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Abstract

A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive
control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear sub-

systems and highly nonlinear subsystems that interact via mass and energy ¯ows. LMPC is applied to the linear subsystems and
NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction e�ects is
proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to

compare the hybrid method to conventional LMPC and NMPC techniques. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Linear model predictive control (LMPC) has been
successfully applied to plant-wide control problems with
hundreds of input and output variables [1]. LMPC can
be expected to provide satisfactory performance if the
controlled process is approximately linear over the
typical range of operation. The industrial success of
commercial techniques such as Dynamic Matrix Con-
trol demonstrates that LMPC can tolerate some degree
of process nonlinearity. The standard approach for
handling strong nonlinearities in the LMPC framework
is to sacri®ce performance by detuning the controller.
However, some plants are su�ciently nonlinear to hinder
the successful application of LMPC.
Nonlinear model predictive control (NMPC) has been

proposed as an alternative to LMPC for plants with
highly nonlinear behavior [2]. NMPC o�ers the same
capabilities for interaction compensation and constraint
handling as its linear counterpart. The key di�erence is
that NMPC utilizes a nonlinear model to predict and
optimize process performance. The use of NMPC for
plant-wide control is problematic due to complications
associated with dynamic modeling, state estimation and
on-line optimization [3]. A nonlinear dynamic model of

the entire plant is required for controller design. Such
large-scale nonlinear models are extremely di�cult to
obtain using fundamental modeling and available tech-
niques for empirical nonlinear modeling [4]. Another
complication is that unmeasured state variables must be
estimated from available on-line measurements. This
requires the design of a nonlinear observer, which is a
di�cult task despite recent advances [5]. Even if a sui-
table nonlinear model is available, a nonlinear pro-
gramming problem must be solved at each sampling
period to generate the control moves. For large-scale sys-
tems the optimization problem may be computationally
intractable due to the large number of decision variables
and the complexity of the constraints resulting from the
nonlinear model equations. While it can be argued that
cheaper and faster computers soon will be available to
solve plant-wide nonlinear optimization problems in real-
time, a simple calculation in [6] has shown that a NMPC
problem with 20 inputs and 20 outputs will not be able to
be solved on-line until well into this century given expec-
ted advances in computer technology. As a result, the
judicious use of modeling assumptions [7] and simpli®ed
controller formulations [6] are required even for problems
of moderate size and complexity.
In this paper, we propose a plant-wide control strat-

egy based on integrating LMPC and NMPC. The
motivation for this approach is that most operating
units in a typical chemical plant can be adequately
described by linear dynamic models, while a small
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number of operating units account for the highly non-
linear behavior. Unlike plant-wide control methods that
employ time-scale decompositions [8,9], the proposed
approach is based on decomposing the plant according
to the degree of nonlinearity. A model predictive con-
trol system for the decomposed plant is constructed by
applying LMPC to the linear subsystems and NMPC to
the nonlinear subsystems. We present a simple con-
troller coordination strategy for plants that can be
decomposed into a single linear subsystem and a single
nonlinear subsystem. A simple reaction/separation pro-
cess is used to compare the hybrid method to conven-
tional LMPC and NMPC techniques in terms of closed-
loop performance and on-line computation.

2. Illustrative example

Consider a reaction/separation process which is
designed to produce a product B by irreversible reaction
of a reactant A. The e�uent from a continuous stirred
tank reactor is introduced to a distillation column where
separation of the reactant and product occurs. The
overhead stream enriched in A is recycled to the reactor
assuming that inerts and light byproducts are not pre-
sent in the system. Otherwise, an overhead vent stream
would be required to avoid accumulation of these
materials. The bottom stream enriched in B is recovered
as the product. The basic reactor model obtained from
[10] is well studied. The model is derived by assuming a
®rst-order reaction, constant volume operation, and
that the combined recycle and fresh feed stream tem-
perature is maintained at a constant temperature by a
fast regulatory controller. The resulting reactor model is
comprised of state equations for the reactor concentra-
tion (CA) and the reactor temperature T. The parameter
values are same as those used in [10], except that the
pre-exponential factor (k0) is reduced from 7.2�1010
minÿ1 to 5.14�1010 minÿ1. The control objective is to
regulate the reactor temperature by manipulating the
coolant temperature (Tc) assuming the coolant jacket
dynamics are negligible. This scheme allows the reactor
to be operated safely and e�ectively.
The distillation column consists of seven trays, a total

condenser, and a reboiler. The e�uent from the reactor
is introduced as feed to the fourth tray. The assump-
tions used to derive the distillation column are discussed
in [11]. In particular, the equimolal over¯ow assumption
eliminates the need for energy balances. Tray-by-tray
component balances [11] yield state equations for the
liquid mole fraction of componentA on each equilibrium
stage (XAn), where n � 1 represents the condenser and
n � 9 represents the reboiler. The control objective is to
regulate the recycle mole fraction (XA1) and the product
mole fraction (XA9) by manipulating the vapor rate (V)
and the re¯ux rate (L). Overhead composition control is

desirable to maximize the amount of reactant recycled to
the reactor, while control of the bottom composition is
required to meet product purity requirements. In prac-
tice, V and L may be manipulated by adjusting the
reboiler heat duty and the re¯ux valve position. The col-
umn model parameters are shown in Table 1.
Fig. 1 shows the open-loop responses of the outputs

(T, XA1, and XA9) to step changes in the inputs (Tc, V).
The initial operating point corresponds to an unstable
steady state for the reactor. The solid line represents the
response to aÿ3 K change in Tc at t � 5 min followed by
a+10 mol/min change in V at t � 50 min. The dashed
line represents the response to +3 K change in Tc at t �
5 min. It is obvious that the reactor dynamics are highly
nonlinear and much faster than the column dynamics.
The linear model for LMPC design is obtained by

linearizing the nonlinear model equations about the
nominal operating point and discretizing with a sam-
pling interval �T � 10 s. The resulting model has the
standard state-space form:

x k� 1� � � Ax k� � � Bu k� �
y k� � � Cx k� � �1�

where x 2 R11, u 2 R3 and y 2 R3. The LMPC con-
troller is formulated to minimize the following in®nite
horizon objective function:

min
U k� �

X1
j�0

y k� jjk� � ÿ ys� �TQ y k� jjk� � ÿ ys� ��
� u k� jjk� � ÿ us� �TR u k� jjk� � ÿ us� �
��uT k� jjk� �S�u k� jjk� �	

�2�

where: y k� jjk� � and u k� jjk� � are predicted values of the
outputs and inputs, respectively; ys and us are (possibly)
time-varying target values for the outputs and inputs,
respectively; and �u k� � � u k� � ÿ u kÿ 1� �. The decision
variables are current and future values of the inputs:

U k� � �
u kjk� �

u k� 1jk� �
..
.

u k�Nÿ 1jk� �

26664
37775 �3�

Table 1

Distillation column model parameters

Relative volatility � � 4

Feed composition Xf � 0:5

Feed rate F � 100 mol min

Re¯ux rate L � 29:221 mol min

Boil-up rate V � 84:199 mol min

Condensor hold-up M1 � 200 mol

Tray hold-up Mi � 50 mol i � 2 . . . 8

Reboiler hold-up M9 � 200 mol

Top composition XA1 � 0:95

Bottom composition XA9 � 0:1
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By assuming u k� jjk� � � us for j > N, where the con-
trol horizon N � 15, a ®nite horizon formulation of (2)
can be obtained [12]:

min
U k� �

x k�Njk� � ÿ xs� �TQ� x k�Njk� � ÿ xs� �

��uT k�Njk� �S�u k�Njk� �

�
XNÿ1
j�0

x k� jjk� � ÿ xs� �TCTQC x k� jjk� � ÿ xs� ��
� u k� jjk� � ÿ us� �TR u k� jjk� � ÿ us� �
��uT k� jjk� �S�u k� jjk� �	

�4�

The terminal penalty matrix Q� is obtained from solution
of a Lyapunov equation [12]. The tuning matrices Q, R,
and S are chosen as follows:

Q �
100 0 0

0 5 0

0 0 50

264
375

R �
0:001 0 0

0 0:001 0

0 0 0:001

264
375

S �
0:001 0 0

0 0:001 0

0 0 0:001

264
375

�5�

Fig. 1. Open-loop simulation for step changes in cooling jacket temperature and boil-up rate.
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The problem is solved subject to the input constraints:

280K
0mol=min
0mol=min

24 354 Tc

L
V

24 354 350K
250mol=min
250mol=min

24 35 �6�

Output constraints are not considered in this example.
We assume the reactor temperature, recycle mole

fraction, and product mole fraction can be measured
on-line. The remaining state variables must be estimated
from the available on-line measurements. Simultaneous
state and disturbance estimation is performed by aug-
menting the process model with an output disturbance
model [12]:

x k� 1� � � Ax k� � � Bu k� �
d k� 1� � � d k� �
y k� � � Cx k� � � d k� � �7�

where d 2 R3 is a vector of disturbance variables. A
Luenberger observer is used since the nominal operating
point of the reactor is unstable. The estimated state
variables are used to initialize the optimization problem
at each time step, while the estimated disturbances are
used to shift the target values xs and us as discussed in
[12].
Fig. 2 shows the closed-loop response obtained for

setpoint changes of +0.02 and ÿ0.05 in the column
overhead and column bottom mole fractions, respec-
tively. LMPC provides good performance because the
reactor remains near the nominal point where the linear
model was derived. The closed-loop response obtained
for a +5 K change in the reactor temperature setpoint
is shown in Fig. 3. Due to the strong reactor non-
linearities, the temperature tracking performance is very
poor and the bottom mole fraction deviates signi®cantly
from its setpoint.

3. Integration of LMPC and NMPC

Setpoint changes in the recycle and product mole
fractions are handled easily by LMPC because the col-
umn does not exhibit strong nonlinearities at moderate
purities. However, LMPC yields unacceptably poor
responses for reactor temperature setpoint changes due
to the highly nonlinear reaction kinetics. As shown
subsequently, this problem can be solved by applying
NMPC to the entire plant. However, a more computa-
tionally e�cient approach is to utilize nonlinear control
only where necessary; i.e. apply NMPC to the reactor
and apply LMPC to the column. This motivates the
development of a new class of plant-wide control meth-
ods based on integrating LMPC and NMPC.

The proposed hybrid LMPC-NMPC control strategy
consists of four steps:

1. Analysis of process nonlinearities.
2. Decomposition of the plant into linear and non-

linear subsystems.
3. Application of LMPC to the linear subsystems and

NMPC to the nonlinear subsystems.
4. Coordination of the linear and nonlinear MPC

controllers.

This paper focuses on the ®nal two problems for
plants that can be decomposed into a single linear sub-
system and a single nonlinear subsystem. The reaction/
separation system described above is an example of such
a process. Our future work will focus on the ®rst two
problems and more complicated processes.
The linear subsystem model is assumed to have the

form:

xL k� 1� � � ALxL k� � � ANxN k� � � BLuL k� �
� BNuN k� � �8�

yL k� � � CLxL k� � � CNxN k� �

where the subscripts L and N denote variables asso-
ciated with the linear subsystem and the nonlinear sub-
system, respectively. The nonlinear subsystem model is
assumed to have the form:

xN k� 1� � � f xL k� �; xN k� �; uL k� �; uN k� �� �
yN k� � � h xL k� �; xN k� �� � �9�

In each subsystem model, variables from the other sub-
system can be viewed as measured disturbances. For the
reaction/separation process, the column is the linear
subsystem and the reactor is the nonlinear subsystem.
As compared to conventional NMPC, an immediate
advantage of the proposed approach is that a nonlinear
model is required only for the nonlinear subsystem. This
eliminates the need for a full nonlinear plant model,
which rarely is available or economically feasible to
develop.
Solutions to the LMPC and NMPC problems must be

computed sequentially to achieve a substantial reduc-
tion in computational e�ort as compared to standard
NMPC. Sequential solution may be problematic
because the linear and nonlinear subsystems are coupled
via mass and energy ¯ows. The most appropriate solu-
tion strategy depends on the type of couplings between
the subsystems. Each plant con®guration described
below warrants a di�erent approach:

1. The linear subsystem is coupled to the nonlinear
subsystem but there is no material/energy transfer
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from the nonlinear subsystem to the linear sub-
system. In this case, the LMPC problem is solved
®rst and the LMPC solution is utilized to solve the
NMPC problem.

2. The nonlinear subsystem is coupled to the linear
subsystem but there is no material/energy transfer
from the linear subsystem to the nonlinear sub-
system. In this case, the NMPC problem is solved
®rst and the NMPC solution is utilized to solve the
LMPC problem.

3. The linear and nonlinear subsystems are fully
coupled in the sense that there is material/energy
transfer in both directions. This case is more com-
plex due to the two directional coupling and

requires a more sophisticated controller coordina-
tion strategy.

The remainder of this section focuses on developing a
controller coordination strategy for fully coupled sys-
tems such as the reaction/separation process. The ®rst
step is to compute a solution of the LMPC problem
using a linear model of the entire plant rather than just
the linear subsystem. The motivation for this approach
is discussed below. The LMPC solution is used to com-
pute the NMPC solution for the nonlinear subsystem.
To motivate the proposed controller coordination

strategy, consider an alternative method in which the
LMPC design is based on the linear subsystem model.

Fig. 2. LMPC for a setpoint change in the column mole fractions.
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The following information is required from the non-
linear subsystem to generate predictions over the LMPC
control horizon N:

State variables : xN kjk� �; . . . ; xN k�Nÿ 1jk� �
Input variables : uN kjk� �; . . . ; uN k�Nÿ 1jk� �

The current value of the state vector xN kjk� � is avail-
able from on-line measurements and/or nonlinear state
estimation. Future values of the state variables are not
available until the NMPC problem is solved at the cur-
rent time step, and the NMPC problem cannot be

solved until the LMPC problem is solved. A possible
solution to this problem is to generate the unavailable
future values from the NMPC solution obtained at the
previous time step.
The information exchange problem between con-

trollers can be partially mitigated if the LMPC design is
based on a linear model of the entire plant. The advan-
tage of this approach is that the dependence of the
LMPC problem on the NMPC solution is completely
eliminated. As a result, the LMPC problem can be
solved independently. It is important to emphasize that
only the LMPC solution for the linear subsystem actu-

Fig. 3. LMPC for a setpoint change in the reactor temperature.
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ally is utilized; the manipulated input moves for the
nonlinear subsystem are not implemented. The LMPC
solution is used to compute the NMPC solution for the
nonlinear subsystem. The disadvantages of this
approach are that a linear approximation of the non-
linear subsystem is introduced and a larger LMPC pro-
blem must be solved.
The LMPC problem is formulated as described pre-

viously. The LMPC solution yields all the input and
state information required to solve the NMPC pro-
blem:

State variables : xL kjk� �; . . . ; xL k� Pÿ 1jk� �
Input variables : uL kjk� �; . . . ; uL k� Pÿ 1jk� �

where P is the prediction horizon of the NMPC con-
troller. The NMPC problem is formulated as:

min
UN k� �

yN k� Pjk� � ÿ ys� �TQ yN k� Pjk� � ÿ ys� ��
XPÿ1
j�0

yN k� jjk� � ÿ ys� �TQ yN k� jjk� � ÿ ys� ��
� uN k� jjk� � ÿ us� �TR uN k� jjk� � ÿ us� �
��uT

N k� jjk� �S�uN k� jjk� �	
�10�

where: yN k� jjk� � and uN k� jjk� � are predicted values
of the nonlinear subsystem variables; ys and us are tar-
get values for the nonlinear subsystem variables; and
�uN k� � � uN k� � ÿ uN kÿ 1� �. The decision variables are
current and future values of the manipulated inputs in
the nonlinear subsystem:

UN k� � �
uN kjk� �

uN k� 1jk� �
..
.

uN k�Mÿ 1jk� �

26664
37775 �11�

where M is the NMPC control horizon. The problem is
solved subject to input constraints and equality con-
straints derived from the nonlinear model.
For the present example, we assume the reactor con-

centration must be estimated from reactor temperature
measurements. An important advantage of the hybrid
approach is that a nonlinear observer can be designed
for the reactor subsystem rather than the entire plant.
Simultaneous state and disturbance estimation is per-
formed using an augmented reactor subsystem model. In
this case, an input disturbance model is employed to han-
dle the reactor instabilities. Nonlinear observer design is
facilitated by representing the reactor subsystem in the
continuous-time form,

x
:

N � � yN� �xN � 
 uN � dN� � � � xL� �
d
:
N � 0

yN � CxN �12�
where � and � are nonlinear functions, 
 is a constant,
and dN 2 R is a vector of input disturbance variables.
Note that the model is linear in the unmeasured con-
centration CA. The state a�ne model form allows the
design of a simple nonlinear closed-loop observer [13].
The estimated state variables x̂N k� � are used to initialize
the NMPC problem at each time step, while the esti-
mated disturbances d̂N k� � are used to shift the input and
output target values [2].

4. Simulation study

We compare the hybrid LMPC±NMPC method to
standard LMPC and NMPC using the reaction/separa-
tion process described previously. The NMPC con-
troller is formulated as in (10) except that the nonlinear
model of the entire plant is used for controller design.
The continuous-time nonlinear model is discretized
using orthogonal collocation on ®nite elements [2] with
a sampling period �t � 10 s. Due to the number of state
variables in the column model, the resulting NMPC
problem is much larger than that encountered in the
hybrid approach where NMPC is applied only to the
reactor. The full-order NMPC problem is simpli®ed by
assuming full-state feedback and that the plant is not
a�ected by unmeasured disturbances. This eliminates
the need for a plant-wide nonlinear observer that gen-
erates estimates of the unmeasured state and dis-
turbance variables. As a result, the simulation results
for NMPC represent the best case senario in terms of
setpoint tracking performance and on-line computation.
The NMPC controller is tuned with M � 1, P � 2 and:

Q �
0:1 0 0

0 100 0

0 0 100

264
375

R �
0:001 0 0

0 0:001 0

0 0 0:001

264
375

S �
0:001 0 0

0 100 0

0 0 100

264
375

�13�

Longer control and prediction horizons increase the
computation time dramatically, but they have very little
e�ect on closed-loop performance new IP. The hybrid
LMPC±NMPC controller is formulated as described in
the previous section. The LMPC controller is tuned
with N � 15 and:
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Q �
0:1 0 0

0 5� 104 0

0 0 5� 104

264
375

R �
0:01 0 0

0 0:01 0

0 0 0:01

264
375; S �

50 0 0

0 1 0

0 0 1

264
375

�14�

The NMPC controller is tuned with M � 1, P � 4,
Q � 2, R � 0:001 and S � 0:001.

Fig. 4 provides a comparison of the hybrid LMPC±
NMPC and NMPC controllers for a +10 K change in
the reactor temperature setpoint. Both controllers
clearly outperform the standard LMPC controller (Fig.
2). The NMPC controller provides a faster temperature
response due to the nonlinear formulation of the entire
system and the shorter control and prediction horizons
used (M � 1, P � 2). On the other hand, the hybrid
controller yields much smaller deviations in the column
mole fractions due to the longer control and prediction

Fig. 4. Hybrid LMPC±NMPC ( ÐÐÐ ) and NMPC (- - -) for a setpoint change in the reactor temperature.
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horizons (N � 15, P � 1) used in the LMPC con-
troller. The sluggish NMPC performance for the col-
umn is due to the short control and prediction horizon
lengths (10 and 20 s, respectively). As shown in Fig. 1,
the dominant time constant of the column is about 15±
20 min. Signi®cant performance improvement is expec-
ted if the horizon lengths are dramatically increased.
However, reasonable increases in the horizon lengths
yield little improvement in performance but signi®cantly
increase the computational load.
A simultaneous setpoint change in the reactor tem-

perature (+20 K), the recycle mole fraction (+0.02)
and the product mole fraction (ÿ0.05) is shown in Fig.

5. As before, the temperature response of the NMPC
controller is signi®cantly faster than that of the hybrid
controller. The two controllers provide similar perfor-
mance for the recycle mole fraction setpoint change,
while the hybrid controller yields superior tracking of
the product mole fraction setpoint change.
Even with the availability of increasingly powerful

computers, the rigorous solutions of most plant-wide
NMPC problems remains intractable. The major
advantage of the hybrid method as compared to NMPC
is computation time. For a typical 30 min MATLAB
simulation on a DEC 433 workstation, the hybrid con-
troller requires approximately 3 min of CPU time while

Fig. 5. Hybrid LMPC±NMPC ( Ð) and NMPC (- - -) for setpoint changes in the reactor temperature and column mole fractions.
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the NMPC controller requires about 40 minutes. It is
important to note that NMPC execution times would be
increased further by the introduction of a nonlinear
state/disturbance estimator. These results demonstrate
that the hybrid method can provide a suitable compro-
mise between closed-loop performance and on-line com-
putation for the class of nonlinear processes considered.

5. Conclusions and future work

This paper represents a ®rst step in developing a
comprehensive methodology for plant-wide control via
integration of LMPC and NMPC. The proposed
method involves decomposing the plant into linear and
nonlinear subsystems and applying the appropriate
MPC technology to each subsystem. A simple method
for coordinating the LMPC and NMPC controllers for
plants that can be decomposed into a single linear sub-
system and a single nonlinear subsystem was presented.
The proposed approach was compared to LMPC and
NMPC using a prototypical reactor/separator process
with recycle. Our future work will focus on stability
analysis, the development of data driven techniques to
perform the plant decomposition, and large-scale process
applications.
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