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Abstract

Linear model predictive control (LMPC) is well established as the industry standard for controlling constrained multivariable
processes. A major limitation of LMPC is that plant behavior is described by linear dynamic models. As a result, LMPC is inadequate
for highly nonlinear processes and moderately nonlinear processes which have large operating regimes. This shortcoming coupled
with increasingly stringent demands on throughput and product quality has spurred the development of nonlinear model predictive
control (NMPC). NMPC is conceptually similar to its linear counterpart except that nonlinear dynamic models are used for process
prediction and optimization. The purpose of this paper is to provide an overview of current NMPC technology and applications, as
well as to propose topics for future research and development. The review demonstrates that NMPC is well suited for controlling
multivariable nonlinear processes with constraints, but several theoretical and practical issues must be resolved before widespread

industrial acceptance is achieved. : 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) refers to a class of
control algorithms in which a dynamic process model is
used to predict and optimize process performance. The
first MPC techniques were developed in the 1970s be-
cause conventional single-loop controllers were unable
to satisfy increasingly stringent performance require-
ments (Qin and Badgwell, 1997). MPC is well suited for
high performance control of constrained multivariable
processes because explicit pairing of input and output
variables is not required and constraints can be incorpor-
ated directly into the associated open-loop optimal con-
trol problem. The current generation of commercially
available MPC technology is based on linear dynamic
models, and therefore is referenced by the generic
term linear model predictive control (LMPC). Although
often unjustified, the assumption of process linearity
greatly simplifies model development and controller
design.
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Many processes are sufficiently nonlinear to preclude
the successful application of LMPC technology. Such
processes include highly nonlinear processes that operate
near a fixed operating point (e.g. high-purity distillation
columns) and moderately nonlinear process with large
operating regimes (e.g. multi-grade polymer reactors).
This has led to the development of nonlinear model
predictive control (NMPC) in which a more accurate
nonlinear model is used for process prediction and op-
timization. While NMPC offers the potential for im-
proved process operation, it offers theoretical and
practical problems which are considerably more chal-
lenging than those associated with LMPC. Many of these
problems are associated with the nonlinear program
which must be solved on-line at each sampling period to
generate the control moves.

The goal of this paper is to present the current status of
NMPC technology and to outline directions for future
research. The critically important issue of nonlinear pro-
cess modeling 1s discussed in Section 2. In Section 3, the
NMPC problem is described with particular emphasis on
a prototypical formulation. Computational issues asso-
ciated with on-line solution of the nonlinear program are
discussed in Section 4. In Section 5, process applications
of NMPC are summarized. Finally, some topics for fu-
ture research are presented in Section 6.
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2. Nonlinear process models

The industrial success of LM PC is largely attributable
to the availability of commercial software packages
which can be used to develop linear dynamic models
directly from process data (Qin and Badgwell, 1997).
These linear empirical models are used by the LMPC
controller to predict and optimize process performance.
NMPC requires the availability of a suitable nonlinear
dynamic model of the process. Consequently, the devel-
opment of nonlinear process models is of paramount
importance. Due to the complexity of nonlinear systems.
it is not possible to develop nonlinear system identifica-
tion techniques by straightforward extension of the linear
theory (Pearson and Ogunnaike, 1997). As an alternative,
the NMPC controller may be based on a fundamental
model which is derived from basic conservation laws and
constitutive relations. These two general classes of non-
linear models are described below. Also discussed are
hybrid nonlinear models, which are developed by a com-
bination of the fundamental and empirical modeling ap-
proaches.

2.1. Fundamental models

Fundamental dynamic models are derived by applying
transient mass, energy, and momentum balances to the
process (Ogunnaike and Ray, 1994). In the absence of
spatial variations, the resulting models have the general
form

X = f(x, u), (1)
0 =glx, u), (2)
y = h(x, u), (3)

where x is a n-dimensional vector of state variables, u is
a m-dimensional vector of manipulated input variables,
and y i1s a p-dimensional vector of controlled output
variables. The ordinary differential equations (1) and the
algebraic equations (2) are derived from conservation
laws and various constitutive relations, while the output
equations (3) are chosen by the control system designer.
Because NMPC is most naturally formulated in discrete
time (see Section 3), it is necessary to discretize the
continuous-time differential equations (1). As discussed
in Section 4, this usually is achieved using orthogonal
collocation on finite elements (Meadows and Rawlings,
1997).

Fundamental models have several advantages as com-
pared to nonlinear empirical models. Because funda-
mental models are highly constrained with respect to
their structure and parameters, less process data is re-
quired for their development. In particular, model para-
meters may be estimated from laboratory experiments
and routine operating data instead of time-consuming

plant tests. As long as the underlying assumptions remain
valid, fundamental models can be expected to extrapolate
to operating regions which are not represented in the
data set used for model development (Meadows and
Rawlings, 1997). This property is particularly important
when a process operates over a wide range of conditions,
such as a polymer reactor which produces several differ-
ent product grades. Some disadvantages of the funda-
mental modeling approach are discussed below.

A large number of NMPC studies based on fundamen-
tal models have been reported. In most cases, the process
consists of a single unit operation, and the nonlinear
dynamic model is relatively simple. With the possible
exception of the paper by Ricker and Lee (1995), studies
which reflect the large-scale nature of typical industrial
plants are not available in the open literature. This prob-
ably is attributable to the inherent difficulties involved in
deriving fundamental dynamic models for large-scale
processes. An alternative approach for developing rigor-
ous nonlinear models is to utilize a commercial dynamic
simulator. A number of vendors offer such products,
including ABB Industrial Systems (iGES), Aspen Tech-
nology (SPEEDUP), and Hyprotech (HYSYS). The use
of commercial simulators for NMPC has not been re-
ported in the open literature, probably because the dy-
namic model equations are not available to the control
system designer.

A potential disadvantage of the fundamental modeling
approach is that the resulting dynamic model may be too
complex to be useful for NMPC design. This motivates
the development of modeling techniques which are con-
strained by the underlying physics, but yield dynamic
models with significantly fewer equations, Reduction
techniques such as singular perturbations may be applied
to the rigorous model to derive a simplified model which
retains the basic dynamic behavior of the full-scale
model. This approach has been sucessfully applied to
chemical reactors (Duchene and Rouchon, 1996) and
distillations columns (Levine and Rouchon, 1991).
NMPC design also may be facilitated by developing
simplified dynamic models that are capable of describing
the most important process characteristics. Applications
of this approach to distillation column modeling are
described in Benallou et al. (1986) and Hwang (1991).

Before being used for NMPC design, a fundamental
model should be validated with plant data which repre-
sent typical operating conditions. While more systematic
methods are available (Pearson and Ogunnaike, 1997),
some measure of model accuracy can be obtained by
placing the model on-line in predictive mode. Large
deviations between the plant measurements and the
model predictions may warrant further modeling effort.
Once a suitable model is developed and utilized for
NMPC design, long-term maintanence and support by
the model developers is required. Otherwise, the NMPC
controller will not be used by plant personnel because the
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nonlinear model will fail to provide satisfactory predic-
tions as the plant is modified and/or operating conditions
are changed.

2.2. Empirical models

In many applications, lack of process knowledge
and/or a suitable dynamic simulator precludes the deri-
vation of a fundamental model. This necessitates the
development of empirical nonlinear models from dynamic
plant data. This process is known as nonlinear system
identification. Unfortunately, a well developed theory for
nonlinear system identification is not currently available
(Pearson and Ogunnaike, 1997). Furthermore, few ap-
plications of nonlinear system identification techniques to
actual plant data have been reported in the literature.

A fundamental difficulty associated with the empirical
modeling approach is the selection of a suitable model
form. Discrete-time models are most appropriate because
plant data is available at discrete time instants and
NMPC is most naturally formulated in discrete time. The
types of discrete-time nonlinear models utilized for
NMPC include (Pearson and Ogunnaike, 1997)

o Hammerstein and Wiener models,

 Volterra models,

» polynomial autoregressive moving average model with
exogenus inputs (polynomial ARMAX),

» artificial neural network models.

Each of these models can be represented as a nonlinear

autoregressive moving average model with exogenus in-

puts (NARMAX). The NARMAX form for a single-

input, single-output system is

k)= F[ytk = 1) ...,vtk —n)utk = 1), ...,

ulk —n,), e(k), ...,etk —n, + 1)], 4)
where F is a nonlinear mapping, k represents the time
instant kAr, where At is the sampling time, y is the
controlled output, u is the manipulated input, e is the
noise input, n, is the number of past outputs used, n, is
the number of past inputs used, and n, is the number of
current and past noise inputs used. If necessary, a state-
space representation of the input-output model (4) is
easily derived (Hernandez and Arkun, 1992; Nahas, Hen-
son and Seborg, 1992). Multivariable systems are han-
dled by building a multiple-input, single-output model

for each output variable (Pearson and Ogunnaike, 1997).
Nonlinear system identification involves the following

tasks:

1. Stucture selection — parameterization of the nonlin-
ear mapping F and selection of the model parameters
n,, 1, and n,.

2. Input sequence design — determination of the input
sequence u(k) which is injected into the plant to gener-
ate the output sequence y(k).

3. Noise modeling — determination of the dynamic
model which generates the noise input e(k).

4. Parameter estimation — estimation of the remaining
model parameters from the dynamic plant data u(k)
and y(k) and the noise input e(k).

5. Model validation — comparison of plant data and
model predictions for data not used in model develop-
ment.

Each task represents a very challenging theoretical and
practical problem. A general theory is not available, but
results have been presented for specific classes of nonlin-
ear models (Pearson and Ogunnaike, 1997).

As compared to fundamental models, empirical non-
linear models offer several important advantages. First
and foremost, detailed process understanding is not re-
quired for empirical model development. This is an im-
portant consideration for complex industrial process,
such as polymerization reactors, which are difficult to
model from fundamental principles. Because NMPC re-
quires on-line solution of a nonlinear programming
problem, computational overhead and reliability is inti-
mately connected with the complexity of the nonlinear
model. An advantage of empirical models is that the
nonlinear model form can be chosen to restrict model
complexity (Pearson and Ogunnaike, 1997). This is con-
siderably more difficult to achieve with the fundamental
modeling approach.

The use of empirical models for NMPC has been
studied by several investigators. Artificial neural net-
works are the most popular framework for empirical
model development (Su and McAvoy, 1997), although
techniques based on Hammerstein and Wiener models
(Chu and Seborg, 1994), Volterra models (Maner,
Doyle, Ogunnaike and Pearson, 1996), and polynomial
ARMAX models (Sriniwas and Arkun, 1997) also have
been presented. For the most part, studies have been
restricted to small-scale simulated processes which are
not indicative of industrial systems. The development of
empirical nonlinear models for large-scale processes is
a very challenging problem which requires the availabil-
ity of suitable software tools. Neural network modeling
packages are offered by several vendors, the most
popular of which is Pavilion Technologies’ Process
Insights. With the notable exception of published studies
by Pavilion (Martin, 1997), applications of these
commercial packages for NMPC are not available in the
open literature.

2.3. Hybrid models

Hybrid nonlinear models are developed by combining
the fundamental and empirical modeling approaches.
This allows the advantages of each modeling approach to
be exploited. A common method for developing hybrid
models is to use empirical models to estimate unknown
functions in the fundamental model; e.g. reaction rates in
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a chemical reactor model (Pottmann and Henson, 1997).
In this case, steady-state empirical models usually are
sufficient. Another possible approach is to utilize a fun-
damental model to capture the basic process character-
istics, and then to describe the residual between the plant
and the model using a nonlinear empirical model. Both
techniques allow the nonlinear model to be constrained
by the underlying physics, but they do not require a com-
plete rigorous model of the plant. While hybrid models
hold great promise, their use for NMPC design has not
been explored.

3. Problem formulation

NMPC is an optimization-based control strategy
which is well suited for constrained, multivariable pro-
cesses. A sequence of control moves is computed to
minimize an objective function which includes predicted
future values of the controlled outputs. The predictions
are obtained from a nonlinear process model, hence the
terminology nonlinear model predictive control
(NMPC). The optimization problem is solved subject to
constraints on input and output variables, as well as
constraints imposed by the nonlinear model equations.
This formulation yields an open-loop optimal controller.
Feedback is included by implementing only the manipu-
lated inputs computed for the present time step, then
moving the prediction horizon forward one step and
resolving the problem using new process measurements.
For this reason, NMPC often is called nonlinear receding
horizon control (Mayne and Michalska, 1991a). Calcu-
lation of the manipulated input sequence requires the
on-line solution of a nonlinear programming problem.

The basic formulation of the NMPC problem is dis-
cussed below. The presentation focuses on a prototypical
discrete-time formulation which is representative of tech-
niques proposed in the literature. It is important to note
that a wide variety of alternative discrete-time formula-
tions (Badgwell, 1997; Zheng, 1997; Maner et al., 1996;
Pottmann and Seborg, 1997) and continuous-time for-
mulations (Chen and Allgower, 1997, Mayne and
Michalska, 1990, 1991b; Peterson et al., 1992) are avail-
able. In addition to the constrained optimization prob-
lem, issues such as disturbance and state estimation,
stability, and controller tuning are discussed. Computa-
tional issues associated with on-line solution of the non-
linear program are discussed in the following section.

3.1, Optimization problem

The nonlinear process model is assumed to have the
following discrete-time representation,
x(k + 1) = F[x(k), u(k)], (5

(k) = h[x(k)], (6)

where x is a n-dimensional vector of state variables, u is
a m-dimensional vector of manipulated input variables,
and y is a p-dimensional vector of controlled output
variables. Such a model can be obtained by discretizing
a continuous-time, state-space model or by deriving
a state-space realization of a discrete-time, input—output
model. Several discretization methods for nonlinear sys-
tems, such as Taylor-based linearization (Kazantzis and
Kravaris, 1994), have been proposed. It is important to
note that time delays can be handled by augmenting the
state vector such that the resulting state-space model has
no delays.

The optimization problem for the prototypical NMPC
formulation is (Meadows and Rawlings, 1997)
u(k|k),u(k+1|1rc?l,.n.u(k+M— 1|k)J - ¢[y(k + Plk}]

P-1
+ 2 LLy(k + jIk), u(k + jlk), Autk + jlk)], (7)
i=0

J

where u(k + jlk) is the input u(k + j) calculated from
information available at time k, y(k + j|k) is the output
v(k + j) calculated from information available at time k,
Aulk + jlk) = u(k + jlk) — u(k +j — 1|k), M is the con-
trol horizon; P is the prediction horizon and ¢ and L are
(possibly) nonlinear functions of their arguments. The
optimization problem is solved subject to the constraints
discussed below. The functions ¢ and L can be chosen to
satisfy a wide variety of objectives, including minimiz-
ation of overall process cost. However, economic optim-
ization may be performed by a higher-level system which
determines appropriate setpoints for the NMPC control-
ler. In this case, it is meaningful to consider quadratic
functions of the following form:

L = [ytk +jlk) = k)] QLy(k + k) — yy(k)]

+ [ulk + j1k) — udk)]"RLutk + j k) — uy(k)]

+ Au"(k + jlk) SAu(k + j|k), (8)
¢ = [ytk + PIK) — y(k)T"QLy(k + Plk) — y(k)]. ©)

where ugk) and y((k) are steady-state targets for u and A
respectively (see Section 3.3), and Q, R, and S are positive-
definite weighting matrices. The principal controller tu-
ning parameters are M, P, Q, R, S, and the sampling
period At.

The predicted outputs are obtained from the nonlinear
model (5)}+6). Successive iterations of the model equa-
tions yield

vk + 1]k) = h[x(k + 11k)] = h[F[x(kik), u(klk)]],
= Gi[x(k), u(klk)],

y(k + 2k) = G,[x(k + 1|k), u(k + 1]k)],
= G [FLx(klk), u(kIk)], u(k + 1]k)],
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= G,[x(k), ulkk), u(k + 1/k)],

yk + jlk) = Gj[x(k), utklk), u(k + 11k), ...,
ulk +j— 1K),

where x(k|k) = x(k) is a vector of current state variables.
If the control horizon (M) is less than the prediction
horizon (P), the output predictions are generated by
setting inputs beyond the control horizon equal to the
last computed value: u(k + jlk) = u(k + M — 1lk),
M <j < P. Note that the prediction y(k + j|k) depends
on the current state variables, as well as the calculated
input sequence. Therefore, NMPC requires measure-
ments or estimates of the state variables. This is discussed
in more detail below.

Solution of the NMPC problem yields the input se-
quence {u(klk), u(k + 1jk)... ,u(k + M — 1]k)}. Only the
first input vector in the sequence is actually implemented:
u(k) = u(k|k). Then the prediction horizon is moved for-
ward one time step, and the problem is resolved using
new process measurements. This receding horizon
formulation yields improved closed-loop performance in
the presence of unmeasured disturbances and modeling
EITOrS.

3.2. Process constraints

An important characteristic of process control prob-
lems is the presence of constraints on input and output
variables. Input constraints arise due to actuator limita-
tions such as saturation and rate-of-change restrictions.
Such constraints take the form,

S U < Upaxs (10)

umin
Ay < Au < Al (11

where U, and .. are the minimum and maximum
values of the inputs, respectively, and Au,,;, and Au,,,, are
the minimum and maximum values of the rate-of-change
of the inputs, respectively. Output constraints usually are
associated with operational limitations such as equip-
ment specifications and safety considerations. These con-
straints can be posed as

Yemin < y < Ymax» (12)

where Vs and .., are the minimum and maximum
values of the outputs, respectively. Constraints on the
state variables also may be specified if appropriate.
The industrial success of LMPC is largely attributable
to its explicit constraint handling capability (Qin and
Badgwell, 1997). By including constraints in the optim-
ization problem, the controller is able to predict future
constraint violations and respond accordingly. A major
advantage of NMPC as compared to other nonlinear
control strategies is that it provides the same constraint

handling capability. This is achieved by solving the non-
linear optimization problem (7) subject to the following
inequality constraints:

1‘milx$u(k+jlk)<umaxa OQJSM—I, (13)

Aumin < Au(k +J|k) < Aumaxe 0 $I < M- 1’ (14)

Vmin < }’(k +J|k) < Ymaxs 1 S] < P. (15)

In addition, the nonlinear model (5}+6) is posed as a set
of equality constraints,

x(k +j + k) = Fx(k + jlk), u(k + j k)],
0<j<P-1, (16)

vk +jlk) = hix(k +jlk)], 1<j<P, (17)

where x(k|k) = x(k) if the state variables are measured.

It is important to note that input constraints are hard
constraints in the sense that they must be satisfied. Con-
versely, output constraints can be viewed as soft con-
straints because their violation may be necessary to
obtain a feasible optimization problem. More specifi-
cally, the output constraints can be relaxed during part of
the prediction horizon,

J‘lﬂm s ,v(k +j|k) < ymaxa jl gj < P’ (]8)

where j; represents the lower limit for output constraint
enforcement. In LMPC, it is possible to determine
a priori the limit j; such that feasibility is guaranteed if
there is no plant/model mismatch (Rawlings and Muske,
1993). This may require j; > P, in which case the output
constraints are relaxed over the entire prediction hor-
izon. An analogous result is not available for NMPC,
therefore feasibility is more difficult to establish in the
nonlinear case.

3.3. Disturbance and state estimation

The goal of the NMPC controller is to drive the
process inputs and outputs to their target values in an
optimal manner. If the target values u, and y; in Eqgs.
(8)—(9) are not chosen properly, the controller can exhibit
steady-state offset in the presence of unmeasured distur-
bances and modeling errors (Meadows and Rawlings,
1997). As in LMPC, the offset problem can be handled by
designing a disturbance estimator which gives the con-
troller implicit integral action. Recall from Section 3.1
that current values of the state variables are required to
compute the output predictions. In the absence of full-
state feedback, it becomes necessary to design a nonlin-
ear observer to generate estimates of the unmeasured
state variables.

The simplest method for incorporating integral action
is to generate the output targets (y,) by shifting the
setpoints with the disturbance estimates. In this method,
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the penalty on the inputs is eliminated (R = 0) such that
the quadratic function L becomes:

L =[y(k +jlk) — yJ"QLy(k + jlk) — yi]

+ Au'(k + j (k) SAu(k + j [k). (19)
The output targets are computed as follows:
k) = yy (k) — d(k). (20)
d(k) = y(k) — y(klk), 1)

where ), (k) are setpoints for the output variables, y(k)
are the plant outputs, y(klk) are estimated outputs ob-
tained from the nonlinear model (5)<(6): and d(k) are the
estimated disturbances. This disturbance model assumes
plant/model mismatch is attributable to a step distur-
bance in the output and the disturbance remains con-
stant over the prediction horizon. While these
assumptions rarely hold in practice, the disturbance
model does eliminate offset for asympotically constant
setpoints under most conditions (Meadows and Rawl-
ings, 1997). A more sophisticated method for incorporat-
ing integral action based on steady-state target
optimization is described in (Meadows and Rawlings,
1997).

Simultaneous state and disturbance estimation can be
performed using the augmented state-space model,

x(k 4+ 1) = F[x(k), u(k)] (22)
d(k + 1) =d(k) (23)
y(k) = h[x(k)] + d(k) (24)

where d(k) is a constant output disturbance. The aug-
mented system can be used to design a nonlinear ob-
server which generates state estimates x(k) and
disturbance estimates d(k) from the measured process
variables (Muske and Edgar, 1997). Unfortunately.
a well-developed theory for nonlinear observers is not
available. Existing design methods are applicable only to
specific classes of nonlinear systems and restrictive as-
sumptions are required to ensure stability. Nevertheless,
some promising state estimation techniques have been
proposed for both continuous-time and discrete-time
nonlinear systems. These methods include extended Ka-
Iman filters (Muske and Edgar, 1997), extended Luenber-
ger observers (Soroush, 1997), receding horizon observers
(Michalska and Mayne, 1995), adaptive observers (Bastin
and Gevers, 1988), and inversion-based observers
(Moraal and Grizzle, 1995). Due to the complication
associated with nonlinear state estimation, input-output
models are preferred to state-space models when full-
state feedback is not available.

3.4. Stability

NMPC is a nonlinear open-loop optimal control tech-
nique where feedback is incorporated via the receding

horizon formulation and the disturbance estimator.
From a theoretical perspective, the minimum require-
ment of a model-based [eedback controller is that it
yields a stable closed-loop system if a perfect model of the
plant is available. This is known as nominal closed-loop
stability. It is important to note that techniques such as
PID control and linear model predictive control most
often applied in the process industries do not meet this
requirement, While this has not precluded their success-
ful application, the development of rigorous stability
theories is desirable for several reasons. Stability theory
provides a systematic framework for the derivation and
refinement of control algorithms. Without such tools, the
potential usefulness of a particular control strategy
can be evaluated only via simulation and experimental
studies. Furthermore, such analysis facilitates the deter-
mination of tuning parameter values which result in
closed-loop stability. This allows the controller to be
tuned to improve performance rather than to establish
stability.

The objective of this section is to present a representa-
tive NMPC stability result. This requires a slightly differ-
ent formulation of the NMPC problem as Egs. (7)—(9) is
not a stabilizing formulation unless certain modifications
are introduced. The cost function (7) is modified as follows:

J = x"(k + Plk)Qx(k + P|k)
P-1
+ Y x'k +jlk)Qx(k + jlk)
ji=0

+ u'(k + j k) Qu(k + j k). (25)

This differs from the prototypical formulation in that: (i)
the control horizon is equal to the prediction horizon; (ii)
the state variables are penalized rather than the output
variables; (iii) a penalty on the rate-of-change of the input
is not included; and (iv) and the steady-state target values
are zero. The first and third modifications are not very
limiting, while the fourth modification can be achieved
simply by moving the target values to the origin via
a change of coordinates. By contrast, the second modifi-
cation represents a fundamental change of the prototypi-
cal formulation.

The primary tool for NMPC stability analysis is
Lyapunov theory (Khalil, 1992). Available theorems are
applicable to the NMPC problem only if the prediction
horizon is infinite (P — o¢ ) or a terminal state constraint
is imposed:

x(k + Plk) =0 (26)

In the linear case, the infinite horizon controller can be
reformulated as a finite horizon controller with a ter-
minal state penalty (Muske and Rawlings, 1993). This is
not possible in the nonlinear case. Consequently, the
terminal constraint (26) is utilized to derive the result
presented below. If there exists a prediction horizon (P)
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such that constraint (26) is satisfied, the nonlinear system
is said to be constrained null controllable.

The following resuit is derived in Meadows and Rawl-
ings (1997).

Theorem 1. If the NMPC objective function (25} is con-
tinuous, then the origin of the nonlinear system (5) is an
asymptotically stable fixed point with a region of attraction
that includes all initial conditions which are constrained
null controllable.

The assumption that the objective function is continu-
ous is not particularly restrictive, although it can be
difficult to verify. The major limitation of this result is the
assumption that the system is constrained null control-
lable. It is important to note that this is a very strong
assumption. In fact, there does not exist general results
which ensure the existence of a control horizon such that
Eq. (26) is satisfied even for the unconstrained case. While
this condition often holds in practice, it is very difficult to
verify a priori. Additional nominal stability results for
discrete-time systems (Alamir and Bornard, 1994,
Keerthi and Gilbert, 1988; Meadows et al, 1995;
Meadows, 1997; Nicolao et al., 1997) and continuous-
time systems (Chen and Shaw, 1982; Mayne and
Michalska, 1990; Sistu and Bequette, 1996) are available.

3.5. Tuning

For the quadratic NMPC formulation (7)-(9), the pri-
mary controller tuning parameters are the sampling peri-
od (At), the control horizon (M), the prediction horizon
(P), and the weighting matrices (Q, R, S). A limitation of
NMPC is that the effect of these parameters on closed-
loop performance is difficult to predict a priori. To date,
parameter values which ensure nominal closed-loop
stability have been determined only if the prediction
horizon is infinite or a terminal state constraint is im-
posed. Because these conditions are rarely satisfied in
practice, it is important to develop heuristic tuning
guidelines. The following results are summarized from
Meadows and Rawlings (1997).

For stable nonlinear systems, the sampling interval
(At) should be chosen to provide a compromise between
closed-loop performance and on-line computation. Small
values generally improve performance but require a lon-
ger prediction horizon to adequately capture the process
dynamics. This leads to more finite elements in the non-
linear program (see Section 4.1) and increased computa-
tion. Large sampling intervals reduce on-line
computation, but they can result in poor performance
such as ringing. The choice of sampling interval can have
a dramatic effect on robustness when the nonlinear sys-
tem is unstable. There is an inverse relationship between
At and the allowable modeling error. As modeling error
increases, more frequent feedback of process measure-

ments (i.e. small At) is required to indicate the onset of
unstable behavior.

The effect of the control horizon (M) on NMPC per-
formance is similar to that observed in the linear case.
For a fixed prediction horizon, smaller control horizons
yield more sluggish output responses and more conserva-
tive input moves. Large control horizons have the oppo-
site effect on performance. In addition, large values of
M lead to increased on-line computation as M is linearly
related to the number of decision variables in the nonlin-
ear programming problem. In practice, M often must be
chosen to provide a balance between performance and
computation. The prediction horizon (P) has similar ef-
fects as the control horizon. Large prediction horizons
result in more aggressive control and increased computa-
tion.

The weighting matrices (Q, R, S) can be the most
difficult tuning parameters to select because their values
depend on the scaling of the problem. Typically, they are
chosen to be diagonal matrices with positive elements.
The magnitude of the diagonal elements depends both on
the scaling and the relative importance of the variables.
For problems in which all the variables are scaled sim-
ilarly, it is suggested in Meadows and Rawlings (1997)
that the output penalties (Q) be chosen in the range 1-100
and the input penalties (R, S) be chosen in the range 1-10.
The final parameter values can be obtained by fine tuning
via simulation study.

4. Computational issues

The prototypical NMPC formulation described in the
previous section requires that a nonlinear programming
problem be solved on-line at each time step to determine
the manipulated inputs. The optimization problem gen-
erally is nonconvex because the model equations are
nonlinear. Consequently, the major practical challenge
associated with NMPC is on-line solution of the nonlin-
ear program (NLP). Efficient and reliable NLP solution
techniques are required to make NMPC a viable control
technique. In addition, it may be necessary to derive
alternative formulations of the NMPC problem with
improved computational properties. Below some general
characteristics of the NLP problem are discussed, and
the most widely studied solution algorithms are re-
viewed. Alternative NMPC formulations with improved
computational characteristics also are described.

4.1. Nonlinear programming problem

The prototypical NMPC formulation is based on
a discrete-time state-space model (1)}+3) of the nonlinear
process. Such a model can be derived by performing
state-space realization on a discrete-time input—output
model obtained via nonlinear system identification. In
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many applications of practical interest, an inherently
continuous-time nonlinear model derived via funda-
mental modeling is available for NMPC design. In this
case, a discrete-time nonlinear model can be obtained by
explicitly discretizing the fundamental model. However.
discretization usually is performed implicitly as part of
the NLP solution using a numerical technique such as
orthogonal collocation. Consequently, continuous-time
models should be considered when discussing computa-
tional issues.

For a continuous-time model, the NMPC problem can
be represented as

min J = Y[Y (k). U(k)], (27)
Uik
X(t*) = f[x(t*), u(t*)], t < * <t + PAt, (28)

w(t*) = ult + (M — 1) Ar],

t+ (M — DAr <t* <t + PAs, (29)
0 = ®[X(k), Y (k), U(k)], (30)
0= DU(k), (31
0= DY(k), (32)
where
-k y(k|k)
k + 1/k) ylk + 1K)
v =| M YR =] yk+20 |,
— 1k :
Luk + M — 1|k) Sk 4 PR
- x(klk)
x(k + 1]k)
X(k)=| x(k+2[k
L x(k + Plk)

The constraint (28) corresponds to satisfaction of the
continuous-time model equations over the prediction
horizon, while (29) enforces the requirement that all in-
puts beyond the control horizon are held constant. The
constraint (30) represents the algebraic equations in the
model, while Egs. (31) and (32) correspond to the con-
straints on the input variables and output variables,
respectively. As discussed below, NMPC solution tech-
niques differ primarily according to the method used to
handle the model Egs. (28) and (30).

The development of efficient and reliable solution
methods for the NLP problem (27)32) is a challenging
problem. The most obvious difficulty is that the optim-
ization problem is nonlinear and has a potentially large
number of decision variables. The NLP solution can be

too computationally intensive for on-line implementa-
tion using conventional process control computers. An
equally important problem is that the model constraints
(28) and (30) generally yield a nonconvex optimization
problem (Mayne, 1997). As a result, standard NLP tech-
niques such as successive quadratic programming (SQP)
cannot be expected to find the global minimum. Further-
more, there is no theoretical guarantee that any feasible
solution can be determined in the presence of nonconvex
constraints. Some widely studied solution algorithms for
the NLP problem are presented below.

4.2. Successive linearization of model equations

The simplest way to deal with the model equations (28)
and (30) is to perform Jacobian linearization about
a nominal operating point and discretize the resulting
linear model. This yields linear model predictive control
if the objective function is quadratic. Local linearization
allows the optimization problem to be solved with simple
quadratic programming (QP) techniques, but it provides
no compensation for process nonlinearities. A straight-
forward extension of this idea is to use the current oper-
ating point to linearize the model before each execution
of the NMPC controller (Bequette, 1991). The primary
advantage of successive model linearization is that the
NMPC problem is reduced to a LMPC problem at each
time step. However, this approach only provides indirect
compensation for process nonlinearities.

NMPC techniques based on successive model lineariz-
ation has been proposed by a number of investigators.
Typically, the linearized model is used to predict future
process behavior, while the original nonlinear model is
used to compute the effect of past input moves (Garcia,
1984). The accuracy of the linear model can be improved
by relinearizing the model equations several times over
the sampling period (Brengel and Seider, 1989) or by
linearizing the model along the computed system traject-
ory (Li and Biegler, 1989). In the event that the current
operating point cannot be determined directly from
available process measurements, it becomes necessary to
perform the linearization using an estimate of the state
variables (Gattu and Zafiriou, 1992; Lee and Ricker,
1994). A related approach is to perform on-linear updat-
ing of the linear model using the difference between the
linear and nonlinear model responses (Peterson et al.,
1992).

4.3. Sequential model solution and optimization

Improved closed-loop performance can be expected if
the nonlinear model is used directly in the NMPC calcu-
lations. However, standard NLP codes are not designed
to handle ODE constraints. This limitation can be over-
come using a two-stage solution procedure in which a
standard NLP solver is used to compute the manipulated
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inputs and an ODE solver is used to integrate the nonlin-
ear model equations. This is known as sequential
solution because the optimization and integration prob-
lems are solved iteratively until the desired accuracy is
ooiained IHBepoeiie, 1D, As tompareh 1 Yht sinuiva-
neous solution method discussed below, an important
ahveTtege oF e STpasmiEt FPpronTin Xy Nent M memipe-
lated inputs are the only decision variables. Disadvan-
tages of the sequential approach include difficulty in
incorporating state/output constraints and poor reliabil-
ity for Jarge problems (Meadows and Rawlings, 1997).

Several investigators have proposed NMPC solution
techniques based on sequential solution of the NLP
problem and the model equations. Gradients of the ob-
jective function are obtained via simuitaneous integra-
tion of the model and sensitivity differential equations
(Jang et al., 1987; Morshedi, 1986). The model solution
phase can be simplified by discretizing the differential
equations (28). While other methods are available, the
most popular discretization technique is orthogonal col-
location on finite elements (Bequette, 1991). This proced-
ure yields nonlinear algebraic model equations of the
form

WX =TI(X,U), (33)

where X is a matrix of state values at the collocation
points, U is a vector of inputs which change over the
finite elements, W is a matrix of collocation weights, and
I' is a matrix of nonlinear functions derived from the
model function f. More details about this numerical pro-
cedure are presented in Meadows and Rawlings (1997).

4.4. Simultaneous model solution and optimization

An alternative to the sequential solution approach is to
solve the optimization problem and the model equations
simultaneously (Meadows and Rawlings, 1997). The si-
multaneous solution method requires the model equa-
tions to be discretized as in Eq. (33) since ODEs cannot
be handled by standard NLP solvers. The decision vari-
ables are the inputs on each finite element and the state
variables at each collocation point. Therefore, the num-
ber of decision variables increases as: (i) the sampling
period is decreased and/or the prediction horizon is in-
creased (both increase the number of finite elements); or
(11) the number of collocation points on each finite ele-
ment is increased. The simultaneous approach is best
suited for large NLP problems with state/output con-
straints (Eaton and Rawlings, 1990; Patwardhan et al.,
1990).

4.5. Alternative NMPC formulations
The algorithms discussed above are developed to pro-

vide efficient and robust solution of the standard NMPC
problem. An alternative approach for enhancing the ap-

plicability of NMPC is to derive alternative problem
formulations with inherently better computational prop-
erties. A number of these methods have been proposed
during the past few years. An obvious approach to im-
PIVIT TUMPUEHUNRN TIDERDTY TS 40 13Ut 4R i
of decision variables in the NMPC problem. The NMPC
Scvoslesion propessd by Zhewnp (MW7) sekieves Shis &b-
mensionality reduction by allowing only the current in-
puts to be decision varifables. The remaining inputs in the
control horizon are computed with unconstrained
LMPC controllers designed for embedded operating re-
gions in the state space.

The structure of certain nonlinear empirical models
allows the NMPC optimization problem to be solved
more efficiently than is possible with other model forms.
Second-order Volterra models with linear autoregressive
terms yield an NLP problem whose complexity does not
depend on the prediction horizon (Maner and Doyle,
1997). Consequently, the optimization problem is easier
to solve. Polynomial ARMAX models allow the NMPC
problem to be reformulated via change of coordinates as
a convex NLP (Sriniwas and Arkun, 1997). This allows
the global optimum to be determined using recently
developed algorithms for convex NLPs.

Several investigators have proposed NMPC formula-
tions which ensure nominal closed-loop stability by re-
laxing the infinite prediction horizon or terminal state
constraint requirements. An algorithm in which the ter-
minal state constraint is satisfied approximately is pro-
posed in (Mayne, 1997). The hybrid approach involves
a local controller which stabilizes the nonlinear system
near the desired operating point and a NMPC controller
which forces (in finite time) the system to enter the do-
main of attraction of the linear controller. A related
approach in which the terminal state constraint is re-
placed by a terminal state penalty in the objective func-
tion has been proposed for stable nonlinear systems
(Chen and Aligower, 1997). A terminal penalty matrix
and prediction horizon which ensure stability are deter-
mined off-line. An NMPC technique in which the predic-
tion horizon is allowed to be a decision variable is
proposed in Mayne (1997).

Another approach to reduce on-line computation is to
transform the NMPC problem into a LMPC problem.
This idea has been pursued by several investigators
(Kurtz and Henson, 1997, Morningred et al., 1992; Nevis-
tic and Morari, 1995). The unconstrained nonlinear sys-
tem is transformed into a linear system using a feedback
linearizing control law. The input constraints are map-
ped into constraints on the manipulated input of the
transformed system, and the resulting constrained linear
system is controlled using LMPC. The primary challenge
associated with this method is mapping of the input
constraints. In practical implementations, the future in-
put constraints must be mapped approximately because
future values of the state vector are unknown. Because
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the predictive control problem is posed in the trans-
formed coordinates, these methods are most accurately
classified as feedback linearizing control techniques in-
stead of NMPC techniques.

5. Process applications

NMPC has been applied to a wide variety of simulated
and experimental process systems. Such studies are criti-
cal for evaluating alternative NMPC formulations and
solution algorithms. The vast majority of application
studies are restricted to small-scale simulated processes.
However, applications to more complex multivariable
processes have been investigated, and additional plant-
wide control studies should appear in the future.
NNMPC has been applied to several experimental pro-
cesses, but studies focusing on larger scale systems are
needed. Perhaps the most exciting development from an
applications perspective is the availability of commercial
NMPC packages which are being applied in the process
industries. Applications of NMPC to simulated, experi-
mental, and commercial processes are reviewed below.

5.1. Simulation studies

Computer simulation represents a very powerful tool
to evaluate the efficacy and limitations of NMPC tech-
niques. Simulation studies often provide the only means
to evaluate closed-loop stability and performance for
situations which are not amenable to theoretical analysis.
However, it is important to emphasize that simulation is
not a substitute for experimental evaluation. Table 1 con-
tains a summary of some representative NMPC simula-
tion studies. For each reference, the table contains the
process considered, the type of model used for controller
design, the size of the control problem (number inputs x
number outputs), and the general type of solution algo-
rithm employed. In some papers, the solution algorithm
is not explained in much detail and the table contains the
most accurate characterization possible given the avail-
able information. Additional NMPC application studies
are discussed in (Bequette, 1991; Meadows and Rawlings.
1997).

Several general trends can be observed from Table 1.
Because of their highly nonlinear behavior, chemical
reactors are the most common application in NMPC
simulation studies. A constant volume reactor with
a single irreversible reaction has become a benchmark
problem because the nonlinear model can exhibit a wide
range of steady-state and dynamic behaviors (Uppal, Ray
and Poore, 1974). Slightly more complex chemical reac-
tor models can exhibit non-minimum phase behavior, as
well as a change in the sign of the steady-state gain. These
type of reactors are very difficult to operate effectively
with conventional linear controllers. Batch, semi-batch,

and continuous reactors have been investigated. NMPC
also has been applied to polymerization reactors, bio-
chemical reactors, crystallizers, distillation columns, and
paper machines.

The most common model form used for NMPC stud-
ies is ordinary differential equations (ODEs) derived
from basic conservation laws. The derivation of such
models is feasible because most of the processes con-
sidered are sufficiently simple for fundamental modeling.
Several empirical model forms, including Volterra mod-
els, polynomial ARMAX models, and neural network
models, also have been investigated. To date, a detailed
comparison of fundamental models and empirical mod-
els for NMPC has not been conducted. Most simulation
studies are restricted to single-input, single-output
(SISO) processes. Although several multivariable control
problems have been investigated, in most studies the
number of input and output variables do not approach
that encountered in typical industrial applications. A no-
table exception is Ricker and Lee (1995), where the
NMPC controller has 10 inputs and 23 outputs.

A wide variety of solution techniques have been inves-
tigated in NMPC simulation studies. Unfortunately,
some papers do not contain a sufficiently detailed de-
scription to allow the solution algorithm to be adequate-
ly characterized. In this case, the solution technique is
classified as a generic nonlinear program (NLP). The
most widely studied methods involve successive lineariz-
ation of the model equations (SL) and simultaneous
model solution and optimization (SIM). NLP techniques
based on sequential solution and optimization (SEQ) do
not appear to be as popular. A case study comparing
these solution techniques is presented in Sistu et al.
(1991).

5.2. Experimental studies

Table 2 contains a summary of experimental NMPC
studies. While the number of papers is surprisingly low, it
is likely that a few additional experimental applications
have appeared in the literature. The processes considered
include two pH neutralization reactors, a fixed-bed
water-gas shift reactor, and a packed distillation column.
It is interesting to note that a wide range of model forms,
including fundamental models with ODEs and partial
differential equations (PDEs) and empirical models
based on the Hammerstein representation and radial
basis function networks, have been utilized. Most of the
studies focus on SISO control problems, with the excep-
tion of Patwardhan and Edgar (1993) where dual com-
position control of a distillation column is considered.
Several solution techniques have been investigated, in-
cluding an off-line method in which a radial basis func-
tion network is trained to emulate the NMPC controller
(Pottmann and Seborg, 1997). While computationally
appealing, this method probably is impractical for
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Table 1
Representative NMPC simulation studies
Reference Process Model Size Solution
Bequette (1990) Biochemical reactor ODE 1x1 SEQ
Brengel and Seider (1989) Biochemical reactor ODE 1x2 SL
Chen and Allgower (1997) Chemical reactor ODE 2x4 NLP
Chen et al. (1995) Chemical reactor ODE 2x1 NLP
Eaton and Rawlings (1990) Batch chemical reactor ODE 1x1 SIM
Batch crystallizer PDE 1x1 SM
Hernandez and Arkun (1990) Chemical reactor Neural network 1x1 SL
Hernandez and Arkun (1993) Chemical reactor Polynomial ARMAX Ix1 SL
Lee and Ricker (1994) Paper machine ODE 2x2 SL
Maner and Doyle (1997) Polymerization reactor Volterra 1x1 NLP
Copolymerization reactor Volterra Ix3 NLP
Maner et al. (1996) Polymerization reactor Volterra 1x1 SL
Polymerization reactor Volterra 2x%2 NLP
Marco et al. {1997) Terpolymerization reactor ODE Ix3 SL
Meadows and Rawlings (1997) Chemical reactor ODE 1x1 SIM
Fluidized bed reactor ODE 1x1 SIM
Ogunnaike et al. (1993) Distillation column Polynomial ARMAX 2x2 SL
Patwardhan et al. (1990) Chemical reactor ODE I x1 SIM
Peterson et al. (1992) Semibatch polymerization
reactor ODE 2x2 SL
Rawlings et al. (1989) Semibatch chemical reactor ODE I1x1 NLP
Ricker and Lee (1995) Chemical reactor/separators ODE 10 x 23 SL
Sistu and Bequette (1996) Chemical reactor ODE 1x1 NLP
Wright et al. (1993) Chemical reactor ODE 1x1 SIM
Zheng (1997) Distillation column ODE 2x2 NLP

NLP = nonlinear program. SEQ = simultaneous method. SIM = simultaneous method, SL = successive linear.

Table 2
NMPC experimental studies

Reference Process Model Size Solution
Patwardhan and Edgar (1993) Distillation column ODE 2x2 SEQ
Pottmann and Seborg (1997} pH neutralization reactor Radial basis function ix1 Off-line
Wright and Edgar (1994) Chemical reactor PDE Ix1 SIM
Zhu et al. (1991) pH neutralization reactor Hammerstein Ix1 NEW

SEQ = simultaneous method, SIM = simultaneous method. NEW = Newton search.

industrial problems where retuning of a large controller

1S necessary.

5.3. Commerical applications

During the past few years, several vendors have intro-
duced commercial nonlinear control products which are
being applied in the process industries. Available prod-
ucts include the NOVA nonlinear controller (Dynamic
Optimization Technology Product, 1996) from Dynamic
Optimization Technology (DOT) Products and the Pro-
cess Perfector (Martin, 1997) from Pavilion Technolo-
gies. Detailed information concerning the nonlinear
control algorithms is not available in the open literature.
However, information in the public domain strongly
indicates that these products are based on NMPC
techology.

The NOVA controller has been installed on several
polyethylene and polypropylene processes worldwide.
Existing applications utilize fundamental models, but
empirical nonlinear models can be accomodated. The
product includes utilities for fundamental model devel-
opment and parameter estimation. It appears that the
NOVA control algorithm is a nonlinear extension of the
IDCOM technique developed for linear process models
(Qin and Badgwell, 1997). The optimization problem
considers both the desired closed-loop behavior and an
economic objective function. Process constraints are
treated as controlled variables. The NOVA optimization
engine is used to solve the resulting NMPC problem. The
controller is tuned by specifying parameters which deter-
mine the desired closed-loop response. According to Dy-
namic Optimization Technology Products (1996), the
controller is capable” of providing high performance
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control even during polymer grade changes in which the
process gain changes by several orders of magnitude.

As of March, 1997, the Process Perfector had been
applied to 15 refining and polymerization processes.
With the exception of a hydrocracker, all the installations
involve SISO or small multivariable control problems.
The technique combines steady-state and dynamic neu-
ral network models. The steady-state model is used for
steady-state optimization and to calculate updated pro-
cess gains for the dynamic model. The solution of the
steady-state optimization problem determines the target
values for the dynamic optimization, similar to the hier-
archical optimization strategy used in linear DMC (Qin
and Badgwell, 1997). The target values and the updated
dynamic model are utilized for dynamic optimization.
According to Martin (1997), the controller is capable of
reducing polymer grade transition times by a factor of
three.

6. Future research directions

During the past decade, considerable process has been
made in the theory and practice of nonlinear model
predictive control (NMPC). NMPC is most appropriate
for constrained multivariable processes which are suffi-
ciently nonlinear that conventional linear control tech-
niques are inadequate. The commercial market for such
a technology 1s large, as exemplified by the recent devel-
opment of NMPC products by several vendors. The
future of NMPC depends on continued development of
effective modeling techniques, alternative problem for-
mulations, efficient solution strategies, and novel process
applications. Below some specific topics which warrant
further investigation by both the academic and industrial
communities are discussed.

6.1. Nonlinear modeling

The NMPC approach assumes the availability of
a suitable nonlinear dynamic model of the controlled
process. It is well known that model development is the
most time consuming activity in linear model predictive
control (LMPC) projects. In most application studies of
NMPC, the nonlinear model is readily obtained due to
the simplicity of the process considered. The nonlinear
modeling problem is considerably more challenging in an
industrial setting due to the large-scale nature of manu-
facturing plants. Consequently, the development of non-
linear modeling tools is of paramount importance to the
continued evolution of NMPC.

The fundamental modeling approach could be en-
hanced by the integration of NMPC with sophisticated
dynamic simulators. This would reduce the time and
effort required to derive fundamental models for large-
scale processes. The utility of the resulting models could

be enhanced by the development of suitable nonlinear
model reduction techniques (Levine and Rouchon, 1991).
Another promising research direction is the development
of low-order modeling strategies which provide a more
reasonable compromise between model complexity and
prediction accuracy (Benallou et al., 1986). More system-
atic techniques for nonlinear model validation also are
needed. An important area for theoretical research is
analysis of the necessary smoothness properties the non-
linear model should possess to be effectively utilized with
various optimization codes. A very important practical
issue is the development of computer-aided tools for
maintaining the resulting nonlinear models.

The empirical modeling approach is promising be-
cause detailed process knowledge is not required and the
model form can be chosen to reduce on-line computa-
tion. The industrial success of LMPC largely is attribu-
table to the development of well established guidelines
for dynamic data collection and analysis. Many theoret-
ical and practical problems must be resolved before em-
pirical nonlinear modeling is viable for large-scale
industrial processes. A particularly important topic is the
design of input sequences which provide sufficient excita-
tion yet are acceptable in industrial situations (Pearson
and Ogunnaike, 1997). A related issue is characterization
of the amount and type of process data required to build
nonlinear empirical models with satisfactory predictive
capability. Another topic for future research is the identi-
fication of nonlinear model structures which are capable
of capturing a wide variety of process behaviors and are
amenable to NMPC optimization (Sriniwas and Arkun,
1997). It may be necessary to perform online model
adaptation when the process deviates significantly from
the operating conditions used for empirical model devel-
opment. This requires the development of recursive para-
meter estimation techniques for nonlinearly parameterized
models (Marino and Tomei, 1993). A very important topic
which has received little attention is the development of
hybrid modeling approaches which allow fundamental
and empirical process knowledge to be integrated.

6.2. Nonlinearity measures

This review is based on the underlying premise that the
potential benefits of nonlinear control are sufficient to
warrant the additional effort required to develop, imple-
ment, and maintain NMPC control systems. In practice,
the assessment of potential benefits is a critical issue
which should be addressed in the initial stages of a con-
trol project. This requires tools for assessing process
nonlinearity. Recently, there has been considerable re-
search on the development of nonlinearity measures.
Initial work focused on characterizing open-loop nonlin-
earity (Allgower and Gilles, 1992; Guay et al., 1995).
The results obtained using these methods can be mislead-
ing because open-loop nonlinearity measures do not
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necessarily provide an accurate assessment of the in-
herent limitations associated with linear control tech-
niques. It is well known that some nonlinear processes
can be optimally controlled with a linear controller
(Stack and Doyle, 1997). This has led to the development
of closed-loop nonlinearity measures which consider per-
formance objectives as well as the controlled process
(Guay et al, 1997; Stack and Doyle, 1997). These
methods yield measures of control-relevant nonlinearity.

The continued development of nonlinearity measure
theory is needed to provide quantitative tools for evalu-
ating the potential benefits of NMPC. An important
problem is the determination of information required to
adequately characterize control-relevant nonlinearity.
Such information may include the nonlinear process
model, the desired operating regime, the performance
objective, and the control structure. Also needed is the
derivation of metrics which provide measures of control-
relevant nonlinearity as well as the potential benefits of
nonlinear control. The ultimate goal is to utilize nonlin-
earity measures to determine the most appropriate con-
trol technology given the process characteristics and the
performance objectives.

6.3. Problem formulation

The NMPC problem involves on-line computation of
a sequence of manipulated inputs which optimize an
objective function and satisfy process constraints. A wide
variety of problem formulations have been proposed.
Most techniques are developed with an emphasis on
computational efficiency, although some methods focus
on stability properties. Comparative studies which reveal
the relative advantages and disadvantages of these differ-
ent formulations would be useful. Of particular interest
would be a characterization of the class of nonlinear
systems which are well suited for a particular formula-
tion.

The development of new NMPC formulations also is
an important topic for future research. There has been
some exciting progress in this direction during the past
few years (see Section 4.4) and further work is needed.
There should be a particular emphasis on formulations
which are suited for large-scale systems. With the excep-
tion of Ricker and Lee (1995), this topic largely has been
ignored by academic researchers. The development of
NMPC techniques for large-scale systems may require
problem formulations which exploit the specific structure
of the nonlinear model. The ultimate goal should be the
development of computationally efficient NMPC tech-
niques with guaranteed stability properties.

6.4. Algorithm development

LMPC techniques require a linear or quadratic pro-
gramming problem to be solved at every sampling period.

The industrial success of LMPC is partially attributable
to the widespread availability of efficient and robust
solution techniques for these types of optimization prob-
lems. On the other hand, NMPC requires on-line solu-
tion of a nonlinear program (NLP) at each execution of
the controller. The solution of such NLP problems can
be very time consuming, especially for large-scale sys-
tems. An additional complication is that the optimization
problem generally is nonconvex because the nonlinear
model equations are posed as constraints. Consequently,
NLP solvers designed for convex problems may converge
to a local minima or even diverge.

Future research should focus on the development of
efficient and reliable algorithms for on-line solution of
NLP problems arising from various NMPC formula-
tions. This will require the development of improved
solution algorithms for nonconvex NLP problems. Stud-
ies which extend the class of nonlinear models and
NMPC formulations which yield convex NLPs also
should be pursued (Sriniwas and Arkun, 1997). Particu-
lar emphasis should be placed on large-scale optimiza-
tion problems arising from plant-wide applications. This
may require a delicate interplay between the nonlinear
model form, the NMPC problem formulation, and
the NLP solution algorithm. Recent work (Maner and
Doyle, 1997) has demonstrated the potential advantages
of such an integrated modeling/optimization approach.
Another important area for future research is the devel-
opment of NLP solution strategies which use available
computing resources more effectively. For instance, the
NLP solver might be stopped near convergence since the
last few iterations usually result in small changes in the
solution. Then the remaining time could be used to
precompute information required for the next execution
of the controller.

6.5. Stability and robusess analysis

Nominal stability results are available for NMPC
when the prediction horizon is infinite or a terminal state
constraint is imposed. Unfortunately, both these condi-
tions are problematic from an implementation perspect-
ive. It is not possible to maintain the stabilizing
properties of NMPC by reformulating the infinite hor-
izon problem as a finite horizon problem with a simple
terminal state penalty in the objective function. The as-
sumption that the state vector can be driven to the origin
in the presence of constraints is known as constrained
null controllability. The terminal state constraint is limit-
ing because it is very difficult to ensure the existence of
a control horizon such that a general nonlinear system is
constrained null controllable (Meadows, 1997). Conse-
quently, it is necessary to derive stabilizing NMPC
formulations which are more suitable for on-line imple-
mentation. Some initial results in this direction are sum-
marized in Section 4.5.
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The primary reason for including feedback in NMPC
is to account for mismatch between the actual plant and
the process model. Simulation and experimental studies
demonstrate that NMPC has some degree of robustness
to modeling errors. Nevertheless, it is important to devel-
op a rigorous theory which allows the robustness of
different NMPC formulations to be analyzed and facilit-
ates the derivation of new formulations with improved
robustness properties. Some interesting robustness re-
sults are presented by Badgwell (1997), Mayne and
Michalska (1991c), and Nicolao et al. (1996). Another
source of plant/model mismatch is attributable to the
actual state variables being replaced by state estimates
obtained from a nonlinear observer. An important prob-
lem is the derivation of conditions under which a stabiliz-
ing NMPC controller and a stable observer can be
combined to yield a stable closed-loop system. Some
promising results for discrete-time NMPC are presented
by Scokaert et al. (1997).

6.6. Process applications

NMPC has been applied to a wide variety of simulated
processes. Most application studies consider benchmark
processes with a small number of input and output vari-
ables. While these problems are useful for evaluating new
NMPC formulations, future studies should focus on
novel process applications and large-scale systems. In
particular, there is a need to develop NMPC formula-
tions which are amenable to real-time implementation on
large-scale processes. Some interesting results in this di-
rection are presented in Ricker and Lee (1995), and fur-
ther advances would be facilitated by the development of
new industrial challenge problems. In applications where
only particular process units are strongly nonlinear, it
may be unnecessary to apply NMPC to the entire plant.
This motivates the development of theoretical tools and
practical guidelines which facilitate integration of
NMPC and conventional linear control technologies.
The number of experimental applications of NMPC is
surprisingly low. More experimental studies are needed
to obtain realistic comparisons of the relative perfor-
mance of NMPC and conventional linear control tech-
niques.

Commercial application of NMPC requires the devel-
opment of software tools that provide integrated dy-
namic modeling and real-time optimization capabilities.
Several vendors currently offer such software products,
and 1t is likely that process economics will spur the
development of new products. Also needed are software
support tools for long-term maintenance of nonlinear
models and controllers. This toolkit would enable the
control engineer to analyze model accuracy and evaluate
closed-loop performance. The deployment of NMPC
technology would be advanced by establishing hardware
and software standards. This would allow components

from different products to be combined to achieve the
best solution for a particular application.
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