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A plant-wide control strategy based on integration of linear model predictive control (LMPC)
and nonlinear model predictive control (NMPC) is proposed. The design method is applicable to
plants that can be decomposed according to the nonlinearity properties of the individual unit
operations. The basic idea is to apply LMPC and NMPC controllers to the linear and nonlinear
subsystems, respectively. A systematic procedure for performing the plant decomposition given
nonlinearity information is presented. Because the subsystems are coupled via material and
energy flows, a sequential solution procedure that aims to minimize the amount of unknown
information in the MPC designs is developed. The plant decomposition and sequential MPC
solution algorithms are applied to a large-scale styrene production flowsheet. Three controller
coordination strategies are developed to handle the information-exchange problems caused by
sequential MPC solution. The methods are shown to be nominally stabilizing for nonlinear plants
with a certain triangular structure. A multi-rate extension for plants with time-scale separations
is presented. A reaction/separation process with recycle is used to compare the different hybrid
MPC approaches.

1. Introduction

The synthesis of plant-wide control structures is one
of the most important problems in process control theory
and practice.1 The plant-wide control problem involves
selection of controlled variables, manipulated variables,
and measured variables; formulation of the control
structure connecting the variables; and specification of
the controller type.2,3 The problem originally was stud-
ied by Buckley.4 Considerable research has focused on
decomposition of the plant into simpler subsystems
based on functional and/or time-scale differences of the
unit operations. In a series of papers by Stephanopoulos
and co-workers,2,5-7 the control structure formulation
problem was posed as an optimization problem. The
resulting structure was decomposed vertically on the
basis of disturbance dynamics and horizontally on the
basis of functional groups to yield a modular feedback
optimizing control system. The same authors addressed
the synthesis of regulatory loops, selection of secondary
measurements, estimation of states, and synthesis of
control structures for two representative chemical pro-
cesses.

Price and Georgakis8 proposed a tiered framework for
solution of the plant-wide control problem. Control loops
were grouped into multiple tiers on the basis of the
relative importance of the associated control objectives.
Zheng and co-workers9 proposed a hierarchical proce-
dure for formulating control structures on the basis of
the minimization of economic penalties. Ng and Stepha-
nopoulos10 developed a hierarchical procedure that
successively increases the resolution of the plant-wide
control structure. Beginning with the optimizing feed-

back approach, Skogestad3 developed a procedure for
identifying controlled variables that allows near-optimal
regulatory performance. Luyben et al.11 proposed a
heuristic design procedure for generating a decentral-
ized control structure. These plant-wide control tech-
niques are based on the use of decentralized control
structures. An exception is the modular multivariable
control structure12 used in ref 10.

In principle, model predictive control (MPC) can be
applied to very large plant-wide control problems. The
multivariable and constraint-handling capabilities of
MPC are very appealing compared to decentralized
control. Linear model predictive control (LMPC) has
been applied successfully to industrial processes with
hundreds of input and output variables.13 Process
nonlinearities remain one of the most difficult problems
associated with plant-wide MPC applications.10 When
strong nonlinearities preclude the successful application
of LMPC, nonlinear model predictive control (NMPC)
is required. Because NPMC utilizes a nonlinear dynamic
model for prediction, a nonlinear programming problem
must be solved at each sampling period to calculate the
optimal input moves. Despite this difficulty, a NMPC
controller has been developed for the Tennessee East-
man Challenge Process by the judicious use of modeling
and controller simplifications.14

Motivated by the observation that highly nonlinear
dynamical behavior is typically associated with a small
number of unit operations, we have developed a hybrid
model predictive control strategy for plant-wide control
applications.15 The advantage of the proposed approach
is that NMPC is utilized only where necessary and
LMPC is applied to the remaining unit operations. The
plant is decomposed into a linear subsystem (the distil-
lation column) and a nonlinear subsystem (the reactor)
on the basis of the degree of nonlinearity. LMPC is
applied to the column, and NMPC is applied to the
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reactor. Two controller coordination strategies are pro-
posed to compensate for interconnections between the
two subsystems. Simulation results for a reaction/
separation process with recycle show that the hybrid
MPC controller performance is comparable to that of a
full NMPC controller and superior to that of a conven-
tional LMPC controller. On the other hand, the com-
putational time of the hybrid controller is less than 8%
of the NMPC controller execution time.

Although our initial results are very promising, there
remain several unresolved problems associated with the
application of the hybrid LMPC-NMPC strategy to
complex plants. A systematic procedure is needed to
select the “optimal” plant decomposition from the large
number of possible alternatives. The subsystem MPC
controllers must be solved sequentially to achieve
significant reductions in computational cost. This re-
quires some type of approximation because the solution
of a particular MPC subsystem problem requires infor-
mation that is available only after the other MPC
subsystem problems are solved. A systematic procedure
is needed to determine the solution sequence of the MPC
subsystem problems such that the amount of unavail-
able information is minimized. With the exception of
certain triangular plant structures discussed below,
couplings between the subsystems preclude exact solu-
tion of the MPC problems. Controller coordination
strategies are needed to achieve acceptable closed-loop
performance in the presence of such couplings. The class
of nonlinear plants that can be stabilized with the
hybrid MPC controller needs to be characterized. Fi-
nally, differences between subsystem time-scale proper-
ties can be exploited to further reduce on-line compu-
tational effort. All of these problems are investigated
in this paper.

The remainder of the paper is organized as follows.
In section 2, the plant decomposition algorithm is
presented and applied to a styrene plant flowsheet. The
hybrid MPC control strategy is developed in section 3.
Simple plants, each comprising a single linear sub-
system and a single nonlinear subsystem, are used to
illustrate the development of controller coordination
strategies. The remainder of the section is focused on
more complex plants with multiple linear and/or non-
linear subsystems. A specific class of triangular non-
linear systems is shown to be asymptotically stabilized
by the hybrid MPC controller. The MPC sequence
selection algorithm is presented and applied to the
decomposed styrene plant flowsheet. A multi-time-scale
extension also is proposed. In section 4, the hybrid MPC
control methods are applied to the reaction/separation
process considered in ref 15. A summary and conclusion
are given in section 5.

2. Plant Decomposition

The objective is to partition the plant into linear and
nonlinear subsystems according to the nonlinearity
properties of the individual unit operations. This ap-
proach requires a methodology for measuring the degree
of process nonlinearity. Although rigorous nonlinearity
measures have been proposed,16,17 the requirement of
a complete nonlinear plant model makes these tech-
niques very difficult to apply to complex flowsheets.
Data-driven methods such as coherence analysis18,19

appear to represent a more promising framework for

nonlinearity quantification. The development of such
nonlinearity measures is beyond the scope of this
paper. We believe that the relative nonlinearity of
typical unit operations often can be determined a priori
using process knowledge. This admittedly heuristic
approach is pursued in this paper. The decomposi-
tion algorithm presented in section 2.1 is designed to
produce the smallest number of subsystems. The algo-
rithm is applied to a styrene plant flowsheet in section
2.2.

2.1. Plant Decomposition Algorithm. The required
input data for the plant decomposition algorithm is a
vector containing the nonlinearity properties of all unit
operations and a matrix describing the unit connections,
that is, unit operation nonlinearity vector n such that
ni ) 1 if ui is nonlinear and ni ) 0 if ui is linear and
unit operation connection matrix C such that Ci,j ) 1 if
ui affects uj and Ci,j ) 0 otherwise, where ui denotes the
ith unit operation. If the total number of unit operations
is denoted N, then n is an N × 1 vector, and C is an N
× N matrix. Solution of the decomposition problem
yields (i) a decomposition matrix X that represent the
resulting subsystems and their member unit operations,
(ii) a subsystem nonlinearity vector Y that characterizes
the nonlinearity property of each subsystem, and (iii) a
subsystem connection matrix Γ that details the connec-
tions between the derived subsystems. These quantities
are defined formally as follows:

where gj denotes the jth subsystem. The plant decom-
position must satisfy the following constraints: (1)
Every unit operation belongs to one and only one
subsystem. (2) All unit operations in a given subsystem
must have the same nonlinearity property. (3) Every
unit in a given subsystem must be connected to at least
one other unit in the same subsystem.

The decomposition problem can be formulated as an
optimization problem in which the total number of
subsystems is minimized. As shown in Appendix A, the
optimization problem can be formulated as a binary
polynomial programming problem. This problem can be
transformed into a binary linear programming (LP)
problem20 with Z decision variables and 3N constraints,
where

For the styrene plant flowsheet considered in the next
section, N ) 16, and the optimization problem involves
1 048 576 decision variables and 48 constraints. Below,
we present an iterative algorithm that is more suitable
for the plant-wide control problems typically encoun-
tered.

decomposition matrix X
Xi,j ) 1 if ui is contained in gj; Xi,j ) 0 otherwise

subsystem nonlinearity vector Y
Yi ) 1 if gi is nonlinear; Yi ) 0 otherwise

subsystem connection matrix Γ
Γi,j ) 1 if gi affects gj; Γi,j ) 0 otherwise

Z ) ∑
M)0

N N

M(N - M)!
(1)
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A schematic representation of the decomposition
algorithm is shown in Figure 1. Here, k is the subsystem
index, and b is an N × 1 vector whose ith element is
set to unity when unit i and all connected units with
the same nonlinearity property as unit i are assigned
to the same subsystem. The decomposition algorithm
is designed to construct the decomposition matrix X
such that the total number of subsystems M is mini-
mized. The algorithm involves three loops. The inner
loop assigns to the subsystem k all units j that have
the same nonlinearity property as and are connected
directly to a given unit i already in subsystem k. The
middle loop simply repeats the first loop until no
additional units can be added to the current subsystem.
The outer loop creates additional subsystems if any
units remain unassigned. The subsystem connection
matrix Γ is computed as follows:

where Xi denotes the ith column of X corresponding to
the ith subsystem. The scalar Xi

TCXj is a positive
integer if any units in subsystem i affect any units in
subsystem j.

2.2. Application to a Styrene Plant Flowsheet.
The styrene plant flowsheet shown in Figure 2 was
chosen to illustrate the decomposition algorithm because
it contains a large number of unit operations and several
recycle streams. Ethylene and benzene are fed to the
first reactor, where ethylbenzene (EB) is formed. The
effluent from the first reactor is fed to a benzene
recovery section from which both benzene and polyeth-
ylbenzene (PEB) are recycled. High-purity EB is pro-
duced from one of the four columns and fed to a second
reactor, where styrene is formed. The products from the
second reactor are fed to a series of columns to produce
high-purity styrene and EB for recycle back to the
styrene reactor. Operational experience21,22 suggests
that the EB reactor, the high-purity EB column (over-
head EB purity of 99.6%), and the EB/styrene splitter
(overhead styrene purity of 99.9%) are sufficiently
nonlinear to warrant NMPC. The remainder of the 16
unit operations are considered to be approximately
linear. Therefore, the nonzero elements of the unit
operation nonlinearity vector n are n4, n6, and n13. The
nonzero elements of the connection matrix C are C1,2,
C2,1, C2,3, C2,5, C3,4, C4,2, C5,2, C5,6, C6,7, C6,9, C7,3, C8,9,
C9,10, C10,11, C11,12, C11,13, C12,11, C13,14, C13,15, C14,9, and
C14,16.

Figure 1. Schematic representation of the iterative plant decomposition algorithm.

Γi,j ) {1 if Xi
TCXj g 1

0 otherwise
(2)
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From this information, the decomposition algorithm
generates the following connection matrix X, subsystem
nonlinearity property vector Y, and subsystem connec-
tion matrix Γ:

The decomposed styrene plant flowsheet is shown in
Figure 3. Subsystem 1 consists of a large group of linear
unit operations including all EB production units except
for the EB reactor and EB column, which comprise
nonlinear subsystems 2 and 3, respectively. Most of the

styrene production units are contained in linear sub-
system 4. The EB/styrene column is contained in
nonlinear subsystem 5. Because the styrene column is
connected only to the EB/styrene column, it forms a
single-unit linear subsystem 6. The subsystem connec-
tions characterized by the matrix Γ are also shown in
Figure 3. It is important to emphasize that engineering
judgment can be applied to the plant decomposition to
obtain the final solution. For the styrene flowsheet, it
might be desirable to reduce the number of subsystems
by combining subsystems 5 and 6 to produce a single
nonlinear subsystem.

3. Model Predictive Control Strategy

The plant decomposition allows linear model predic-
tive control (LMPC) to be applied to the linear sub-
systems and nonlinear model predictive control (NMPC)
to be applied to the nonlinear subsystems. Little reduc-
tion in on-line computation time as compared to plant-
wide NMPC will be realized if a single optimization
problem is formulated for the entire plant using linear
and nonlinear subsystem models. A reasonable alterna-
tive is to solve the individual MPC subsystem problems
in a sequential fashion. Sequential solution is not
straightforward when subsystems are coupled by mass
and energy flows. In this case, the solution of a
particular MPC subsystem problem might require the

Figure 2. Styrene plant flowsheet.

XT )[1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

]
Y ) [0 1 1 0 1 0 ]

Γ ) [0 1 1 0 0 0
1 0 0 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0

]
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solution of other subsystem problems. The optimal
MPC solution sequence can be viewed as the sequence
that minimizes the amount of unknown information
from unsolved MPC subsystem problems. For most
plants of practical interest, an ideal solution sequence
for which the subsystem MPC problems can be solved
without the application of certain approximations
does not exist. In section 3.1, controller coordination
methods that compensate for unknown subsystem in-
formation are presented for plants consisting of a single
linear subsystem and a single nonlinear subsystem.
In section 3.2, plants comprising multiple linear
and/or nonlinear subsystems are investigated. We
show that nonlinear systems with a certain triangular
structure that makes solution of the MPC solution
sequence problem trivial can be asymptotically stabi-
lized by hybrid MPC control. For more general plants,
an algorithm for determining the optimal MPC solu-
tion sequence is presented and applied to the de-
composed styrene plant flowsheet. In section 3.3, an
extension of the hybrid MPC strategy that exploits
differences between subsystem time-scale properties to
further reduce the on-line computational effort is pre-
sented.

Before proceeding to the detailed development, it is
important to emphasize that the plant decomposition
and MPC solution sequence problems are not indepen-
dent. A poorly conceived decomposition can lead to
considerable difficulties in determining an acceptable
solution sequence. Our approach is based on decoupling
these two problems to achieve a reasonably simple but
suboptimal solution. We believe that combining this
approach with sound engineering judgment will lead to
the development of effective plant-wide control struc-
tures.

3.1 Two Subsystem Problems. Plant Configura-
tions. The simplest possible plant decomposition con-
sists of a single linear subsystem and a single non-
linear subsystem. The state-space model equations for

the two subsystems can be written as

where the subscripts L and N denote the linear and
nonlinear subsystems, respectively; xL and xN are state
vectors; uL and uN are input vectors; yL and yN are
output vectors; AL, AN, BL, BN, CL, and CN are constant
matrices; and f and h are nonlinear functions. Figure 4
shows the three possible plant configurations: (1) The
linear subsystem is unaffected by the nonlinear sub-

Figure 3. Decomposed styrene plant flowsheet.

Figure 4. Two subsystem plant configurations.

xL(k+1) ) ALxL(k) + ANxN(k) + BLuL(k) + BNuN(k) (3)

yL(k) ) CLxL(k) + CNxN(k) (4)

xN(k+1) ) f[xL(k), xN(k), uL(k), uN(k)] (5)

yN(k) ) h[xL(k), xN(k)] (6)
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system, so that AN ) BN ) CN ) 0. (2) The nonlinear
subsystem is unaffected by the linear subsystem, so
that

(3) The linear and nonlinear subsystem are fully coupled.
Clearly, different MPC solution sequences are ap-

propriate for the three plant configurations. In the first
two configurations, the MPC controller for the sub-
system that unidirectionally affects the other subsystem
is solved first, and then the MPC controller for the other
subsystem is solved. The necessary information from the
first subsystem can be generated even if the control
horizon of the first MPC controller is shorter than that
of the second MPC controller because the first sub-
system can be iterated in an open-loop fashion with
constant input to yield the future state variables needed.
Brief descriptions of the LMPC and NMPC formulations
used in this paper are presented in Appendices B and
C, respectively. The third configuration in Figure 4 is
more challenging, as the two subsystems are fully
coupled. In this case, some type of approximation is
required to develop an implementable sequential solu-
tion strategy.

Global Controller Coordination Method. In our previ-
ous work,15 we developed a solution approximation
strategy in which a LMPC controller is designed for
the entire plant by linear approximation of the nonlin-
ear subsystem. The LMPC problem is solved first, and
then the NMPC problem for the nonlinear subsystem
is solved using the LMPC solution for the linear
subsystem only. We call this the global controller
coordination method. It can be viewed as a transforma-
tion of the third configuration to the first configura-
tion in Figure 4 because the entire plant is, by defini-
tion, unidirectionally connected to the nonlinear sub-
system. Using the reaction/separation process intro-
duced in section 4, we showed that the closed-loop
performance obtained with this coordination method is
comparable to that of a full NMPC controller and
superior to that of a conventional LMPC controller.15

As compared to the alternative strategies discussed
below, shortcomings of this method include an increase
in the LMPC problem size and approximation of the
nonlinear subsystem by a linear model in the LMPC
problem.

Local Steady-State Controller Coordination Method.
Another controller coordination method briefly dis-
cussed in ref 15 utilizes the MPC problem solutions at
the previous time step to solve the MPC problems at
the current time step. This method eliminates the
problem of unknown subsystem information and allows
the LMPC and NMPC problems to be formulated
separately for each subsystem. We pursue here a
simplified version of this method in which the current
state and input variables from the first subsystem
are assumed to remain constant in the future for
solution of the second MPC problem. This is called
the local steady-state controller coordination method.
Consider the case where the LMPC subsystem prob-
lem is solved first. The nonlinear subsystem var-
iables are treated as constant disturbances in the

LMPC steady-state target calculation

subject to

where xL
s (k) and uL

s (k) are the steady-state and input
targets, respectively, for the linear subsystem and d̂L-
(k) is an estimated step output disturbance. The targets
are calculated by minimizing the difference between the
desired input, uL

ref, and the input target subject to
steady-state equality and inequality constraints involv-
ing the desired output, yL

ref. If the NMPC subsystem
problem is solved first, the NMPC steady-state targets
can be calculated analogously using xL(k|k) and uL(k|k-
1) from the previous LMPC solution.

Local Dynamic Controller Coordination Method. A
more sophisticated controller coordination strategy
proposed in ref 15 involves the use of predicted variable
trajectories from previously solved MPC problems for
solution of the current MPC problem. The technique
differs from the local steady-state coordination method
in that variables from the first subsystem are allowed
to vary over the control horizon of the second MPC
controller. This method is called the local dynamic
controller coordination method because dynamic infor-
mation from each subsystem is used in the MPC
calculations.

Consider the case where the LMPC subsystem prob-
lem is solved first. At time k, estimates of the future
nonlinear state and input variables are available from
the NMPC solution at time k - 1

where it has been assumed that the LMPC control
horizon (NL) is larger than the NMPC control horizon
(NN) and the NMPC prediction horizon (PN). In this case,
the last NL - PN elements of XN(k-1) can be obtained
by open-loop simulation of the nonlinear subsystem with
constant input uN(k+j|k-1) ) uN(k+NN-2|k-1) ∀ j g
NN - 1. A simpler approach is to assume that xN(k+j|k-
1) ) xN(k+PN-1|k-1) ∀ j g PN. The quadratic program
(QP) formulation of the LMPC problem must be modi-
fied from that given in ref 23 to incorporate XN(k-1)
and UN(k-1). The modified QP matrices are presented
in Appendix D. The steady-state target calculation in

∂f
∂xL

) ∂f
∂uL

) ∂h
∂xL

) 0

min
xL

s (k),uL
s (k)

) [uL
ref(k) - uL

s (k)]TRs[uL
ref(k) - uL

s (k)] (7)

xL
s (k) ) ALxL

s (k) + BLuL
s (k) + ANxN(k|k) +

BNuN(k|k-1)

yL
ref(k) ) CLxL

s (k) + CNxN(k|k) + d̂L(k)

uL,min e uL
s (k) e uL,max

yL,min e CLxL
s (k) + CNxN(k|k) + d̂L(k) e yL,max

XN(k-1) )

[xN
T(k|k-1) ‚‚‚ xN

T(k+PN-1|k-1) ‚‚‚ xN
T(k+NL-1|k-1)]T

UN(k-1) )

[uN
T(k|k-1) ‚‚‚ uN

T(k+NN-2|k-1) ‚‚‚ xN
T(k+NL-1|k-1)]T
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eq 10 is modified by replacing xN(k) and uN(k|k-1)
with xN(k+NL-1| k-1) and uN(k+NL-1|k-1), respec-
tively. The following information is available to the
NMPC controller after the LMPC problem is solved at
time k:

These predicted values can be incorporated directly into
the equality constraints representing the discretized
nonlinear model equations in the NMPC problem.
Extension of these controller coordination methods to
plant decompositions with multiple linear and/or non-
linear subsystems is tedious but conceptually straight-
forward.

3.2 Multiple Subsystem Problems. Triangular
Plant Decompositions. As discussed below, the deter-
mination of an appropriate MPC solution sequence for
plant decompositions with multiple linear and/or non-
linear subsystems can be difficult. The solution sequence
problem is solved trivially for the following class of plant
decompositions

where M is the total number of linear and nonlinear
subsystems; xi(k) and ui(k) are the state and input
vectors of the ith subsystem, respectively; and fi(‚) are
(possibly) nonlinear functions. This is called a triangular
decomposition because the ith subsystem depends only
on variables from the first i subsystems. Because of the
triangular structure, the optimal MPC solution se-
quence is {g1, g2, ..., gn-1, gn} where gi represents the
ith subsystem. In this case, each MPC problem can be
solved exactly without any approximations about the
other subsystems.

Such triangular decompositions represent the class
of nonlinear systems for which we are able to verify
that hybrid LMPC-NMPC control is stabilizing. The
proof of the following result, which is based on the
theorems in ref 24, is omitted for the sake of brevity.
Assume that each MPC problem is feasible and that the
resulting nonlinear feedback control laws are repre-
sented by

where Ni is the control horizon of the ith MPC controller
and hj

i(‚) are nonlinear functions. If the assumptions
(1) fi(x1, ..., xi, u1, ..., ui) is Lipschitz in its arguments ∀i
∈[1, M] and (2) hj

i(x1, ..., xi) is Lipschitz in its argu-
ments ∀j ∈[0, Ni - 1], ∀i ∈[1, M] hold, then x(k) )

[x1
T(k) ‚‚‚ xM

T (k)]T ) 0 is a locally asymptotically stable
fixed point of the closed-loop system

Note that the functions fi(‚) and hi
j(‚) are guaranteed to

be Lipschitz if the ith subsystem is linear.25

Although hybrid LMPC-NMPC control is stabilizing
for this class of nonlinear systems, sequential solution
of subsystem MPC problems typically will result in a
loss of performance compared to that obtained via plant-
wide NMPC control. The motivation for decomposing the
plant into subsystems is that an intractable plant-wide
NMPC problem can be transformed into a set of smaller
LMPC and NMPC problems. It is expected that perfor-
mance will degrade as the number of subsystems
increases. Consequently, plant decomposition should be
pursued only to the extent necessary to produce a
computationally tractable set of MPC problems.

MPC Solution Sequence Algorithm. The determina-
tion of an appropriate MPC solution sequence is more
difficult for complex decompositions with highly inter-
connected subsystems. The styrene plant flowsheet
shown in Figure 3 is an example of such a nontrivial
decomposition. Clearly, the amount of unknown infor-
mation from other subsystems required by each MPC
controller depends on the solution sequence. The opti-
mization problem presented in Appendix E yields a
MPC solution sequence with the least amount of infor-
mation required from unsolved subsystems. Although
it might be possible to solve the optimization problem
using methods developed for the traveling salesman
problem,26 the inherent computational complexity mo-
tivated us to investigate alternative approaches. For the
decomposed styrene plant problem, it is feasible to
enumerate and evaluate all 6! possible solution se-
quences. This approach might not be tractable for more
complex plant decompositions.

Below, we present an iterative algorithm for deter-
mining the optimal MPC solution sequence using the
subsystem connection matrix Γ and the subsystem
nonlinearity property vector Y derived from the plant
decomposition. The algorithm produces a solution se-
quence represented by the M × M matrix Ψ with
elements Ψi,j ) 1 if the jth subsystem is the ith
subsystem solved. The algorithm shown schematically
in Figure 5 consists of two loops. The outer loop simply
increments the solution sequence index, whereas the
inner loop determines the next subsystem to be solved.
Three vectors are introduced and evaluated during
every iteration of the outer loop on the basis of the
updated Ψ matrix. The vector A represents the total
number of subsystems that affect a given subsystem,
the vector B represents the total number of subsystems
that are affected by a given subsystem, and the vector
C represents the subsystems chosen in previous itera-
tions. The criteria for determining which subsystem to
select are ranked below according to priority: (1) The
subsystem is affected by the least number of other
subsystems not yet selected. (2) The subsystem affects
the greatest number of other subsystems not yet se-
lected. (3) The subsystem is linear. (4) The subsystem
has the lowest number in the flowsheet.

The results obtained by applying the MPC sequence
selection algorithm to the decomposed styrene flowsheet
(Figure 3) are shown in Figure 6. Both the EB column

xi(k+1) ) fi[x1(k), ..., xi(k), h0
1[x1(k)], ..., h0

i [x1(k), ..., xi(k)]],
i ∈[1, M]

XL(k) ) [xL
T(k|k) xL

T(k+1|k) ‚‚‚ xL
T(k+NL|k)]T

UL(k) ) [uL
T(k|k) uL

T(k+1|k) ‚‚‚ uL
T(k+NL-1|k)]T

x1(k+1) ) f1[x1(k), u1(k)]

x2(k+1) ) f1[x1(k), x2(k), u1(k), u2(k)]

l

xM-1(k+1) ) fM-1[x1(k), ..., xM-1(k), u1(k), ..., uM-1(k)]

xM(k+1) ) fM-1[x1(k), ..., xM(k), u1(k), ..., uM(k)] (8)

ui(k+j|k) ) hj
i[x1(k), ..., xi(k)]

j ∈ [0, Ni - 1], i ∈[1, M] (9)
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and EB/styrene column are affected by one other
subsystem, affect two other subsystems, and are non-

linear. The EB column is solved first because it is
further upstream. The EB/styrene column is selected
second. Both the styrene plant units (subsystem 4) and
the styrene column (subsystem 6) are affected by zero
unselected subsystems, affect zero unselected sub-
systems, and are linear. The styrene plant subsystem
is solved third because it is further upstream. The
styrene column is solved fourth. The EB plant units
(subsystem 1) are solved before the EB reactor because
subsystem 1 is linear. Although the iterative algorithm
generates a unique solution, alternative sequences that
yield an equally acceptable solution might exist. For
example, solution of subsystems 1 and 2 before sub-
systems 4 and 6 yields a solution sequence that is
identical to that in Figure 6 with regard to unknown
information. Therefore, engineering judgment should be
used to determine the final solution sequence.

3.3. Multi-Rate Problems. Plant decompositions
based on nonlinearity properties of the unit operations
can produce subsystems with significant differences in
their characteristic time scales. For example, a reaction/
separation process in which the reactor has much faster
dynamics than the distillation column is considered in
the next section. For such plant decompositions, com-
putational efficiency can be further enhanced by solving
the MPC controllers for the slow subsystems at a lower
frequency than the MPC controllers for the fast sub-

Figure 5. Iterative MPC selection sequence algorithm.

Figure 6. MPC solution sequence for the decomposed styrene plant.
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systems. This approach is particularly beneficial if the
nonlinear subsystems have slower dynamics as it allows
less frequent solution of the NMPC problems. Below,
we present a multi-rate formulation of the hybrid
LMPC-NMPC strategy for two subsystem problems
based on the local dynamic coordination method dis-
cussed previously. Furthermore, the development is
restricted to the case where the linear subsystem
dynamics are slower because the solution is applicable
to the reaction/separation example. Extensions for other
types of decompositions are conceptually straightfor-
ward.

Let the sampling rate of the NMPC controller be
denoted ∆tN and that of LMPC problem be denoted ∆tL
such that ∆tL ) n∆tN where n is an integer. The time
index is denoted kN for the NMPC problem and kL for
the LMPC problem. At time step kL, where t ) kL∆tL,
the LMPC problem is solved using the current linear
state variables xL(kL) and the nonlinear state and input
variables available from the NMPC solution at time step
kN - 1 where kN ) nkL

Here, P̃N and ÑN are the NMPC prediction and control
horizons, respectively, expressed as integer multiples
of the linear sampling time ∆tL, such that

and

If necessary, xN beyond the NMPC prediction horizon
can be obtained via open-loop simulation of the nonlin-
ear subsystem with constant uN. The LMPC solution at
time kL is implemented, and it is not recalculated until
time kL + 1. The NMPC problem is solved n times at
time steps kN, kN + 1, ..., kN + n - 1 between the two
LMPC solutions. At time step kN + j the NMPC solution
is determined using the linear state and input predic-
tions available at time kL

where j ∈[0, n - 1]. The NMPC solution is recomputed
and implemented every ∆tN time units.

4. Simulation Example

Given the plant decomposition and MPC solution
sequence shown in Figures 3 and 6, respectively, it is
possible to develop a hybrid LMPC-NMPC control
strategy for the styrene plant. This would require the
design of three LMPC controllers and three NMPC

controllers along with development of the associated
subsystem models. Such an effort is beyond the scope
of this paper. Instead, the reaction/separation process
studied in ref 15 is used to evaluate the MPC controller
coordination methods in section 3. This example offers
the advantage that plant decomposition yields a single
linear subsystem and a single nonlinear subsystem.

4.1. Process Model. The process consists of continu-
ous stirred tank reactor that is used to manufacture a
product B by irreversible reaction of a reactant A. The
reactor is modeled by assuming first-order kinetics,
constant-volume operation, and negligible coolant jacket
dynamics. Furthermore, the reactor feed stream, which
is obtained by mixing a fresh feed stream with a recycle
stream from a downstream distillation column, is as-
sumed to be maintained at a constant temperature and
flow rate by fast regulatory control loops. As shown in
Appendix F, the reactor model consists of two highly
nonlinear differential equations for the temperature and
the component concentration. The reactor control objec-
tive is to regulate the reactor temperature by manipula-
tion of the cooling jacket temperature. The effluent from
the reactor is introduced into the fourth tray of a
distillation column that consists of seven trays, a partial
condenser, and a reboiler. The overhead stream en-
riched in A is recycled to the reactor, while the bottom
stream enriched in B is recovered as the product.
Standard assumptions such as equimolar overflow are
used to derive the distillation column model.27 As shown
in Appendix F, a component balance on an equilibrium
stage yields a moderately nonlinear model consisting
of nine differential equations. The column control objec-
tive is to regulate the overhead and bottom compositions
by manipulation of the vapor and reflux rates.

For this simple process, the linear subsystem (column)
and the nonlinear subsystem (reactor) are easily deter-
mined. The combined model can be represented as in
eqs 6-9 where

where XAn and YAn are the mole fractions of component
A on tray n in the liquid and vapor phases, respectively;
V and L are the molar flow rates in the column of the
vapor and liquid streams, respectively; CA and T are
the concentration of A and the temperature of the
reactor effluent stream, respectively; and Tc is the
temperature of the reactor coolant stream. Nominal
values of the model parameters are given in Table 1.

4.2. Controller Design. The global controller coor-
dination method presented above is applied to this

XN(kN-1) )

[xN
T(kL|kN-1) ‚‚‚ xN

T(kL+P̃N|kN-1) ‚‚‚ xN
T(kL+NL-1|kN-1)]T

UN(kN-1) )

[uN
T(kL|kN-1) ‚‚‚ uN

T(kL+ÑN|kN-1) ‚‚‚ xN
T(kL+NL-1|kN-1)]T

P̃N ) int(PN - 1
n )

ÑN ) int(NN - 2
n )

XL(kL) )

[xL
T(kN+j|kL) xL

T(kN+j+1|kL) ‚‚‚ xL
T(kN+j+nNL|kL) ]T

UL(kL) )

[uL
T(kN+j|kL) uL

T(kN+j+1|kL) ‚‚‚ uL
T(kN+j+n(NL-1)|kL) ]T

Table 1. Nominal Operating Conditions for the Reaction/
Separation Process

variable value variable value variable value

F 45.022 L/min E/R 8750 K XA1 0.95
FR 54.978 L/min k0 5.14 × 1010 1/min XA2 0.826
CAf 1 mol/L UA 5 × 104 J/(min K) XA3 0.709
Tf 350 K Tc 309.480 K XA4 0.619
Vr 100 L CA 0.567 mol/L XA5 0.559
F 1000 g/L T 350 K XA6 0.506
Cp 0.239 J/(g K) M1, M9 200 mol XA7 0.394
(-∆H) 5 × 104 J/mol M2, ..., M8 50 mol XA8 0.235
Fm 1 mol/L L 29.2 mol/min XA9 0.1
R 4 V 84.2 mol/min

xL ) [XA1 XA2 XA3 XA4 XA5 XA6 XA7 XA8 XA9 ]T

uL ) [L V ]T, yL ) [XA1 XA9 ]T

xN ) [T CA ]T, uN ) Tc, yN ) T
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reaction/separation process in ref 15. When compared
to conventional LMPC controller, the hybrid LMPC-
NMPC controller is shown to provide vastly superior
performance for operation at an unstable operating
point of the reactor. The hybrid controller provides
performance comparable to that of a conventional
NMPC controller with less than 10% of the computing
effort. In this section, all three controller coordination
methods and the multi-rate controller formulation
discussed in section 3 are evaluated using the reaction/
separation example. The controller tuning parameters
for each coordination method are listed below, where
the sampling rate ∆t ) 10 s.

All tuning parameters are identical to those for the local
steady-state coordination method.

4.3. Results. In Figure 7, the three controller coor-
dination methods are compared for a +10-K change in
the reactor temperature setpoint. All three controller
rapidly bring the reactor temperature to the new
setpoint while rejecting the disturbance that propagates
through the distillation column. The closed-loop reactor
dynamics are slightly improved for the second and third
methods because of the longer prediction horizons used.
Note that the input moves generated by the three
controllers for the nonlinear subsystem are virtually
identical. More significant differences are observed in
column performance, as the global and local dynamic
coordination methods yield much better disturbance
rejection than does the local steady-state method. This
result can be attributed to the steady-state approxima-
tion for future state and input variables used in the

steady-state method. The global method yields slightly
better control of the column compositions than does the
local dynamic method. This might be a result of the
assumption in the local dynamic method that the
nonlinear subsystem variables are constant beyond the
relatively short NMPC horizon.

In Figure 8, the three methods are compared for an
unmeasured +5-K disturbance in the reactor feed
temperature. The global method yields the smallest
overshoot in the reactor temperature. The local dynamic
method provides very similar performance, whereas the
local steady-state method yields relatively poor column
performance.

In Figure 9, a multi-rate hybrid MPC controller is
compared to a single-rate hybrid MPC controller when
the local dynamic method is used for controller coordi-
nation. The single-rate controller is executed for 10 s.
Because the column dynamics are significantly slower
than the reactor dynamics, the multi-rate LMPC con-
troller is executed at a frequency of 60 s, while the
multi-rate NMPC controller is executed every 10 s (i.e.,
n ) 6). As expected, the two hybrid controllers yield very
similar performances for the reactor. The column per-
formance obtained with the multi-rate controller is
slightly degraded because of the larger sampling time
used for the multi-rate LMPC controller. Note that P̃N
) 0 and ÑN ) 0 because both PN and NN are less than
n ) 6. Therefore, the multi-rate controller is equivalent
to a local steady-state controller except that the multi-
rate LMPC controller is solved at a lower frequency with
a longer control horizon because of the larger sampling
period. Note that the multi-rate controller outperforms
the single-rate local steady-state controller (compare
Figures 7 and 9). This might be a result of the longer
control horizon used for the multi-rate LMPC controller.
The multi-rate controller provides only a modest im-
provement in computation time as compared to the
single-rate controllers. More significant reductions in
computational effort are expected when NMPC control-
lers can be executed less frequently than LMPC control-
lers.

5. Summary and Conclusions

A systematic methodology for integrating linear model
predictive control (LMPC) and nonlinear model predic-
tive control (NMPC) for plant-wide control applications
has been presented. The method is applicable to plants
that can be decomposed into a number of linear and
nonlinear subsystems on the basis of the nonlinearity
properties and interconnections of the individual unit
operations. An iterative decomposition algorithm was
developed and applied to a complex styrene plant
flowsheet. The plant decomposition enables LMPC and
NMPC to be applied selectively to subsystems according
to their degrees of nonlinearity. An iterative algorithm
designed to minimize the amount of unknown informa-
tion resulting from sequential solution of the MPC
problems was developed and applied to the decomposed
styrene flowsheet. The hybrid LMPC-NMPC controller
was shown to be stabilizing for a class of triangular
nonlinear systems for which the MPC solution sequence
problem is trivially solved. Three controller coordination
strategies were presented to handle plants with more
complex interconnections. An extension for multi-rate
control was presented for plants that can be decomposed
into subsystems with different characteristic time scales.

Global coordination method

LMPC: NL ) 15, PL ) ∞

Q ) [0.1 0 0
0 5 × 104 0
0 0 5 × 104 ]

R ) [0.01 0 0
0 0.01 0
0 0 0.01 ]

S ) [50 0 0
0 1 0
0 0 1 ]

NMPC:
NN ) 1, PN ) 4, Q ) 2, R ) 0.001, S ) 0.001

Local steady-state coordination method

LMPC: NL ) 15, PL ) ∞

Q ) [5 × 104 0
0 5 × 104 ]

R ) [0.01 0
0 0.01 ]

S ) [1 0
0 1 ]

NMPC:
NN ) 1, PN ) 5, Q ) 2, R ) 0.001, S ) 0.001

Local dynamic coordination approach
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A reaction/separation process was used to evaluate the
various hybrid LMPC-NMPC controller design strate-
gies.
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Appendix A: Optimization Formulation of the
Plant Decomposition Problem

The plant decomposition problem can be formulated
as the following optimization problem

subject to

Because the number of subsystems M is unknown until
the problem is solved, it is necessary to introduce the
N × N matrix X̃ and the N × 1 vector Ỹ. The elements
of X̃ and Ỹ are defined identically to the elements of
the matrix X and vector Y, respectively, introduced in
section 2 except that the number of subsystems is
assumed to be N instead of M. There is a total of (N +

Figure 7. Closed-loop simulation for +10-K change in reactor temperature setpoint.

max
X̃,Ỹ

∑
k)1

N

[∏
i)1

N

(1 - X̃i,k)] + ∑
k)1

N

(1 - Ỹk) (10)

∑
k)1

N

X̃i,k ) 1 i ∈ [1, N]

∑
i)1

N

niX̃i,k ) Ỹk∑
i)1

N

Xi,k k ∈ [1, N]

∑
i)2

N

∑
j)1

i-1

(1 - Ci,j)(1 - Cj,i)X̃i,kX̃j,k ) 0 k ∈ [1, N]

Ind. Eng. Chem. Res., Vol. 41, No. 4, 2002 811



1)N decision variables corresponding to the elements of
X̃ and Ỹ. The term ∑i)1

N (1 - X̃i,k) for a given column k is
1 if and only if every element of column k is 0; this
corresponds to an empty subsystem. Thus, the first term
in the objective function represents the total number of
empty subsystems. If the subsystem k is empty, then
Ỹk can be either 0 or 1. The second term in the objective
function ensures that each empty subsystem k is as-
signed Ỹk ) 0. The first constraint ensures that each
unit operation is allocated to one and only one sub-
system. The second constraint guarantees that all unit
operations in a given subsystem have the same nonlin-
earity property (i.e., linear or nonlinear). The third con-
straint ensures that every unit operation in a given
subsystem is connected to at least one other unit opera-
tion in the same subsystem. The matrices X and Y are
constructed from X̃ and Ỹ, respectively, by eliminating
zero columns that correspond to empty subsystems.

Appendix B: LMPC Controller Formulation

The formulation of the LMPC controller for the case
in which the linear and nonlinear subsystems in eqs
6-9 are uncoupled is briefly outlined here. The objective
function is a quadratic function of the future state and
input variables given by23

Figure 8. Closed-loop simulation for +5-K disturbance in reactor feed temperature.

min
UL(k)

[xL(k+NL|k) - xL
s (k)]TQh [xL(k+NL|k) - xL

s (k)] +

∆uL
T(k+NL|k)S∆uL(k+NL|k) + ∑

j)0

NL-1

{[xL(k+j|k) -

xL
s (k)]TCL

TQCL[xL(k+j|k) - xL
s (k)] +

∆uL
T(k+j|k)S∆uL(k+j|k) + [uL(k+j|k) -

uL
s (k)]TR[uL(k+j|k) - uL

s (k)]} (11)
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subject to

where xL(k+j|k) and uL(k+j|k) are predicted state
and input vectors, respectively; xL

s (k) and uL
s (k) are

state and input target vectors, respectively; ∆uL-
(k+j|k) ) uL(k+j|k) - uL(k+j-1|k); Q, R, and S are
weighting matrices; uL,min, ∆uL,min, and yL,min are
lower limits; and uL,max, ∆uL,max, and yL,max are upper

limits. An infinite prediction horizon is realized by
determining the penalty matrix Qh by solution of a
Lyapunov equation.23 The decision variables are
future values of the input vector over the control horizon
NL

Future values of the state variables are predicted
from the linear model eqs 6 and 7. The objective function
in eq 24 can be manipulated to yield a quadratic
programming problem that is well-suited for real-time
solution.23

Appendix C: NMPC Controller Formulation

The formulation of the NMPC controller for the case
in which the linear and nonlinear subsystems in eqs
6-9 are uncoupled is briefly outlined here. The NMPC

Figure 9. Single-rate and multi-rate control for +10-K change in reactor temperature setpoint.

xL(k+j|k) ) ALxL(k+j-1|k) + BLuL(k+j-1|k)
j ∈ [1, NL]

uL(k+j|k) ) uL(k+NL-1|k) ∀ j g NL

uL,min e uL(k+j|k) e uL,max

∆uL,min e ∆uL(k+j|k) e ∆uL,max

yL,min e CLxL(k+j|k) e yL,max

UL(k) )

[uL(k|k) uL(k+1|k) ‚‚‚ uL(k+NL-1|k) ]T (12)
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optimization problem is posed as

subject to

where the nonlinear subsystem variables are defined
similarly to the linear subsystem variables in the LMPC
problem. Note that NMPC controller has a finite predic-
tion horizon PN. The decision variables are future values
of the state and input vectors, respectively

Because of the nonlinear constraints arising from the
model equations, the NMPC formulation leads to a
nonlinear programming problem that is very difficult
to solve on-line for plants of reasonable complexity.

Appendix D: QP Formulation of LMPC for
Local Dynamic Controller Coordination

Below, we show that the LMPC problem can be
formulated as a quadratic programming (QP) problem
even though the coupled linear system (eq 6) depends
on the nonlinear subsystem state and input variables.
The LMPC objective function in eq 11 can be algebra-
ically manipulated to yield the following QP problem

where UL(k), XN(k), and UN(k) are defined as

The NMPC prediction horizon (PN) and control horizon
(NN) typically are chosen to be shorter than the LMPC
control horizon (NL). As discussed in section 3.1, the last
NL - PN - 1 elements of XN(k) can be obtained by
iterating the nonlinear subsystem model in open-loop
fashion with constant input vector uN(k+NN-1|k) or by
assuming that the state vector remains constant at xN-
(k+PN|k). The last NL - NN elements of UN(k) are
assumed to be equal to uN(k+NN-1|k). The matrices H,
G1, G2, G3, and F in eq 14 can be determined from the
linear model and tuning matrices as follows:

where Qh is defined as follows for stable systems23

For unstable systems, the QP matrices can be obtained
by a similar extension of the development in ref 23.

Appendix E: Optimization Formulation of the
MPC Solution Sequence Problem

The subsystem connection matrix Γ is required for
solution of the MPC sequence problem. Recall that Γi,j
) 1 if subsystem i affects subsystem j and Γi,j ) 0
otherwise. We define a vector d such that dj ) ∑i)1

M Γi,j
for j ) 1, ..., M where M is the total number of
subsystems. The decision variables are elements of the
M × M matrix Ψ, where Ψk,j ) 1 if and only if subsystem
j is the kth subsystem solved. An optimization problem
that yields a MPC solution sequence with the least
amount of information required from unsolved sub-

H )

[BL
TQh BL + R + 2S BL

T AL
TQh BL - S ‚‚‚ BL

T(AL
T)NL-1Qh BL

BL
TQh ALBL - S BL

TQh BL + R + 2S ‚‚‚ BL
T(AL

T)NL-2Qh BL

l l · · ·
l

BL
TQ̃(AL)NL-1BL BL

TQh (AL)NL-2BL ‚‚‚ BL
TQh BL + R + 2S

]
G1 )

[BL
TQh AN BL

T AL
TQh AN ‚‚‚ BL

T(AL
T)NL-1Qh AN

BL
TQh ALAN BL

T Qh AN ‚‚‚ BL
T(AL

T)NL-2Qh AN

l l · · ·
l

BL
TQh (AL)NL-1AN BL

TQh (AL)NL-2AN ‚‚‚ BL
TQh AN

]
G2 )

[BL
TQh BN BL

T AL
TQh BN ‚‚‚ BL

T(AL
T)NL-1Qh BN

BL
TQh ALBN BL

TQh BN ‚‚‚ BL
T(AL

T)NL-2Qh BN

l l · · ·
l

BL
TQh (AL)NL-1BN BL

TQh (AL)NL-2BN ‚‚‚ BL
TQh BN

]
G3 )[BL

TQh AL

BL
TQh (AL)2

l
BL

TQh (AL)N ]
F )[S0l

0
]

Qh ) ∑
i)0

∞

[AL
T]iCL

TQCLAL
i (15)

min
UN(k),XN(k)

∑
j)0

PN

{h[xN(k+j|k)] -

h[xN
s (k)]}TQ{h[xN(k+j|k)] - h[xN

s (k)]} +

∑
j)0

NN-1

{[uN(k+j|k) - uN
s (k)]TR[uN(k+j|k) - uN

s (k)] +

∆uN(k+j|k)TS∆uN(k+j|k)} (13)

xN(k+j|k) ) f[xN(k+j-1|k), uN(k+j-1| k)] j ∈ [1, PN]

uN(k+j|k) ) uN(k+NN-1|k) ∀ j g NN

uN,min e uN(k+j|k) e uN,max

∆uN,min e ∆uN(k+j|k) e ∆uN,max

yN,min e h[xN(k+j|k)] e yN,max

XN(k) ) [xN(k|k) xN(k+1|k) ‚‚‚ xN(k+PN|k) ]T

UN(k) ) [uN(k|k) uN(k+1|k) ‚‚‚ uN(k+NN-1|k) ]T

min
UL(k)

[UL(k)]THUL(k) + 2[UL(k)]T[G1XN(k) +

G2UN(k) + G3xL(k) - FuL(k-1)] (14)

UL(k) ) [uL(k|k) uL(k+1|k) ‚‚‚ uL(k+NL-1|k)]T

XN(k) ) [xN(k|k) xN(k+1|k) ‚‚‚ xN(k+PN|k) ‚‚‚

xN(k+NL-1|k)T

UN(k) ) [uN(k|k) uN(k+1|k) ‚‚‚ uN(k+NN-1|k) ‚‚‚

xN(k+NL-1|k)]T
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systems is formulated as

subject to

The first constraint guarantees that subsystem j is
solved only once, and the second constraint allows only
one system to be solved at a given time.

Appendix F: Model Equations for the Reaction/
Separation Process

where F, CAf, and Tf are the volumetric flow rate,
concentration of A, and temperature, respectively, of the

reactor feed stream; FR, XA1, and Fm are the volumetric
flow rate, mole fraction of A, and molar density,
respectively, of the recycle stream; (F + FR), CA, and T
are the volumetric flow rate, concentration of A, and
temperature, respectively, of the effluent stream; Tc is
the temperature of the coolant stream in the jacket
surrounding the reactor; the condenser and reboiler are
denoted as trays 1 and 9, respectively; XAn and YAn are
the mole fractions of A in the liquid and vapor phases,
respectively, on tray n; Mn is the liquid molar holdup
on tray n; and V and L are the molar flow rates of the
vapor and liquid streams, respectively, in the column.
The vapor-liquid equilibrium on each tray is described
by

where R is the relative volatility.
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min
ψ

∑
k)1

M

∑
j)1

M

[dj - ∑
l)1

k-1

∑
i)1

M

Ψl,iΓi,j]Ψk,j (16)

∑
k)1

M

Ψk,j ) 1

∑
j)1

M

Ψk,j ) 1

ĊA ) 1
Vr

[FCAf + FmFRXAr - (F + FR)CA] -

k0 exp(- E
RT)CA (17)

Ṫ )
(F + FR)

Vr
(Tf - T) + -∆H

FCp
k0 exp(- E

RT)CA +

UA
VFCp

(Tc - T) (18)

ẊA1 ) 1
M1
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ẊA9 ) 1
M9

{[L + Fm(F + FR)]XA9 - VYA9 -

[L + Fm(F + FR) - V]XA9} (27)

YAn )
RXAn

1 + (R - 1)XAn
(28)

Ind. Eng. Chem. Res., Vol. 41, No. 4, 2002 815



(16) Guay, M.; McLellan, P. J.; Bacon, D. W. Measure of closed-
loop nonlinearity and interaction for nonlinear chemical processes.
AIChE J. 1997, 43, 2261-2278.

(17) Stack, A. J.; Doyle, F. J. Application of a control-law
nonlinearity measure to chemical reactor analysis. AIChE J. 1997,
43, 425-439.

(18) Carter, G. C. Coherence and Time Delay Estimation; IEEE
Press: New York, 1993.

(19) Pearson, R. K.; Ogunnaike, B. A. Detection of unmodeled
disturbance effects by coherence analysis. In Proceedings of the
IFAC Symposium on Advanced Control of Chemical Processes;
Pergamon Press: New York, 1994; pp 458-463.

(20) Rao, S. S. Optimization Theory and Applications; John
Wiley & Sons: New York, 1984.

(21) Hummel, H. K.; de Wit, G. B. C.; Maarleveld, A. Optimiza-
tion of EB plant by constraint control. Hydrocarbon Process. 1991,
Mar, 67-71.

(22) Sundaram, K. M.; Sardina, H.; Fernandez-Baujin, J. M.;
Hildreth, J. M. Styrene plant simulation and optimization.
Hydrocarbon Process. 1991, Jan, 93-97.

(23) Muske, K. R.; Rawlings, J. B. Linear model predictive
control of unstable processes. J. Process Control 1993, 3, 85-96.

(24) Scokaert, P. O. M.; Rawlings, J. B.; Meadows, E. S.
Discrete-time stability with perturbations: Application to model
predictive control. Automatica 1997, 33, 463-470.

(25) Muske, K. R. Linear model predictive control of chemical
processes. Ph.D. Thesis, University of Texas, Austin, TX, 1995.

(26) Lawler, E. L.; Lenstra, J. K.; Rinnooy Kan, A. H. G.;
Shmoys, D. B. The Traveling Salesman Problem; John Wiley &
Sons: Chichester, U.K., 1985.

(27) Morari, M.; Zafiriou, E. Robust Process Control; Prentice-
Hall: Englewood Cliffs, NJ, 1989.

Received for review December 4, 2000
Revised manuscript received July 23, 2001

Accepted November 12, 2001

IE001038N

816 Ind. Eng. Chem. Res., Vol. 41, No. 4, 2002


