics. An upper limit on
the pressure must be imposed due to material and
mechanical limitations of the equipment. The optimal
feed-side pressure represents a trade-off between com-
pressor power and total membrane area. We investigate
feed-side pressure optimization by utilizing the feed
stream compressor in the permeator system superstruc-
ture (Fig. 1). A four-component natural gas mixture

(19.0% CO2, 1.0% H2S, 73.0% CH4, and 7.0% C+H) is
available at a low pressure (0.105 MPa). The upper
limit for the feed-side pressure is 5.0 MPa. Fig. 11
shows the optimal flowsheet for a three-stage configura-
tion with continuous membrane area for natural gas
treatment, while Fig. 12 shows the optimal four-stage
flowsheet with continuous membrane area for enhanced
oil recovery. In each case, a relatively large fresh feed
compressor is needed but the configurations are identi-
cal to those generated in the absence of feed pressure
optimization (Figs. 5 and 8). The feed-side pressure
goes to the upper limit for the economic parameters
chosen; a lower pressure may be obtained for different
economic parameters. Note from Fig. 12 that the super-

Fig. 7. Three-stage, four-component system with membrane element area of 20 m2 (enhanced oil recovery).

Fig. 8. Four-stage, four-component system with membrane element area of 20 m2 (enhanced oil recovery).
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Fig. 9. Three-stage, five-component system with continuous membrane area (enhanced oil recovery).

Fig. 10. Four-stage, five-component system with continuous membrane area (enhanced oil recovery).

structure may introduce multiple compressors that
could be combined into a single compressor. A
modified superstructure is needed to minimize the num-
ber of recycle compressors (Agrawal, 1997).

4. Conclusions

An optimal design strategy based on an algebraic
permeator model and MINLP has been proposed for
membrane systems separating multicomponent gas mix-
tures. The MINLP strategy utilizes a permeator system
superstructure to embed a very large number of possi-

ble network configurations. The superstructure is for-
mulated as a MINLP model and solved using standard
optimization codes to yield the flowsheet that minimizes
the annual process cost. Case studies have been pre-
sented for spiral-wound permeators separating acid
gases (CO2 and H2S) from crude natural gas mixtures
in natural gas treatment and enhanced oil recovery.
Optimal designs are derived for different number of
membrane stages with both continuous and discrete
membrane area. Optimization of the feed-side pressure
is also investigated. The results demonstrate that the
MINLP strategy is an effective tool for preliminary
design of multi-stage, multicomponent gas membrane
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systems, including those with very small component
concentrations.

5. List of symbols

Ai dimensionless constant defined by Eq. (14)
membrane area for each stage (m2)A

At total membrane area of system (m2)
permeability of the spacing material insideB
the spiral-wound leaf (m2)

Bi dimensionless constant defined by Eq. (15)
C dimensionless constant defined by Eq. (2)

permeate-side pressure parameter definedC¦
by Eq. (3) (MPa2 s/mol)

thickness of membrane skin (m)d
dm thickness of membrane leaf (m)

annual capital charge (%/year)fcc

capital cost of gas-powered compressors ($/fcp

KW)
sales gas gross heating value (MJ/m3)fhv

capital cost of membrane housing ($/m2fmh

membrane)
fmr expense of membrane replacement ($/m2

membrane)
fmt maintenance rate (%/year)
fsg utility and sales gas price ($/km3)
fwk working capital rate (%)

annual process cost ($/km3)F
annual capital charge ($/year)Fcc

fixed capital investment ($)Ffc

Fig. 11. Feed-side pressure optimization for three-stage, four-component system (natural gas treatment).

Fig. 12. Feed-side pressure optimization for four-stage, four-component system (enhanced oil recovery).
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expense of membrane replacement ($/year)Fmr

maintenance expense ($/year)Fmt

Fpl value of product losses ($/year)
Cost of utilities ($/year)Fut

vector function expressed in Eq. (22)F
h dimensionless leaf length variable

variables defined in Eqs. (17)–(20)K1–K4

membrane leaf length (m)L
M number of quadrature points
Nb minimum number of binary variables for

integer conversion
Nc number of components for gas mixtures
Ns number of permeator stages
NA number of membrane elements for each

stage
NAL lower bound of membrane element number
NAU upper bound of membrane element number

feed-side pressure (MPa)P
fresh feed pressure (MPa)Pf

upper bound on feed-side pressure (MPa)PU

permeate-side pressure (MPa)p
pout required outlet permeate pressure (MPa)
p0 permeate outlet pressure for each perme-

ator (MPa)
permeability of the ith component (mol/mQi

s Pa)
permeability of the base component (mol/mQb

s Pa)
dimensionless permeation factor defined byR

Eq. (8)
Rg ideal gas constant (m3 Pa/kg mol K)

slack variable in logic constraintsS
membrane life (years)tm

twk annual working time (days/year)
temperature (K)T
feed flow rate for each permeator (mol/s)Uf

Uf0 fresh feed flow rate for each permeator
(mol/s)

total fresh feed flow rate as processing ca-Uf00

pacity (mol/s)
flow rate of residue gas at permeator outletU0

(mol/s)
Ub flow rate of residue gas as recycle stream

(mol/s)
flow rate of residue gas as product streamUp

(mol/s)
Upt total flow rate of residue product (mol/s)
UL upper bound on stream flow rate (mol/s)

lower bound on stream flow rate (mol/s)UU

V0 permeate flow rate at permeator outlet
(mol/s)

flow rate of permeate gas as recycle streamVb

(mol/s)
flow rate of permeate gas as productVp

stream (mol/s)
Vpt total flow rate of permeate product (mol/s)

membrane leaf width (m)W
stage compressor power (kW)Wcp

fresh feed compressor power (kW)Wcp,f

total compressor power (kW)Wt

quadrature weightswj

x local feed-side concentration (mole fraction)
bulk residue stream concentration at per-x0

meator outlet (mole fraction)
xf feed concentration for each stage (mole

fraction)
fresh feed concentration (mole fraction)xf0

xout,CO2
maximum CO2 concentration of residue

product (mole fraction)
concentration of residue product (molexpt

fraction)
xr local residue concentration along outlet end

of membrane leaf (mole fraction)
Y vector defined in Eq. (21)

permeate concentration in bulk permeatey0

stream at permeate outlet (mole fraction)
concentration of permeate product (moleypt

fraction)
maximum CH4 concentration of permeateyout,CH4

product (mole fraction)
y % local permeate concentration on the mem-

brane surface (mole fraction)
y f% local permeate concentration along inlet

end of membrane leaf (mole fraction)
local permeate concentration at quadratureyj%

point j (mole fraction)
local permeate concentration along out-y r%

let end of membrane leaf (mole
fraction)

composition variable defined by Eq. (8)ȳ %
ȳ %f ȳ % value at the feed inlet
ȳ %r ȳ % value at the residue outlet

ȳ % value at the j-th quadrature pointȳ %j
binary variable used to express discreteZA

membrane area
binary variable denoting the existence orZUb

nonexistence of Ub

binary variable denoting the existence orZUf0

nonexistence of Uf0

binary variable denoting the existence orZUp

nonexistence of Up

binary variable denoting the existence orZVb

nonexistence of Vb

ZVp binary variable denoting the existence or
nonexistence of Vp

Qi/Qb, membrane selectivity for the ithai

component
p/P, ratio of permeate pressure to feedg

pressure
p0/P, ratio of permeate pressure to feedg0

pressure at permeate outlet
viscosity of gas mixture (Pa s)m
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u0 V0/Uf, ratio of permeate flow to feed flow
at permeate outlet

U CH4 recovery (%)
jj quadrature points

dimensionless feed-side flow ratef

dimensionless feed-side flow rate at residuefr

outlet
hcp compressor efficiency (%)

function defined by Eqs. (26) and (27)Fi

F j% function defined by Eq. (28)
function defined by Eq. (29)C

Subscripts
index of components in gas mixturei

j index of quadrature points for the summa-
tion term in Eq. (10)

index of binary variables in expression ofk
discrete membrane area; index of compo-
nents in gas mixture

m, n index of membrane stages
index of quadrature points for leaf lengthq

variable h
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Appendix A. Multicomponent permeator model

The approximate model is comprised of four groups
of nonlinear algebraic equations. The first group con-
tains one equation that describes the permeate-side
pressure distribution,

g2=g0
2+

1
2

C(1−fr)(1−h2) (2)

where g(h) is the ratio of the permeate-side and feed-
side pressures; g0 is g at the permeate outlet; fr(h) is the
dimensionless residue gas flow rate; h is the dimension-
less membrane leaf length variable; and:

C
2RgTmLUf

WdmBP2 (3)

The remaining variables are defined in the Section 5.
The coefficient C can be factored as follows:

C=C¦
Uf

AP2 (4)

where Uf is the feed gas flow rate, P the feed-side
pressure, A the membrane area, and C¦ a parameter
that depends on the internal properties of the
permeator.

The second group includes three equations that
describe the relations between the local feed-side con-
centration xi and the local permeate-side concentration
yi%:

xi=gy %i+
(1−g)y %i

aiȳ %
, i=1, …, Nc (5)

y %i=
aixiȳ %

1−g+gaiȳ %
, i=1, …, Nc (6)

%
Nc

i=1

aixiȳ %
1−g+gaiȳ %

=1 (7)

where ai is the selectivity of component i, Nc is the
number of components, and ȳ % is a composition vari-
able defined as:

ȳ %= %
Nc

i=1

y %i
ai

(8)

Note that Eqs. (5) and (6) are different forms of the
same equation, while Eq. (7) is the summation of Eq.
(6) over all components. Different forms are shown to
facilitate the subsequent development.

The third group consists of one equation that de-
scribes the relation between the dimensionless perme-
ation factor,

R
2WLQbP

dUf

=A
Qb

d
P
Uf

(9)

the composition variable ȳ %, and the dimensionless feed-
side flow rate f :

R=
1

1−g

�
ȳ %f−frȳ %r+ (ȳ %r− ȳ %f) %

M

j=1

fjwj

�
(10)

The summation term is a Gaussian quadrature approx-
imation of a finite integral (Rice & Do, 1995). The
subscripts f, r, and j represent the permeator properties
at the feed inlet, residue outlet, and quadrature point j,
respectively. M is the number of quadrature points, wj

is the quadrature weight at the quadrature point jj,
and:

ȳ %j= ȳ %f+jj(ȳ %r− ȳ %f) (11)

The fourth group of equations describe the relations
between the dimensionless permeate-side pressure g, the
local permeate-side concentration yi%, and the dimen-
sionless feed-side flow rate f. The initial-value ordinary
different equations are:

d(ln f)
dȳ %

= −
%k=1

Nc Aky %k

%k=1
Nc Bky %k

(12)
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dy %i
dȳ %

=y %iÃ
Ã

Ã

Á

Ä

Ai−Bi

%k=1
Nc Aky %k

%k=1
Nc Bky %k

Ã
Ã

Ã

Â

Å

, i=2, …, Nc

(13)

where:

Ai=
1−g

(1−g+gaiȳ %)ȳ %
i=1, …, Nc (14)

Bi=
(1−g)(aiȳ %−1)

1−g+gaiȳ %
i=1, …, Nc (15)

The initial conditions ȳ %= ȳ %f, ȳ %i= ȳ %f,i, and f=ff=1
are calculated from the second group of Eqs. (5)–(7).
Numerical solutions for f and yi% are obtained using a
fourth-order Runge–Kutta–Gill approximation at each
quadrature point ȳ %j and the outlet point ȳ %r. The result-
ing expressions are (Rice & Do, 1995):

Yj=Yj−1+
1
6

(K1+K4)+
1
3
(l2K2+l4K3) (16)

K1=dj · F(ȳ %j−1, Yj−1) (17)

K2=dj · F(ȳ %j−1+
dj

2
, Yj−1+

1
2

K1) (18)

K3=dj · F(ȳ %j−1+
dj

2
, Yj−1+l1K1+l2K2) (19)

K4=dj · F(ȳ %j−1+dj, Yj−1+l3K2+l4K3) (20)

where:

Yj= [ln fj, y %j,2, …, y %j,N c
]T (21)

F= [ ff, f2, …, fn ]T (22)

dj= ȳ %j− ȳ %j−1 (23)

l1=

2−1

2
, l2=

2−
2
2

, l3= −

2
2

,

l4=
2+
2

2
(24)

The functions ff, f2, …, fN c
represent the right-hand

sides of Eqs. (12) and (13), and yj,i% is the permeate
concentration of the ith component at the quadrature
point ȳ %j. The initial conditions are:

Y0= [0, y %f,2, …, y %f,N c
]T (25)

where y f,i% is determined from ȳ %f using Eq. (6).
This procedure yields Nc nonlinear algebraic equa-

tions that must be solved simultaneously at each
quadrature point j and the outlet point to yield fj, yj,i% ,
fr, and y r,i% for i=2, …, Nc. Note that these equations
are solved for a given value of g, and therefore ȳ % is the
only independent variable. When g is a variable, the
resulting functions for fr, y r,i% and fj can be expressed
as:

fr=F1(g, ȳ %f, ȳ %r) (26)

y %r,i=Fi(g, ȳ %f, ȳ %r), i=2, …, Nc (27)

fj=F %j (g, ȳ %f, ȳ %r) j=1, …, M (28)

Substitution of fr and fj into Eq. (10) yields the
relation:

R=C(g, ȳ %f, ȳ %r) (29)

Simultaneous solution of the nonlinear algebraic Eqs.
(2), (7), (26) and (29) at each quadrature point yields
ȳ %f(hq), g(hq), fr(hq), and ȳ %r(hq), where hq represents the
value of h at the qth quadrature point. Substitution of
these variables into Eq. (27) yields y r,i% (hq), which then is
used to calculate xr,i(hq) via Eq. (5).

The flow rate and concentration of the effluent per-
meate stream are calculated from integral expressions
approximated using Gaussian quadrature. Under most
conditions, a single quadrature point at h1=0.5 is
sufficient. In this case, the resulting equations are (Qi &
Henson, 1996):

u0=1−fr(h1) (30)

y0,i=
xf,i−xr,i(h1)fr(h1)

1−fr(h1)
, i=2, …, Nc (31)

The flow rate and concentration of the effluent residue
stream are determined from an overall material balance
about the permeator.

Appendix B. Annual process cost

The fixed capital investment is the installed equip-
ment cost of membrane vessels and compressors. Note
that membrane housing is a capital cost, but the re-
placement of membrane elements is treated as an oper-
ating expense. The cost of membrane housing and
replacement are determined by the membrane area.
Auxiliary costs associated with pipes, fittings and as-
sembly are included in the membrane housing cost. As
a result, the fixed capital investment (Ffc) is only a
function of total membrane area (At) and total com-
pressor power (Wt):

Ffc= fmh %
Ns

n=1

An+ fcp

Wt

hcp

(32)

where At=�n=1
Ns An and Ns is the number of separation

stages. The remaining parameters are defined in the
Section 5. The total compressor power is the sum of the
fresh feed compressor power (Wcp,f) and the compressor
power for each stage (Wcp,n):

Wt=Wcp,f+ %
Ns

n=1

Wcp,n (33)
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where compressor power is calculated by assuming
ideal gas behavior and isothermal compression (Peters
& Timmerhaus, 1980):

Wcp,f=RgTUf00 ln
�P

Pf

�
(34)

Wcp,n=RgT
� %

Ns

m=1

Vb,m,n
�

ln
� P

p0,n

�
, n=1, …, Ns

(35)

Here Vb,m,n is the permeate recycle stream flow rate
from the nth stage to mth stage. Note that if the
feed-side pressure for each stage is equal to the fresh
feed pressure, the fresh feed compressor is eliminated
and Wcp,f becomes zero.

The working capital is taken as fixed percentage ( fwk)
of the fixed capital, and the annual capital charge (Fcc)
is calculated by annualizing the fixed and working
capitals:

Fcc= fcc(1+ fwk)Ffc (36)

The annual operating costs include:
membrane replacement expense (Fmr):

Fmr=
fmr

tm

%
Ns

n=1

An (37)

maintenance expense (Fmt):

Fmt= fmtFfc (38)

cost of utilities (Fut):

Fut=
fsgtwk

fhvhcp

Wt (39)

value of product losses (Fpl):

Fpl= fsgtwkVpt

ypt,k

xpt,k

(40)

The annual process cost (F) is the sum of the capital
charge and operating expenses divided by process ca-
pacity, which is expressed as:

F=
[Fcc+Fmr+Fmt+Fut+Fpl]

(Uf00twk)
(41)

Appendix C. Constraints

C.1. Material Balance

Material balance constraints are imposed on (i) split-
ters for the initial feed stream and the outlet streams of
each stage; (ii) mixers for the inlet streams of each stage
and the inlet streams for the final products; and (iii)
each permeation stage. For a system with N stages,
material balances on the splitters can be expressed as:

Uf00= %
Ns

n=1

Uf0,n (42)

U0,n=Up,n+ %
Ns

m=1

Ub,m,n, n=1, …, Ns (43)

V0,n=Vp,n+ %
Ns

m=1

Vb,m,n, n=1, …, Ns (44)

where Uf00 is the total fresh feed flow rate; Uf0,n the
fresh feed flow rate for stage n ; U0,n (V0,n) the total
outlet residue (permeate) flow rate for stage n ; Up,n

(Vp,n) is the residue (permeate) flow rate of the final
product from stage n ; and Ub,m,n (Vb,m,n) is the residue
(permeate) flow rate of the recycle stream from the nth
stage to mth stage. Note that only overall material
balances are needed because splitters do not change
stream compositions.

For the stream mixers, both overall material balances
and component balances are necessary. Material bal-
ances for the inlet mixer of stage n are written as:

Uf,n=Uf0,n+ %
Ns

m=1

(Ub,n,m+Vb,n,m), n=1, …, Ns

(45)

Uf,nxf,n,i=Uf0,nxf0,i+ %
Ns

m=1

(Ub,n,mx0,m,i+Vb,n,my0,m,i),

n=1, …, Ns; i=2, …, Nc (46)

The variables are defined in the Section 5. Note that the
recycle streams are taken from the mth stage and
terminate at the nth stage. Material balances for the
product mixers are expressed as:

Upt= %
Ns

n=1

Up,n (47)

Uptxpt,i= %
Ns

n=1

Up,nx0,n,i, i=2, …, Nc (48)

Vpt= %
Ns

n=1

Vp,n (49)

Vptypt,i= %
Ns

n=1

Vp,ny0,n,i, i=2, …, Nc (50)

where Upt and xpt,i are the total flow rate and concen-
trations of the final residue product, and Vpt and ypt,i

are the total flow rate and concentrations of the final
permeate product. Material balances about each perme-
ation stage yield:

Uf,n=U0,n+V0,n, n=1, …, Ns (51)

Uf,nxf,n,i=U0,nx0,n,i+V0,ny0,n,i, n=1, …, Ns;

i=2, …, Nc (52)

C.2. Permeator Model

The permeator model constraints are comprised of
the approximate permeator model equations written for
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each stage. Some of the equations are manipulated to
facilitate computer implementation. The following
equations are used to define parameters:

Cn=
C¦Uf,n

AnP2 , n=1, …, Ns (53)

Rn=
(Q2/d)AnP

Uf,n

, n=1, …, Ns (54)

V0,n=Uf,nu0,n, n=1, …, Ns (55)

p0,n=Pg0,n, n=1, …, Ns (56)

The permeate-side pressure distribution is obtained
from Eq. (2) using a single quadrature point at h1=0.5,

gn
2=g0,n

2 +0.375Cn(1−fr,n), n=1, …, Ns (57)

The relations Eqs. (5) and (7) between the local feed-
side concentration xi and the local permeate-side con-
centration yi% are needed for both feed and residue ends
of the permeator:

%
Nc

i=1

aixf,n,iȳ %f,n
1−gn+gnaiȳ %f,n

=1, n=1, …, Ns (58)

%
Nc

i=1

aixr,n,iȳ %r,n

1−gn+gnaiȳ %r,n

=1, n=1, …, Ns (59)

xf,n,i=gny %f,n,i+
(1−gn)y %f,n,i

aiȳ %f,n
, i=1, …, Nc;

n=1, …, Ns (60)

xr,n,i=gny %r,n,i+
(1−gn)y %r,n,i

aiȳ %r,n

, i=1, …, Nc;

n=1, …, Ns (61)

The relation Eq. (10) for the dimensionless permeation
factor is written as:

(1−gn)Rn= ȳ %f,n−fr,nȳ %r,n+ (ȳ %r,n− ȳ %f,n) %
M

j=1

fj,nwj,

n=1, …, Ns (62)

The dimensionless feed-side flow rates fj and fr and
the local permeate concentration at the residue outlet
y %r,i are determined by Runge–Kutta–Gill approxima-
tion of initial-value differential equations at each
quadrature point ȳ %j and the residue outlet ȳ %r. The
quadrature and outlet points are determined by the
following equation:

ȳ %j,n= ȳ %f,n+jj(ȳ %r,n− ȳ %f,n),

j=1, …, M+1; n=1, …, Ns (63)

in which the last point ( j=M+1) represents the
residue outlet. The Runge–Kutta–Gill equations Eqs.
(16)–(20) are written as:

K1, j,n=dj,n · F(ȳ %j−1,n, Yj−1,n, gn) (64)

K2, j,n=dj,n · F
�

ȳ %j−1,n+
dj,n

2
, Yj−1,n+

1
2

K1, j,n, gn
�

(65)

K3, j,n=

dj,n · F
�

ȳ %j−1,n+
dj,n

2
, Yj−1,n+l1K1, j,n+l2K2, j,n, gn

�
(66)

K4, j,n=

dj,n · F(ȳ %j−1,n+dj,n, Yj−1,n+l3K2, j,n+l4K3, j,n, gn)
(67)

Yj,n=Yj−1,n+
1
6

(K1, j,n+K4, j,n)+
1
3

(l2K2, j,n+l4K3, j,n)

(68)

where j=1, …, M+1; n=1, …, Ns, and Y and F are
defined in Appendix A. Note that Y and K1–K4 are
vectors with Nc elements, while F is a Nc-element
vector function. Thus, Yj,n and K1,j,n–K4,j,n are three-di-
mensional arrays. The vector function F is derived
from equations Eqs. (12) and (13) by noting that yi%=
Yi for i=2, …, Nc and y %1=1−�i=2

Nc Yi :

F1(ȳ %, Y, g)=

−
A1(ȳ %, g)(1−%i=2

Nc Yi)+%i=2
Nc Ai(ȳ %, g)Yi

B1(ȳ %, g)(1−%i=2
Nc Yi)+%i=2

Nc Bi(ȳ %, g)Yi

(69)

Fi(ȳ %, Y, g)=Yi [Ai(ȳ %, g)+Bi(ȳ %, g)F1(ȳ %, Y,g)],

i=2, ···, Nc (70)

where Yi is the ith element of the vector Y, and the
parameters Ai and Bi are defined by equations Eqs.
(14) and (15) for each component i :

Ai(ȳ %, g)=
1−g

(1−g+gaiȳ %)ȳ %
, i=1, …, Nc (71)

Bi(ȳ %, g)=
(1−g)(aiȳ %−1)

1−g+gaiȳ %
, i=1, …, Nc (72)

The GAMS environment does not allow redefinition of
functions inside the constraint definition. As a result,
expressions Eqs. (64)–(68) for the function F need to
be written explicitly. The initial conditions for Yj,n are:

Y0,n= [0, y %f,n,2, …, y %f,n,N c
]T, n=1, …, Ns (73)

and the interval d is chosen as the difference between ȳ %
at adjacent quadrature points:

dj,n= ȳ %j,n− ȳ %j−1,n, j=1, …, M+1; n=1, …, Ns

(74)

The local feed-side flow rates fj and fr and the local
permeate concentration at the residue outlet y r,i% are
calculated as:

fj,n=exp(Yj,n,1), j=1, …, M ; n=1, …, Ns (75)
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fr,n=exp(YM+1,n,1), n=1, …, Ns (76)

y %r,n,i=YM+1,n,i, n=1, …, Ns ; i=2, …, Nc (77)

The flow rate and concentration of the effluent per-
meate stream from each stage are given by Eqs. (30)
and (31):

u0,n=1−fr,n, n=1, …, Ns (78)

y0,n,i=
xf,n,i−xr,n,ifr,n

1−fr,n

, n=1, …, Ns; i=2, …, Nc

(79)

The flow rate and concentration of the effluent residue
stream are determined by overall material balance
equations.

C.3. Composition Sum

These constraints force the sum of component mole
fractions to be unity:

%
Nc

i=1

xf,n,i=1, n=1, …, Ns (80)

%
Nc

i=1

y %f,n,i=1, n=1, …, Ns (81)

%
Nc

i=1

xr,n,i=1, n=1, …, Ns (82)

%
Nc

i=1

y %r,n,i=1, n=1, …, Ns (83)

%
Nc

i=1

x0,n,i=1, n=1, …, Ns (84)

%
Nc

i=1

y0,n,i=1, n=1, …, Ns (85)

%
Nc

i=1

xpt,i=1, n=1, …, Ns (86)

%
Nc

i=1

ypt,i=1, n=1, …, Ns (87)

C.4. Operating Requirement

Constraints are imposed to ensure the product
streams satisfy the separation requirements. In acid gas
separations from natural gas mixtures, minimum purity
requirements are placed on the CO2 concentration in
the final residue product and the CH4 concentration in
the permeate product stream. In addition, a constraint
which expresses that the permeate pressure for each
stage must be at least as high as the pressure of the final
permeate stream is required. These constraints are ex-
pressed as:

xpt,CO2
5xout,CO2

(88)

ypt,CH4
5yout,CH4

(89)

p0,n]pout (90)

Depending on the application, some of the constraints
may be relaxed. For example, only Eqs. (88) and (90)
are required for natural gas treatment since the CO2

enriched permeate stream has little or no value.

C.5. Logic

Logic constraints are placed on binary variables asso-
ciated with the existence or nonexistence of various
interconnections. The first type of logic constraint
forces the flow rate to be zero if the associated connec-
tion is not utilized (Z=0). If the connection is utilized
(Z=1), the corresponding constraint is relaxed to al-
low the flow rate to assume any value up to an upper
bound (UU). These logic relations for the feed, product,
and recycle streams are expressed as follows:

Uf0,n−UUZn
Uf050, n=1, …, Ns (91)

Up,n−UUZn
Up50, n=1, …, Ns (92)

Vp,n−UUZn
Vp50, n=1, …, Ns (93)

Ub,m,n−UUZm,n
Ub50, m=1, …, Ns ; n=1, …, Ns

(94)

Vb,m,n−UUZm,n
Vb 50, m=1, …, Ns; n=1, …, Ns

(95)

The second type of logic constraint forces the binary
variable to be zero if the associated flow rate becomes
zero. If the connection is utilized, the corresponding
flow rate can assume any value greater than a lower
bound (UL). These logic relations are expressed as:

Uf0,n−ULZn
Uf050, n=1, …, Ns (96)

Up,n−ULZn
Up50, n=1, …, Ns (97)

Vp,n−ULZn
Vp50, n=1, …, Ns (98)

Ub,m,n−ULZm,n
Ub50, m=1, …, Ns ; n=1, …, Ns

(99)

Vb,m,n−ULZm,n
Vb 50, m=1, …, Ns; n=1, …, Ns

(100)

In practice, UL is a small positive value that is chosen
as the minimum flow rate allowed in the system.

The final type of logic constraint is associated with
the outlet permeate pressure for each stage. If the outlet
permeate stream goes to final product stream mixer, the
permeate pressure must equal the product pressure. If
the permeate stream is recycled to another stage, the
permeate pressure can assume any value less than or
equal to the upper limit of the feed-side pressure PU.
By introducing a slack variable S, these logic relations
can expressed as:

p0,n=Sn+pout, n=1, …, Ns (101)
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05Sn5 (PU−pout)(1−Zn
Vp), n=1, …, Ns (102)

Note that if Zn
Vp=1, then Sn=0 and p0,n=pout; if

Zn
Vp=0, then 05Sn5PU-pout and pout5p0,n5PU.

C.6. Discrete Membrane Area

A typical spiral-wound permeator is comprised of
several membrane elements placed in a cylindrical steel
shell. A permeator shell normally is capable of holding
from one to six spiral-wound membrane elements.
Membrane area is adjusted by changing the number of
elements or by connecting several permeators in series
or parallel. As a result, membrane area may be consid-
ered as a discrete variable:

An=A0Nn
A, n=1, …, Ns (103)

where A0 is the element membrane area size and NA

(NAL5NA5NAU) is the number of elements. Because
integer variables cannot be handled directly by existing
MINLP algorithms, the element number NA must be
expressed in terms of binary variables. One way to
convert the integer variables NA to binary variables ZA

is to use the following expression (Floudas, 1995):

Nn
A=Nn

AL+ %
Nb

k=1

2k−1Zn,k
A , n=1, …, Ns (104)

where Nb is the minimum number of binary variable
needed:

Nb=1+ int
!log(NAU−NAL)

log(2)
"

(105)

Note that Eq. (105) is used only to calculate the value
of Nb; it is not used as a constraint equation. In the
following case studies, we choose NAL=1 and NAU=
15 to 30, which yield Nb=4 or 5. When the membrane
area is regarded as a continuous variable, the con-
straints Eqs. (103) and (104) are not utilized.

C.7. Nonnegati6ity and Integrality

These constraints are used to specify lower and upper
variable bounds to prevent undefined operations (e.g.
division by zero) and to ensure the variables remain in
a reasonable solution space. Proper selection of these
bounds is very important for efficient solution of
mixed-integer nonlinear models. These constraints are
expressed as follows:

05Uf0,n,Uf,n,U0,n,V0,n,Up,n,Vp,n,Ub,m,n,Vb,m,n,

Upt,Vpt5UU (106)

An,Nn
A,Rn,Cn,P,pn,ȳf,n,ȳr,n,ȳ %j,n]0 (107)

05xf,n,i,x0,n,i,y0,n,i,y %f,n,i,y %j,n,i,y %r,n,i,xr,n,i,xpt,i,ypt,i51
(108)

05u0,n,g0,n,gn,fr,n,fj,n51 (109)

Zn
Uf0,Zn

Up,Zn
Vp,Zm,n

Ub ,Zm,n
Vb ,Zn,k

A =0,1 (110)

m=1, …, Ns; n=1, …, Ns; j=1, …, M ;

i=1, …, Nc; k=1, …, Nb
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