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An input-output linearization strategy for constrained nonlinear processes is proposed. The system may
have constraints on both the manipulated input and the controlled output. The nonlinear control system
is comprised of: (i) an input-output linearizing controller that compensates for processes nonlinearities;
(11) a constraint mapping algorithm that transforms the original input constraints into constraints on the
manipulated input of the feedback linearized system; (iii) a linear model predictive controller that regu-
lates the resulting constrained linear system; and (iv) a disturbance model that ensures offset-free setpoint
tracking. As a result of these features, the approach combines the computational simplicity of input-
output linearization and the constraint handling capability of model predictive control. Simulation results
for a continuous stirred tank reactor demonstrate the superior performance of the proposed strategy as
compared to conventional input-output linearizing control and model predictive control techniques.
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chemical reactor control

Many chemical processes require high performance con-
trol strategies due to increased demands on product
quality, productivity, and environmental impact. How-
ever, most controller design techniques are based on
linear models that do not account for process nonlin-
earities. For strongly nonlinear processes, significantly
improved performance can be expected if a more accu-
rate nonlinear model 1s employed directly in the con-
troller design. In the past decade, a variety of nonlinear
controller design strategies have been proposed. Non-
linear model predictive control and input-output
linearizing control have emerged as the most widely
studied design techniques for chemical process
applications.

Nonlinear model predictive control (NMPC) is an
optimization-based strategy in which a nonlinear
process model 1s used to predict the effect of future
manipulated input moves on future values of the con-
trolled outputs'. At each time step, a sequence of input
moves is calculated by solving an open-loop optimal
control problem. A feedback controller is obtained by
implementing only the first calculated input and resolv-
ing the optimization problem at the next sampling
instant using new process measurements. NMPC offers
many of the appealing features of linear model predic-
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tive control, including nominal stability in the presence
of input and output constraints®’.

On the other hand, input-output linearizing control
(IOLC) is an analytical design approach which aims to
reduce the original nonlinear control problem to a
simpler linear control problem®!°. The nonlinear con-
trol system is designed using a two-step procedire.
First, a nonlinear process model is used to synthesize a
nonlinear state feedback controller that linearizes the
map between a ‘new’ manipulated input and the con-
trolled output. In the second step, a linear pole place-
ment controller is designed for the feedback linear:zed
system. As compared to NMPC, [OLC offers sevzral
important advantages including a well defined setpoint
response, transparent controller tuning, and low com-
putational requirements’. However, conventional feed-
back linearization techniques do not have constraint
handling capabilities'"”. As a result, linearizing con-
trollers often are tuned to avoid input constraints,
thereby yielding unnecessarily poor performance”.

In this paper, an input-output linearization straregy
for constrained nonlinear processes is presented. The
linearizing controller is designed in the usual manne- by
neglecting constraints on input and output variables. At
each sampling instant, the IOLC law and the current
state measurement are used to map the original input
constraints into constraints on the manipulated input of
the feedback linearized system. This transformation
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yields a finear dynamic system with constant output
constraints and time-varying input constraints. The con-
straints are handled explicitly by designing a linear
model predictive controller for the constrained linear
system. Thus, the proposed strategy combines the bene-
fits of the feedback linearization and model predictive
control approaches.

The remainder of the paper is organized as follows.
First, feedback linearizing control strategies for con-
strained nonlinear systems are reviewed. Then, the dele-
terious effects of process constraints on conventional
IOLC controllers are demonstrated using a simple
chemical reactor model. The input—output linearization
strategy for constrained systems is then presented. The
reactor model is then used to compare the proposed
strategy with conventional IOLC and model predictive
control techniques. Finally, a summary and conclu-
sions are presented.

Feedback linearization strategies for
constrained systems

Many processes exhibit significant nonlinear behavior
and are subject to constraints on input and/or output
variables. Consequently, controller design for con-
strained nonlinear systems is a problem of considerable
theoretical and practical importance. Recent research
has focused on feedback stabilization of constrained lin-
ear systems; a variety of controller design and analysis
tools are now available!*!S, However, few constrained
control techniques have been proposed for nonlinear
systems. Most of the available design methods are
based on feedback linearization and only address input
constraints.

Kapoor and Daoutidis'® present a controller design
strategy for unstable nonlinear systems that are state-
space linearizable. The method is based on the con-
struction of invariant sets in which closed-loop stability
is guaranteed. Kendi and Doyle'” propose a nonlinear
anti-windup technique for constrained multivariable
systems that can be input-output decoupled. The con-
troller design utilizes an anti-windup scheme developed
for constrained linear systems. An alternative anti-
windup strategy is proposed by Soroush and Kravaris'®.
Calvet and Arkun!® present a state-space linearization
technique based on the internal model control structure.
Possible mismatch between the process and model out-
puts is addressed by mapping the actual input con-
straint into a time-varying constraint on the input of the
feedback linearized system.

Lee and Hedrick® present an input-output lineariza-
tion technique based on minimizing an objective func-
tion that penalizes excessive manipulated input moves.
An adaptive scheme in which the tuning parameters of
the linearizing controller are adjusted on-line such that
input constraints are avoided is proposed by Zhou
et al.?' Belchen and Sandrib? present a linearization
strategy in which less important tracking objectives are
sacrificed when inputs become saturated. The major

disadvantage of these constrained control techniques is
that they only provide indirect compensation for input
constraints and cannot address output constraints
whatsoever.

An alternative strategy is to map the input con-
straints into corresponding constraints on the feedsack
linearized system and then design a model predictive
controller for the constrained linear system. This
approach has been pursued independently by Nevistic
and co-workers? and ourselves”. We believe tha: the
control strategy presented in this paper provides several
important advantages over the method developed by
Nevistic and co-workers. In particular, the proposed
technique offers:

1. A novel constraint mapping procedure that is com-
putationally efficient and effective.

2. Explicit handling of output constraints.

3. A systematic predictive controller design strategy
for the unstable, constrained linear system that
results from input-output linearization.

4. A novel disturbance modeling technique that
ensures offset-free setpoint tracking.

Input—output linearization for
unconstrained systems

Controller design

We briefly outline the IOLC design procedure for
unconstrained systems; more detailed descriptions are
available elsewhere®'%. The nonlinear process model has
the form,

X=f(x) + g(x)u )
y = h(x)

where x is an n-dimensional vector of state variables,
and u and y are the manipulated input and controlled
output, respectively. We assume that the state vector is
measured or estimated from available measurements.
The Lie derivative of the scalar field A(x) with respect to
the vector field f (x) is defined as:

oh(x)
ox

Lih(x) = Jf(x) @

Higher-order Lie derivatives are defined recursively:

c?L/}' Yh(x)

Lyh(x) = S(x) &)

&

The nonlinear system (1) has relative degree r at the
point x; if:

1. Lgth(x) = 0 for all x in a neighborhood of x, and
forall k <r-1.
2. LL;'h(xp) # 0.
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We assume that the relative degree is well defined
throughout the region of operation.

The nonlinear state feedback control law that pro-
vides input—output linearization can be written as

Ly Lih(x) @
LI 'h(x)

where v is the manipulated input for the feedback lin-
earized system. Under this feedback law, there exists a
nonlinear coordinate transformation [&T, nT]" = @(x)
such that (1) can be represented as a partially linear sys-
tem of the form,

E=AE+ By
n=q&n (5)
y=Cg

where the triplet (4,B,C) is in Brunovsky canonical
form:

010 .0 0
00 1 0 0

A=|i 1 ,B=|:|, C=[10...00] (6)
000 .1 0

o
]
]
<o
—

We assume that the (n-r)-dimensional nonlinear sub-
system (the zero dynamicsy in (5) is bounded-input,
bounded-output stable with respect to the & variables as
inputs. This assumption ensures that the nonlinear sys-
tem (1) is stabilized if the r-dimensional linear sub-
system in (5) is stabilized.

In the absence of constraints, the linear subsystem
can be stabilized using a pole-placement controller with
integral action,

v:[ao—a,...—a,][g (7

z = ySp — }:

where z is the integral state, y,, is the setpoint, and the
oy are controller tuning parameters chosen such that
the polynomial ' + as"+ ... + o5 + o is Hurwitz.
In the original coordinates:

jod

h(:x) ®)

v ={a0 —-a,...-a, ]

L h(x)

Effect of process constraints

We demonstrate that process constraints can severely
degrade the performance of a conventional IOLC con-
troller. Consider an irreversible, first-order chemical
reaction A — B which occurs in a constant volume,
continuous stirred tank reactor. The process model can
be written as*:

. E
Cy = g (CA/ ~Cy)—ky exp(w EJCA

V
F_ 4 (-AH) £ )
T _V(T’ T)+——pCp koexp( RT)CA
$ (T T)
VpC,

The nominal conditions in Table [ correspond tc an
unstable operating point. The manipulated input and
controlled output are the coolant temperature (7)
and reactor temperature (7), respectively. Figure |
shows the open-loop temperature response for £ 5 K
step changes in the coolant temperature. The CSTR
clearly exhibits highly nonlinear behavior in this oper-
ating regime.

By placing the reactor model (9) in standard form (1),
it is easy to show that the relative degree r = 1. There-
fore, the JOLC law has the form (4) where:

~AH E
th)z%{ﬂ—7)+(mj)@em{4i?}a
P

_ u4 T (10)
VpC,

U4

VpC

P

=0

L.h(x) =

In this case, the linear pole-placement controller (8) is
v = opztoy(T —T), where T is the nominal reactor tem-
perature. The controller tuning parameters are chosen
as o, = 8 and ¢ = 16, which roughly corresponds to a
closed-loop time constant of 0.25 min. This value is
approximately one half the open-loop time constant. for
the -5 K step change shown in Figure 1.

Figures 2 and 3 show the performance of the IOLC
controller with and without input constraints. In the

Table 1 Nominal operating conditions for the CSTR

Variable Value Variable Value

q 100 V/min £ 8750 K
Car 1 mol/l k, 7.2 X 10" mrin'!
T; 350K U4 5 X 10* J/m nK
V 100 1 T. 300 K

P 1000 g/1 C, 0.5 mol/l

C 0.239 J/gK T 350 K

(CAH) 5 % 10* Jimol
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Figure 1 Open-loop response for coolant temperature changes

constrained case, the coolant temperature is bounded
as 280 K < 7, < 380 K. Figure 2 shows the effect of
constraints on servo performance for a +25 K change in
the temperature setpoint. The IOLC controller
yields the prescribed setpoint response if 7. is uncon-
strained. However, controller performance is degraded
significantly in the constrained case due to the
input being ‘clipped’ by the lower constraint. Figure 3
shows the effect of constraints on regulatory
performance for a +35 K step change in the feed
temperature (7). If 7. is unconstrained, the IOLC
controller provides outstanding disturbance rejection.
By contrast, the closed-loop system is unstable in the
constrained case. The instability is attributable to a
slight deviation of the input from its initial uncon-
strained trajectory. These results demonstrate that con-
ventional IOLC controllers can be extremely sensitive to
input constraints.

Input—output linearization for
constrained systems

Motivated by the results presented above, we propose
an input-output linearization strategy for constrained
nonlinear systems. The basic idea is to map the actual
input constraints into constraints on the manipulated
input of the feedback linearized system. This transfor-
mation is performed at each sampling instant using the
linearizing control law and the current state variables.
The linear part of the input-output linearized system is
discretized to yield a discrete-time linear model subject
to time-varying input constraints and constant output

Time (min)

constraints. This system is regulated with a linear model
predictive controller (LMPC) with explicit constraint
handling capability. The resuiting control system is zug-
mented with a disturbance model that ensures offset-
free tracking.

At this point, it is important to note that the presence
of constraints precludes feedback linearization in the
traditional sense. The constraint mapping strategy
yields a constrained linear system, which necessarily
leads to a nonlinear control problem. However, the /in-
ear MPC design is much simpler than the nonlirear
MPC design that would be required for the original
constrained nonlinear system. In addition, exact
input—output linearization is not actually achieved
because the linearizing controller is discretized?. How-
ever, the discretized control law should provide
‘approximate’ linearization in most cases of practical
interest. Therefore, we neglect the effects of discretiza-
tion.

Input constraint mapping

The nonlinear process is assumed to have the following
input and output constraints:

Au . < Au < Au

Su<su min <

mimn —

u 'min < y < Ymax

(11)

max? max?*

The objective is to transform these constraints into
constraints on the feedback linearized system (5). First,
the linear subsystem is discretized to facilitate the sub-
sequent LMPC design. For a sampling period 7, exact
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Figure 2 IOLC for a setpoint change
discretization yields?:
Stk + 1) = A4,5(k) + By(k) (12)

yik) = Cg(k)

where the r X r matrix 4,andr X 1 vector B, have the
form:

7]
I A S A o
r—2 r—1
Ad:(.) 1 T o T. , B, = r
Do : - : r—1 (13)
0 0 O 1 :
L T

Because the linear subsystem in (5) is in Brunovsky
canonical form, the pair (4, B,) is controllable, but the

Time (min)

eigenvalues of A, are on the unit circle. We have inves-
tigated two ways of handling these unstable dynamics.
In the first method, a linear state feedback controller is
designed to stabilize the system prior to LMPC design.
This method allows a comparatively simple LMPC
technique for stable systems'* to be employed. The
stabilizing control law has the form,

v(k) = K&(K) + w(k) (14)

where the feedback gain K is chosen such that the
matrix 4, = 4, +B,K has all its eigenvalues inside
the unit circle. Consequently, the resulting system,

Ek + 1) = A&(k) + Bw(k) (15)
yiky = CE(k)

is stable and the new input w(k) can be used in the
LMPC design®. A significant disadvantage of this tzch-
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Figure 3 1OLC for a feed temperature disturbance

nique is that closed-loop performance depends on the
eiganvalues of 4, and an appropriate choice cannot be
determined « priori. In the technique pursued here, the
unstable model (12) is employed directly in the LMPC
design.

The next step is to map the constraints on the origi-
nal nonlinear system (1) into constraints on the dis-
cretized linear system (12). The output constraints for
the two systems are identical since the output y is not
transformed as part of the TOLC design. By contrast,
the constraints on the input ¥ must be mapped into con-
straints on the new input v. This transformation must
be performed at each sampling instant because the map-
ping is state dependent. Moreover, the transformation
must be accomplished over the entire control horizon of
the LMPC controller. Thus, at each time step k the
objective is to find constraints of the form,

vmin(k +J|k) < V(k +j i k) < vmax(k +j | k)7
0<jsN-1

(16)

where: v(k + j| k) is the value of the input v(k + j) com-
puted at time k; v, (k + j k) and v, (k + j| k) are the
constraints v, (k +j) and v, (k + j), respectively, com-
puted at time k; and N is the control horizon of the
LMPC controller. Rate-of-change constraints on v are
not shown explicitly because they can be converted into
absolute constraints (shown below).

The input constraint mapping is performed using the
IOLC law (4) and the current state measurement (k).
The state-dependent relation between wu(k) and v(k)
follows from (4):

v(k) = Lph[x(k)] + LgL’f’]h[x(k)]u(k) amn
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This mapping can be written as: v(k) = b[x(k)] +
a[x(k)Ju(k). In the ideal case, the transformed con-
straints at time k are determined by solving the follow-
ing optimization problem

b (k47 1K) = min, blx(k+ /1K)

. . . (18)
+alx(k+ jlk)utk+jlk), 0Sj<SN-1

vmax

(k+jlk)= max blx(k +j | k)]

k+j
+alx(k+j | K)u(k+j k), 0<Sj<N-1

subject to the constraints:

Unin < u(k + .] | k) < Unmax

At + ulk + j = 11k) Su (k + jlk) (19)
< Aumax + u(k +j_1 lk)

In (18)—(19), u(k+j| k) represents the input u(k+j) com-
puted at time &, and x(k+j| k) represents the state
x(f+j) computed at time k.

The obvious problem with the ideal mapping tech-
nique is that estimates of future values of the input and
state variables are not available until the LMPC prob-
lem is solved, and the LMPC problem cannot be solved
until the input constraints are specified. As a result, the
solution of the ideal optimization problem requires a
nonlinear programming strategy?> or an iterative
scheme?*. Both techniques effectively eliminate the com-
putational advantage of the proposed approach as
compared to nonlinear MPC. Because exact mapping of
future input constraints is impractical, it is necessary
to approximate the constraints vy, (k + j|k) and
Vmax(k + j | k) for j 2 1. Two approximate mapping tech-
niques are discussed below.

Constant constraint technique. The most straightforward
way to handle the constraint mapping problem is
to simply extend the first input constraint over the
entire control horizon®. The resulting optimization
problem is

Vin (K + J 1 k) = vppin (K) = "}}3 blx (k)]

(20)
+a[x(k)u(k), 0<j<N-1

Vmax (K + 1 k) = vy (k) = max blx(k)]
+a[x(k)u(k), 0<j<N-1

where: Uy, S u(k) < up,, Aug, + ulk — 1) < ulk) < Aupy,
+ u(k — 1). Note that this problem is trivial to solve
since x(k) is known and the objective function is affine
in u(k). An important property of this method is that
the first pair of constraints, v, (k|k) and v, (k| k),
map exactly to the actual input constraints (11). As a
result, the implemented input,

v(k) — L h[x(k)]

1 @
L, L hx (k)]

u(k) =

is guaranteed to satisfy the actual constraints. On the
other hand, the constraints v, (k+/| k) and v, (k+j | k)
may not lead to inputs v(k+j| k) that satisfy the actual
constraints. Although these inputs are not implemented,
this property is a potential disadvantage of the constant
mapping technique since incorrect future constraints
may lead to implemented control moves that are un-
necessarily conservative or aggressive.

Variable constraint technique. The future input con-
straints can be calculated if an estimate of the future
inputs is available. However, computationally intersive
nonlinear programming or iterative solution strategies
are required if future inputs calculated at the current
sampling time are utilized for constraint mapping.
A much simpler approach is to use inputs calculated at
the /ast sampling time to determine future constraints at
the current sampling time. This method is outlined
below.

As shown in the next section, solution of the LMPC
problem at time k-1 yields the input sequence

Vik-11k=1)=[v(k~11k-1) vk|k-1)...
Wk+N-21k-1)] (22)

The first input v(k — 1 |k — 1) is used to calculate the
implemented input u(k — 1). We use the remaining
inputs as an estimate of the control sequence at the cur-
rent sampling time:

V(k\k—l)=[v(k\k—1) vk+11k-1)...

Wk+N=21k-1) »v,]" (23)

where the value v, is arbitrary since it is not actually
utilized. The current measurement x(k) is used to calcu-
late the transformed state variables §(k) and n(k) via the
nonlinear change of coordinates ®(x). The normal form
(5) is integrated with the piecewise constant input
sequence V(k|k-1) to yield predicted values of the
transformed state variables

Z(k|k=1)=[ET(k |k -1) ET(k+1]k-1) ...
ET(k+N — 1k-1)] T (24)

Nk |k = 1) = [Tk | k=1) nT(k+1|k=1) ...
kAN = 1 k- 1)]7

where: E(k | k - 1) = &(k), n(k | kK - 1) = n(k). 1t is impor-
tant to note that the second time index denotes that the
predictions are based on the input sequence at time
k — 1, even though the current measurement x(k) is
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used. The state sequences and the inverse transforma-
tion @1(&m) are used to compute future values of the
actual state vector:

Xklk~1) =[xk k-1 xk+1k-1)...
xT(k + N 1K) (25)

If the system is subject to rate-of-change constraints,
predicted values of the actual input sequence are
required to calculate the constraints (19). By utilizing
the vectors X(k |k — 1) and V(k | k — 1) in the discretized
version of the IOLC control law (4), the predicted input
vector can be computed as

Utk |k 1) = [ulk |k~ 1) ulk+1]k-1) ...
uk + N=21k-1) uJ (26)

where the value u, is arbritary. The rate-of-change con-
straints are handled by substituting these estimates for
u(k + j - 11k) in (19). The optimization problem (18) is
solved by substituting the predicted state variables x(k
+j 1k —1) in place of x(k + j| k). The solution yields the
transformed constraints:

Vmin(k |k - 1) = [Vmin(k ! k - 1) vmin(k +1 |k - 1)
Vainlk + N = 11k = D] (27)

Vmax(klk - 1) = [vmax(k|k - 1) vmax(k +1 1k - 1)
vmax(k +N-1 lk - 1)]T

These variable constraints are used in the LMPC
design in place of the constant constraints v_, (k) and
Vmax(k). The procedure is repeated at the next time step
with the input sequence FV(k | k) and the measurement
x(k + 1). The algorithm is initialized by using the
constant constraint mapping scheme during the first
iteration.

Note that the first set of constraints, v, (k | k — 1) and
Voax(k | & — 1), map exactly to the actual input con-
straints since they are calculated using the current state
measurement. Therefore, the implemented input (21)
necessarily satisfies the actual constraints. As compared
to the constant mapping technique, the major advan-
tage of this method is that calculated constraints are
more likely to agree with the actual constraints. As a
result, the control system should exhibit improved per-
form-ance and robustness.

Linear model predictive controller design

The LMPC design is based on the linear model
Sk +j + 11k) = ALk + k) + Bytk +j k) (28)
vk + jlk) = CSk + jlk)
subject to the constraints:
Vin (K + ] 1K) S vk + J1K) S Voo (k + j 1 k) 29)
min < YK+ J 1K) € Y

It is important to reiterate that the input constraints
vary with respect to the sampling time ., and they also
vary over the control horizon if the variable constraint
mapping technique is employed. The linear mode. is
used by the LMPC controller to predict the effects of
future control moves on future outputs. To obtain
improved predictions in the presence of plant/medel
mismatch, at each time step the linear model is initial-
ized with the current plant state as follows:

S(k | k) = {h[x(k)] Lh[x(k)]... L’f’lh[x(k)] ! (30)

Recall that the matrix 4, is unstable because all its
eigenvalues are located at z = 1. Thus, we utilize an iafi-
nite horizon LMPC design technique specifically devel-
oped for unstable systems®. The open-loop optimal
control problem can be expressed as

min (&G + 1K) - £ TTOLEk+ 1K)~ &,]

Vkik) 5
+rivlk+ k) —v, ]+ s[v(k+j| k)
~v(k+j-11k) (31)

where: & and v, are target values for £ and v, respec-
tively; r > 0 and s > 0 are scalar tuning parameters; znd
Q is a positive semidefinite tuning matrix. The decision
vector is defined as: V(klk) = [v(klk), v(k + 1|k),...,v(i +
N - 1JK)]". To obtain a finite set of decision variables,
inputs beyond the control horizon are set equal to the
target value: v(k +j| k) = v, j> N.

A necessary condition for the optimization problem
to have a solution is that &(k) converges to &. This
requires that the unstable modes are driven to their
steady-state values by the end of the control horizon.
Because all the eigenvalues of 4, are on the unit circle,
the following equality constraint must be satisfied at
each k: &k + N/ k) =&. Otherwise, the system evolves
in open-loop with an initial condition &k + Nk) # &
and the state variables will not converge to their target
values. Thus, the optimization must be solved subject
to the following constraints:

Viin (k +_/|k) s V(k +j‘k) < vmax(k +]1k)
Ymin < Cg(k +j ‘ k) < Ymax (32)
Sk + N|k) = ¢

The targets & and v, are calculated from the steady-state
form of (28) under the condition that y = y_, where y,,
is the setpoint. Under nominal conditions, it is easy to
show that:
E=[rp0.. 0T, %=0 (33)
The target values must lie within the feasible reg.on
defined by the input and output constraints for the

LMPC problem to have a solution. As discussed in the
next section, the targets can be shifted to eliminate
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steady-state offset caused by plant/model mismatch.
The infinite horizon LMPC problem (31) can be
written as a finite horizon problem'*

min s[w(k+ N -1[k)-vJ + Nf[@(h jlk)

Vikik) 20
~ETOIECk+ j 1 k) =&+ r[vk+ jk)-vT
+s[v(k+jlk)—wk+j—1]k)] (34)

subject to the constraints (32). This finite horizon
problem can be manipulated to yield the following qua-
dratic program for the input sequence V(k) = V(k | k),

min VI(OHY (k) + 2V T (k)[GE(k) - Fy(k -1)] (35)

The quadratic program is solved subject to following
constraints:

DV(k) < d\(k)S(k) + di(k) (36)

EV(k) = e &(k)

The construction of H, G, F, D, d,, d,, E, and ¢, is
discussed elsewhere!4. In the present case, it is important
to note that ¢, and d, are functions of time. A state
feedback control law is obtained by implementing
only the first calculated input v(k) = v(k | k), and resolv-
ing the problem at the next sampling time with the new
measurement x(k + 1). The actual input wu(k) is
calculated from v(k) as in (21).

There exists a control horizon N such that the quad-
ratic program (35)—(36) is feasible if the linear system is
constrained stabilizable. For a given value of N and
initial condition &(k), feasibility can be checked with a
linear program™®. If the constraints are constant, feasi-
bility at k& = 0 implies feasibility at all future times. This
property no longer holds if input constraints vary
with time, in which case constrained stabilizability has
to be checked at each time step. We address this prob-
lem in the following way. If the LMPC problem is
infeasible, constraints are dropped on the last input in
the control horizon, v(k + N - 1 | k), and the problem is
resolved. If the problem remains infeasible, constraints
are dropped on the last two inputs, vk + N — 21k)
and v(k + N — 1 | k). The process is continued until fea-
sibility is achieved. Also, the variable constraint map-
ping strategy is modified so unconstrained inputs are
not used for constraint prediction. In this case, we
extend the last constrained input over the control hori-
zon to obtain the input sequence V(k|k — 1) It is
important to note that output constraints also can be
relaxed to ensure that the optimization problem is
feasible™.

Disturbance model

The LMPC controller generates a proportional state
feedback. As a result, offset will generally occur in the
presence of plant/model mismatch. Offset is eliminated
by introducing a disturbance model that shifts the tar-
get values v, and & in the LMPC optimization protlem
(34). Available disturbance modeling techniques focus
on the output feedback case'*?®. A method that ensures
offset-free performance in the state feedback case is pre-
sented below.

The disturbance model is obtained by augmenting
(12) with a g-dimensional disturbance vector d(k):

Ek + 1) = AE(K) + By(k) + Gd(k)
dik + 1) = Pd(k) (37)

Yalk) = &(k)

The vector of measured outputs y,, is the entire state
vector & since state feedback is assumed. Recall that
&(k) is determined from the actual state variables x(k) as
in (30). The first step is to use the augmented mod=l to
build an observer that provides an estimate of the dis-
turbance vector d. It is easy to show that the augmented
model is observable if ¢ = r and P = G = I. The
observer has the form

Ek + 1) = A,E(k) + Bplk) + d(k) + L, [&K) ~ &k
dk + 1) = d(k) + L{Ek) — &) (38)

where & and d are estimates of & and d, respectively,
and L, and L, are r X r observer gain matrices. If the
estimation error is defined as

d(k) - d(k)

the observer error dynamics can be written as:

AL T
-L, I

e(k+1) = { }e(k) = Pe(k) (40)

Because the disturbance model is observable, the eigen-
values of the matrix £ can be placed arbitrarily via
appropriate choice of the gains L, and L,.

The disturbance estimate is used to shift the target
values v, and £ in the LMPC objective function. By
appending the current estimate d(k) to the state equa-
tions, the linear model (28) has the following represen-
tation at steady-state:

1~ Az/ Bd Sts — d(k) 4D
C 0 fiv, Vsp
This set of linear algebraic equations is solved fcr the
targets £ and v; a unique solution always exists. Fol-
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lowing the proof of Rawlings et al.'%, it can be shown A block diagram of the proposed nonlinear control
that the proposed scheme eliminates offset. system is shown in Figure 4. The state vector is sampled
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Figure 5 Comparison of constraint mapping techniques for a setpoint change
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to yield the discrete value x(k) used by the constraint
mapping scheme, the disturbance model, the LMPC
controller, and the IOLC controller. The disturbance
model generates shifted targets & (k) and v (k) from x(k),
the setpoint y,,(k), and the transformed input v(k). The
LMPC controller computes v(k) using the setpoint, the
sampled state variables, the shifted targets, and the
transformed constraints v (k). The IOLC controller uses
v(k) to calculate the discrete input u(k). The continuous
input u(#) injected into the nonlinear plant is obtained
by applying a zero-order hold to u(k).

Simulation study

Comparison of constraint mapping techniques

First, the two constraint mapping strategies are com-
pared using the CSTR model described in the section on

‘Effect of process constraints’. The CSTR is operated at
the unstable operating point shown in Table 1, and the
manipulated input is constrained as: 280 K < T, < 380
K. Output constraints are not considered in this
example. The IOLC controller is designed as in the sec-
tion on ‘Effect of process constraints’. Because the rela-
tive degree r = 1, the feedback linearized system has the
following form after discretization,

Ek + 1) = &k) + Tv(k) (42)
ylk) = §(k)

where the sampling period 7 = 0.05 min. The LMPC
controller is designed with a control horizon N = 10,
which provides an effective control horizon NT = 0.5
min. The remaining tuning parameters ¢ = 2, r = 1, and
s = 1 are determined by trial and error. The target val-
ues are calculated as in the section ‘Disturbance model’
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with the two observer poles placed at 0.8. The only dif-
ference between the two controllers compared is the
method used to transform the input constraints into the
feedback linearized space:

® Constant technique:
® Variable technique:

vmin(k) < V(k +J|k) < Vmax(k)
Vmilk + Jlk) < vk + jlk) <
Vmarlk + jIK)

In each case, the constraint mapping is performed as in
the section on ‘Input constraint mapping’.

The two constraint mapping strategies are compared
in Figures 5 and 6 for a +25 K step change in the
temperature setpoint. The controller which uses input
constraints that are constant over the control horizon
produces a large overshoot and aggressive control
moves. By contrast, the controller which employs con-
straints that vary over the control horizon yields signifi-

cantly improved setpoint tracking and more conserva-
tive control moves. A possible explanation for this
behavior is shown in Figure 6, where the coolant “em-
perature constraints generated by each controller are
compared to the actual values at two particular time
steps. The controller values are determined by mapping
the constraints on the transformed input v to constraints
on 7. using the actual state values that occur in the
future. At ¢ = 0.5 min, the constant technique produces
extremely poor constraint predictions that appear to
significantly degrade closed-loop performance (see Fig-
ure 5). By contrast, the variable method yields con-
straints that are almost identical to the actual values.
The difference is less pronounced at + = 1 min since the
state variables are changing more slowly, but the same
general trend is observed. Based on these results we
only consider the variable mapping technique in the
sequel.



Input-output linearizing control: M. J. Kurtz and M. A. Henson 15

390 ,

! T
. —_1OL-MPC
fod - - - SLMPC
80 N LMPC i
< F R e A S -
©
= 2"
g 370f |
& 7] ‘:'
=4 4
4 .
& S
,/ S
0L |
] ."
]
1
1
i
e
350 | | |
0 1 . L )
Time (min)
340 ]
L]
: — IOL-MPC
330 - - - SLMPC -
< N s LMPC
S o
& 320 1 o |
= ! i Y
g e FA
Q ! : L
[~ h ; ‘ .
g v L ryeaszziiiin .
< 300 .
S -
&)
290 |
280k Lo~ A |
1 I \
0 1 . . |

Time (min)

Figure 8

Comparison with model predictive control

We now compare the proposed control strategy to linear
and nonlinear MPC techniques. The proposed controller
employs the variable constraint mapping scheme and is
tuned as before; it is called ‘TOL-MPC’ in the sequel. The
LMPC design is based on a linear model that is obtained
by linearizing (via Taylor series expansion) the CSTR
mode] at the unstable operating point in Table I; this
controller is called ‘LMPC.” The nonlinear MPC
technique utilizes a linear model that is obtained by suc-
cessively linearizing the CSTR model at the current
operating point®; this controller is called ‘SLMPC.” Note
that conventional nonlinear MPC is not considered
because we are interested in comparing control strategies
that have comparable computational requirements.

The MPC controllers are designed by discretizing the
respective linear model with a sampling period T = 0.05
min and solving an infinite horizon optimal control
problem similar to that in the section on ‘Linear model

I0L-MPC, LMPC, and SMPC for a positive setpoint change

predictive controller design’. Each controller utilizss a
disturbance model with the four observer poles placed
at 0.5, 0.5, 0.6, and 0.6. The following controller tuning
parameters are chosen by trial-and-error to provide a
fast, smooth response to a positive setpoint change:

® LMPC:N=16g=1,r=4 s5=1
® SLMPC:N=16,g=4,r=03,5=023.

It is interesting to note that the three controllers require
different values of the tuning parameters.

The performance of the three controllers for a +35 K
disturbance in the feed temperature (77) is shown in
Figure 7. As before, the input is constrained as:
280 K < T, < 380 K. LMPC yields a very sluggish
response and unnecessarily large control mcves.
SLMPC provides significantly improved disturbance
rejection, but generates oscillatory control moves.
IOL-MPC yields an output response that is very similar
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Figure 9 IOL-MPC, LMPC, and SMPC for a negative setpoint change

to that produced by SLMPC, but with much smoother
control moves. In Figure 8, the three controllers are
compared for a +25 K change in the temperature set-
point. LMPC yields poor setpoint tracking as the out-
put oscillates and overshoots the setpoint. SLMPC
provides improved servo performance with less aggres-
sive control moves. IOL-MPC yields the best setpoint
response yet produces the most conservative control
moves.

The controllers are compared for a -25 K setpoint
change in Figure 9. LMPC produces a very sluggish
response since the linear model used is very inaccurate
at the new setpoint. SLMPC had to be detuned with r
=5 = 0.5 to obtain a stable closed-loop response. Even
with detuning, it is unable to attain the new setpoint
and the control moves are extremely erratic. This
behavior is attributable to the successive linearization
repeatedly switching between stable and unstable
models. Improved performance cannot be obtained

unless the controller is detuned further. By contrast,
IOL-MPC yields a fast, smooth setpoint response with
little control effort.

Summary and conclusions

An input-output linearizing control strategy for con-
strained nonlinear processes has been developed and
evaluated. The control system is comprised of: (i) an
input-output linearizing controller that accounts for
process nonlinearities; (ii) a constraint mapping scheme
that transforms the actual input constraints into input
constraints on the feedback linearized system; (iii) a lin-
ear model predictive controller that provides explicit
compensation for input and output constraints; and
(iv) a disturbance model that ensures offset-free pe:for-
mance. The control strategy retains the computational
simplicity of input—output linearizing control while pro-
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viding the constraint handling capability of model
predictive control. Simulation results for a continuous
stirred tank reactor show that the proposed method
provides significantly improved performance as com-
pared to conventional input—output linearizing control
and model predictive control based on local and succes-
sive model linearization. Our future research efforts will
focus on nominal stability analysis and additional appli-
cations of the proposed control strategy.
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