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A feedback linearizing control strategy for discrete-time nonlinear systems subject
to input constraints is proposed. The control system comprises: (i) a feedback
linearizing controller; ( ii) a constraint mapping algorithm that transforms the
actual input constraints into constraints on the feedback linearized system; and (iii)
a linear model predictive controller that regulates the resulting constrained linear
system. Closed-loop stability analysis is a challenging problem because the trans-
formed constraints are state dependent. Su� cient conditions for asymptotic stab-
ility are presented for fully and partially feedback linearizable systems. As part of
the analysis, a new stability result for unconstrained discrete-time nonlinear
systems which parallels a well-known continuous-time result is derived.

1. Introduction

Many nonlinear chemical processes are subject to input constraints that are
encountered during routine operation. A major disadvantage of feedback linearizing
control (FLC) techniques (Henson and Seborg 1997, Isidori 1989) is their lack of
explicit constraint handling capabilities (Rawlings et al. 1994). Stability analysis is
considerably more di� cult than in the unconstrained case because active constraints
preclude exact linearization of the closed-loop system. Feedback linearizing con-
trollers may be detuned to avoid input constraints (Aguilar et al. 1996, Pappas et al.
1995), but this usually leads to unnecessarily poor performance (Alvarez et al. 1991).

While a variety of controller design and analysis techniques are available for
constrained linear systems (Blanchini and Miani 1996, Rawlings and Muske 1993,
Saberi et al. 1996), signi® cantly fewer results have appeared for feedback linearizable
nonlinear systems subject to constraints. Stability of feedback linearized systems in
the presence of input constraints has been analysed (Aguilar et al. 1996, Alvarez et
al. 1991, Papas et al. 1995). Most of these results are based on determining operating
regions where the closed-loop system will evolve such that constraints are not
violated. A simple modi® cation of the basic FLC approach, which accounts for
input constraints, involves applying linear anti-windup schemes to the feedback
linearized system (Kendi and Doyle 1995, 1997). The disadvantage of this approach
is that input constraints are not considered explicitly as part of the controller design.
Instead, the controller is combined with an anti-windup compensator designed to
minimize performance degradation caused by constraints.

Optimization-based design techniques such as nonlinear model predictive control
(NMPC) (Alamir and Bornard 1994, Mayne and Michalska 1990, Meadows et al.
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1995) represent an alternative approach for regulating constrained nonlinear
systems. Unlike anti-windup schemes, input constraints are explicitly handled by
including them as inequality constraints in the associated nonlinear program. The
major di� culty associated with the NMPC approach is the solution of the nonlinear
programming problem (Zhu et al. 1997). It is very di� cult to establish veri® able
conditions which guarantee the existence of a feasible solution (Achhab et al. 1994).
Convergence of the iterative calculations required to solve the optimization problem
is another potential problem. The nonlinear program is non-convex because the
nonlinear model is posed as an equality constraint. Therefore, iterative algorithms
may converge to a local minimum, or even diverge. Moreover, large computational
e� ort may be required as the nonlinear programming problem must be resolved at
each time step.

We have developed an alternative method for handling input constraints within
the FLC framework (Kurtz and Henson 1996, 1997a, 1997b). The technique is
applicable to continuous-time nonlinear systems with an equal number of manipu-
lated inputs and controlled outputs. The basic idea is to map the actual input
constraints into corresponding constraints on the discretized version of the feedback
linearized system. This yields a discrete-time linear system with inputs that are
subject to state-dependent constraints. Instead of employing a simple pole placement
design (Isidori 1989), the feedback linearized system is regulated with a linear model
predictive controller with explicit constraint handling capability (Rawlings and
Muske 1993). Thus, the proposed strategy attempts to combine the bene® ts of the
FLC and NMPC approaches. A similar approach has been proposed by Nevistic and
Morari (1995).

Figures 1 and 2 (Kurtz and Henson 1997b) show the set-point tracking perform-
ance obtained when the hybrid strategy (FLC-MPC) is applied to a highly nonlinear
chemical reactor model. The model describes an irreversible, ® rst-order reaction
A ® B which occurs in a constant volume, continuous stirred tank reactor. The
objective is to control the reactor temperature by manipulating the temperature of
the coolant stream, which has a lower constraint of 280 K. The ® gures also show
responses obtained with a conventional linear model predictive controller (LMPC)
(Muske and Rawlings 1993b) and a nonlinear model predictive controller based on
successive linearization of the nonlinear model (SLMPC) (Garci 1984). A detailed
discussion of the reactor model and the design of the three controllers is presented
elsewhere (Kurtz and Henson 1997b).

LMPC yields an oscillatory response for the positive set-point change (® gure 1)
and a very sluggish response for the negative set-point change (® gure 2). The
performance of SLMPC is acceptable for the positive change, but an unstable
response is obtained for the negative change because the controller repeatedly
switches between stable and unstable models. By contrast, FLC-MPC yields good
closed-loop performance for both set-point changes. We also have compared (Zhu
et al. 1997) the FLC-MPC strategy to nonlinear anti-windup (Kendi and Doyle
1995) and nonlinear model predictive control (Meadows et al. 1995) schemes using a
polymerization reactor model. The hybrid scheme provides the best compromise
between closed-loop performance and computational e� ciency.

These simulation results motivate a more theoretical analysis of the FLC-MPC
control strategy. The hybrid method involves discretization of the linearized model
for LMPC design. It is well known that discretization represents an obstruction to
exact feedback linearization (Grizzle and Kokotovic 1988). Consequently, the FLC-
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MPC technique is di� cult to analyse when applied to a continuous-time nonlinear
system. Some stability results based on the contraction mapping theorem have been
presented for this case (Nevistic and Re 1994). However, the applicability of these
results is severely limited by the assumption that the overall closed-loop operator is a
contraction. In this paper, we develop and analyse a hybrid FLC-MPC strategy for
discrete-time nonlinear systems with input constraints.

The remainder of the paper is organized as follows. In section 2, feedback
linearization of unconstrained nonlinear systems is reviewed. The hybrid FLC-MPC
technique for constrained nonlinear systems is presented in section 3. In section 4, a
detailed stability analysis of the proposed technique is conducted. Finally, a
summary and conclusions are presented in section 5.

2. Unconstrained nonlinear systems

First, we review the input± output linearization method for discrete-time
nonlinear systems without input constraints (Lee et al. 1987, Monaco and
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Figure 1. Positive setpoint change for chemical reactor example.



Normand-Cyrot 1987, Nijmeijer and van der Schaft 1990). Controller design is based
on the state-space model

x(k + 1) = f [x(k),u(k)] (1)

y(k) = h[x(k)]
where x is an n-dimensional state vector, u is a scalar input variable, and y is a scalar
output variable. We assume without loss of generality that f (0,0) = h(0) = 0. The
relative degree (r) characterizes the e� ective time delay between the input (u) and the
output (y) . The value of the output at time k + j,1 £ j £ r, can be written as

y(k + j) = h f ( j)[x(k),u(k)] (2)

where ` ’ is the composition operator and the function f ( j) is de® ned recursively as

f (1)[x(k),u(k)]= f [x(k),u(k)]
f ( j)[x(k),u(k)]= f ( j- 1) f [x(k),u(k)]

ü
ý
þ

(3)
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The relative degree is formally de® ned as the smallest value of j such that

¶
¶ u(k) h f ( j)[x(k),u(k)] /= 0 (4)

The nonlinear state feedback that achieves input± output linearization is obtained
by solving the following nonlinear algebraic equation for u(k)

h f (r)[x(k),u(k)]= v(k) (5)

where v(k) is a new input variable

Assumption 1: The nonlinear algebraic equation (5) has a unique solution

u(k) = W [x(k),v(k)], W (0,0) = 0 (6)

for all x(k)Î Rn and all v(k)Î R.
A necessary condition for Assumption 1 to hold is that the nonlinear system
possesses a well de® ned relative degree throughout the state space. Necessary and
su� cient conditions under which the assumption is satis® ed are presented elsewhere
(Sandberg 1981).

Assumption 2: There exists a globally de® ned di� eomorphism [x T(k), h T(k)]=
U T[x(k)], U (0) = 0, such that the nonlinear state feedback (6) yields the normal form

x (k + 1) = Ax (k) + Bv(k)

h (k + 1) = q[x (k), h (k),v(k)]
y(k) = C x (k)

üïï
ýïïþ

(7)

where the triplet (A, B, C) is in Brunovsky canonical form and q(0,0,0) = 0.
Su� cient conditions for the existence of a local di� eomorphism are given in Monaco
and Normand-Cyrot (1987); we have not found global results for the discrete-time
case.

The normal form partitions the system into an r-dimensional linear part and an
(n - r)-dimensional nonlinear part. We invoke the following assumptions on the
nonlinear subsystem.

Assumption 3: The function q[x (k), h (k),v(k)]is globally L ipschitz with respect to
x (k), h (k) and v(k) .

Assumption 4: The origin of the zero dynamics h (k + 1) = q[0, h (k),0]is globally
exponentially stable.
Su� cient conditions under which Assumption 4 holds are presented in Scokaert and
Rawlings (1997). The origin of the linear subsystem can be stabilized with the pole-
placement control law

v(k) = - a r x r(k) - a r- 1 x r- 1(k) - ´´´- a 1 x 1(k) (8)

where the a i are adjustable controller parameters. In the continuous-time case,
su� cient conditions under which FLC yields a globally stable closed-loop system are
available (Sastry and Isidori 1989). The following theorem provides analogous
conditions for discrete-time nonlinear systems.

Theorem 1: If Assumptions 1± 4 hold and the parameters a i are chosen such that the
roots of the characteristic polynomial zr + a rzr- 1 + ´´´+ a 1 are contained inside the
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unit circle, then x(k) = 0 is a globally asymptotically stable ® xed point of the closed-
loop system comprising (1), (6) and (8).

Proof: The normal form (7) is globally de® ned by Assumptions 1 and 2. The linear
state feedback (8) yields a linear subsystem with characteristic polynomial
zr + a rzr- 1 + ´´´+ a 1 (Henson and Seborg 1993). Since this polynomial is stable
by construction, it follows that limk ® ¥ x (k) = 0 and limk ® ¥ v(k) = 0. The nonlinear
subsystem can be rewritten as

h (k + 1) = q[0, h (k),0]+ q[x (k), h (k),v(k)]- q[0, h (k) ,0]
º q[0, h (k),0]+ p(k)

(9)

where limk ® ¥ p(k) = 0 because of Assumption 3 and the convergence of x (k) and
v(k) . By Assumptions 3 and 4, it follows from Lemma 3 in the Appendix that the
origin is a globally asymptotically stable ® xed point of (9). The inverse transforma-
tion x(k) = U - 1[x (k), h (k)]is globally de® ned by Assumption 2. Because asymptotic
stability is preserved under di� eomorphism, it follows that limk ® ¥ x(k) = 0. u

Assumptions 3 and 4 obviously are not required if the system is fully linearized
(r = n) . It is important to note that Theorem 1 provides su� cient conditions for
asymptotic stability, while analogous conditions for the continuous-time case ensure
only bounded tracking (Sastry and Isidori 1989).

3. Constrained nonlinear systems

We now present an input± output linearization strategy for nonlinear systems
subject to input constraints of the form

umin £ u(k) £ umax (10)

where umin £ 0 £ umax . As in standard FLC, the ® rst step in the controller design
involves the application of the nonlinear state feedback (6) and nonlinear change of
coordinates such that the normal form (7) is obtained. Instead of employing the
pole-placement control law (8), the linear subsystem is stabilized with a linear model
predictive controller (LMPC) (Rawlings and Muske 1993) which provides explicit
constraint handling. As discussed below, the key step is the transformation of the
actual input constraints into input constraints on the feedback linearized system.

The LMPC controller results from the solution of the following open-loop
optimal control problem

min
V (k|k)

U (k) = å
¥

j=0
x T(k + j|k)Q x (k + j|k) + rv2(k + j|k) + s[v(k + j|k)- v(k + j- 1|k)]2

(11)

where r >0 and s ³ 0 are scalar tuning parameters, and Q is a positive semide® nite
tuning matrix. The decision vector is V (k|k) = [v(k|k) ´´´v(k + N - 1|k)]T, where N
is the control horizon. Inputs beyond the control horizon are set equal to zero:
v(k + j|k) = 0 for all j ³ N. At each time step, the controller is initialized with the
current state measurement: x (k|k) = [U 1[x(k)]́ ´´ U r[x(k)]]T. A state feedback
control law is obtained by implementing only the ® rst calculated input
v(k) = v(k|k) , and then resolving the problem at the next time step with new state
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measurementsx(k + 1) . The actual input u(k) is calculated from v(k) via the FLC
law (6).

The optimization problem (11) is solved subject to input constraints of the form

vmin(k + j|k) £ v(k + j|k) £ vmax(k + j|k) , 0 £ j £ N - 1 (12)

As discussed below, it may be advantageous to impose the equality constraint

x (k + N|k) = 0 (13)

The resulting problem can be e� ciently solved as a quadratic program (Muske and
Rawlings 1993b). The input constraints (12) are determined by mapping the original
constraints into the feedback linearized space using the nonlinear equation (5)

vmin(k + j|k) = min
u

h f (r)[x(k + j|k),u]
vmax(k + j|k) = max

u
h f (r)[x(k + j|k),u]

üï
ýïþ

(14)

where umin £ u £ umax and x(k + j|k) represents an estimate of the future state vector
x(k + j) . Given x(k + j|k) these optimization problems are easily solved because
Assumption 1 implies that h f (r)[x,u] is a monotonic function of u for all x.
However, future state estimates are not available until the LMPC problem is solved,
and the LMPC problem cannot be solved until the constraints are speci® ed. As a
result, when N >1, exact constraint mapping requires computationally intensive
nonlinear programming (Nevistic and Re 1994) or iterative (Oliveira et al. 1995)
solution methods. As shown below, a much simpler technique is to use inputs
calculated at the previous time step to approximate the future constraints. Our
computational experience demonstrates this method can yield transformed con-
straints that are very close to the exact values (Kurtz and Henson 1997b).

Solution of the LMPC problem at the previous time step yields

V (k - 1|k - 1) = [v(k - 1|k - 1) ´´´v(k + N - 2|k - 1)]T (15)

The ® rst input is used to calculate u(k - 1) , while the remaining inputs are used to
construct an estimate of the control sequence at the current time step

V (k|k - 1) = [v(k|k - 1) ´´´v(k + N - 2|k - 1) 0]T (16)

The current measurement x(k) is used to calculate the transformed state variables
x (k) and h (k) via the nonlinear change of coordinates: [x T(k), h T(k)]= U

T[x(k)].
Taking these values as initial conditions, the normal form (7) is iterated with the
input sequence V (k|k - 1) to yield predicted values of the transformed state
variables

x (k + j|k) = Ax (k + j - 1|k) + Bv(k + j - 1|k - 1),
x (k|k) = x (k)

h (k + j|k) = q[x (k + j - 1|k) , h (k + j - 1|k),v(k + j - 1|k - 1)],
h (k|k) = h (k)

üïïïïï
ýïïïïïþ

(17)
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where 1 £ j £ N - 1 and the overbar denotes state vectors calculated from the esti-
mated input sequence V (k|k - 1) rather than the actual sequence V (k|k) . These
predicted values are used to compute estimated values of the actual state variables
via the inverse transformation

x(k|k)
x(k + 1|k)

..

.

x(k + N - 1|k)

é
êêêêë

ùúúúú
û

=

x(k)
U

- 1[x (k + 1|k), h (k + 1|k)]
..
.

U
- 1[x (k + N - 1|k), h (k + N - 1|k)]

é
êêêêë

ùúúúú
û

(18)

The constraints are calculated using the predicted state values x(k + j|k) as in (14).
The procedure is repeated at the next time step with the input sequence V (k|k) and
the measurement x(k + 1) .

Two possible ways of initializing the constraint mapping algorithm are: (i) extend
the ® rst constraint over the entire control horizon (Henson and Kurtz 1994); or (ii)
employ a nonlinear programming or iterative solution scheme (Nevistic and Re
1994, Oliveira et al. 1995) at the ® rst time step only. The ® rst method is simple, while
the second method o� ers certain theoretical advantages (discussed below). In either
case the ® rst set of constraints, vmin(k|k) and vmax(k|k) , always map exactly to the
actual constraints (10) since they are calculated using the current state measurement.
In fact, it is straightforward to show that this property holds even if the feedback
linearizing control law and the constraint mapping scheme utilize an estimated value
of the current state vector. Therefore, the implemented input u(k) necessarily satis® es
the actual constraints (10).

An input sequence V (k|k) is said to be feasible if all elements of the sequence
remain within the input constraints (12) and the sequence yields a ® nite value of the
objective function U (k) . A feasible input sequence must also satisfy the terminal
constraint (13) when it is utilized. The LMPC problem (11) is said to be feasible if
there exists such a feasible input sequence. For constant input constraints, feasibility
of an input sequence at k implies feasibility of the same sequence at k + 1 (Muske
and Rawlings 1993a). This result is critical in proving closed-loop stability when
LMPC is applied to a constrained linear system (Rawlings and Muske 1993). The
feasibility property does not necessarily hold for the proposed method because the
input constraints are state dependent. As discussed below, establishing conditions
under which this property holds is the key step in stability analysis.

In practice, the feasibility problem can be addressed in the following way (Kurtz
and Henson 1997b). If the LMPC problem is infeasible, constraints are dropped on
the ® nal input in the control horizon, v(k + N - 1|k) , and the problem is resolved. If
the problem remains infeasible, constraints are dropped on the last two inputs,
v(k + N - 2|k) and v(k + N - 1|k) . The process is continued until feasibility is
achieved. Also, the constraint mapping strategy is modi® ed so that unconstrained
inputs are not used for constraint prediction by extending the last constrained input
over the control horizon to obtain the input sequence V (k|k - 1) . We have
found that removing constraints on the ® nal input is usually su� cient to achieve
feasibility.

4. S tability analysis

First, closed-loop stability is analysed when the hybrid FLC-MPC strategy is
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applied to an unconstrained nonlinear system. We show global asymptotic stability
is achieved under the same assumptions invoked in Theorem 1 for FLC based on
pole placement. The obvious advantage of the proposed method is that input
constraints are considered explicitly in the calculation of the nonlinear state feedback
control law. Stability analysis for the constrained case is presented below. The
following result holds if the terminal constraint (13) is not imposed.

Theorem 2: If Assumptions 1± 4 hold and N ³ 1, then x(k) = 0 is a globally
asymptotically stable ® xed point of the closed-loop system comprising (1), (6) and (11).

Proof: The LMPC problem (11) with N ³ 1 is feasible " x(0) since the linear
subsystem is stable and unconstrained. It follows from Lemma 4 in the
Appendix that limk ® ¥ x (k) = 0. From the proof of Theorem 1, it follows that
limk ® ¥ x(k) = 0. u

A slightly di� erent result is obtained when the terminal constraint (13) is utilized.

Theorem 3: If Assumptions 1± 4 hold and N ³ r, then x(k) = 0 is a globally
asymptotically stable ® xed point of the closed-loop system comprising (1), (6), (11)
and (13).

Proof: The LMPC problem (11) and (13) is feasible " x(0) since the pair (A,B) is
controllable, N ³ r, and the system is unconstrained. The result then follows from
the proofs of Theorems 1 and 2. u

Next we establish additional conditions which ensure the FLC-MPC strategy
yields global asymptotic stability when applied to a nonlinear system with input
constraints. The next assumption ensures that a feasible input sequence at k can be
constructed from the input sequence calculated at k - 1.

Assumption 5: The input sequence V (k|k - 1) in (16) is feasible for all k ³ 1.

The following result demonstrates that the stability problem can be reduced to
establishing conditions under which this assumption is satis® ed.

Theorem 4: If Assumptions 1± 5 hold and the L MPC problem is feasible at k = 0,
then x(k) = 0 is a globally asymptotically stable ® xed point of the closed-loop system
comprising (1), (6), (11) and (12).

Proof: The LMPC problem is feasible " k ³ 0 because it is assumed to be feasible at
k = 0 and the input sequence V (k|k - 1) is feasible " k ³ 1 by Assumption 5. Let the
objective function obtained with V (k|k - 1) be denoted U (k) . The corresponding
transformed inputs and transformed state variables are denoted v(k + j|k) and
x (k + j|k) , respectively. First we show the state variables x (k + j|k) are identical to
the state variables x (k + j|k - 1) obtained from the solution of the LMPC problem.
The state vector x (k|k - 1) is calculated directly from the input v(k - 1|k - 1) , while
the state vector x (k|k) = x (k) is obtained indirectly from the same input via the state
feedback control law (6) and the nonlinear change of coordinates U (x) . Because the
original system (1) and the normal form (7) are related by di� eomorphism
(Assumption 2) and non-singular state feedback (Assumption 1), it follows
that x (k|k - 1) = x (k|k) . This implies that x (k + j|k - 1) = x (k + j|k) " j ³ 1 since
v(k + j|k - 1) = v(k + j|k) " j ³ 0.

Using this result, the objective function U (k) can be expressed as follows

Feedback linearizing control 611



U (k) = å
¥

j=0
x T(k + j|k)Q x (k + j|k) + rv2(k + j|k) + s[v(k + j|k) - v(k + j - 1|k)]2

= å
¥

j=0
x T(k + j|k - 1)Q x (k + j|k - 1) + rv2(k + j|k - 1)

+ s[v(k + j|k - 1) - v(k + j - 1|k - 1)]2 (19)

The objective function U (k - 1) is

U (k - 1) = å
¥

j=0
x T(k + j - 1|k - 1)Q x (k + j - 1|k - 1) + rv2(k + j - 1|k - 1)

+ s[v(k + j - 1|k - 1) - v(k + j - 2|k - 1)]2 (20)

Optimization at k yields an objective function U (k) £ U (k) . Therefore

U (k) - U (k - 1) £ U (k) - U (k - 1) = - x T(k - 1)Q x (k - 1)

- rv2(k - 1) - s[v(k - 1) - v(k - 2)]2 (21)

Because Q ³ 0, r > 0 and s ³ 0, it follows that the sequence U (k) is non-increasing.
The sequence is also bounded below by zero, therefore it converges. This requires
that limk ® ¥ v(k) = 0, which implies limk ® ¥ x (k) = 0 since the matrix A in (7) is
stable. From the proof of Theorem 1, it follows that limk ® ¥ x(k) = 0 under
Assumptions 1± 4. u

When a single control move is employed (N = 1) , Assumption 5 is satis® ed if
v(k|k - 1) = 0 is a feasible input. It is interesting to note that the same condition is
required to prove stability of nonlinear anti-windup schemes using the circle criterion
(Kendi and Doyle 1995). In this case, the condition ensures the existence of a well-
de® ned conic sector which bounds the state-independent input constraints. For the
FLC-MPC method, the condition ensures feasibility of a particular input sequence
which allows Lyapunov stability results for constrained linear systems to be applied
in a straightforward manner.

The remaining task is to determine su� cient conditions under which Assumption
5 holds. This is a di� cult problem because the transformed constraints are state
dependent and the state variables used to calculate the constraints at k - 1 and k
generally are di� erent because the control horizon N is ® nite. First we consider the
limiting case where N ® ¥ . An additional assumption concerning the initialization
of the constraint mapping algorithm is required.

Assumption 6: The constraint mapping algorithm is initialized such that the
transformed constraints vmin( j|0) and vmax( j|0) are exact for all j ³ 0.

This assumption means the transformed constraints map exactly to original
constraints when the actual values of the state vector are utilized. For instance, when
h f ( r)[x,u]is a monotonically increasing function of u the assumption implies

W [x( j),vmin( j|0)]= umin, W [x( j),vmax( j|0)]= umax (22)

for all j ³ 0. In theory, Assumption 6 can be satis® ed by employing a nonlinear
programming or iterative solution technique (Nevistic and Re 1994, Oliveira et al.
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1995) at the ® rst time step only. The following result provides su� cient conditions
for feasibility of the sequence V (k|k - 1) when N ® ¥ .

Lemma 1: If Assumptions 1, 2 and 6 hold and N ® ¥ , then the L MPC problem (11)
yields a feasible input sequence V (k|k - 1) for all k ³ 1.

The proof is presented in the Appendix. The practical implication of Lemma 1 is
that more accurate transformed constraints are obtained as the control horizon is
increased and the constraint mapping algorithm is properly initialized. Our
computational experience (Kurtz and Henson 1997 a, b) indicates that there usually
exists a ® nite N such that the algorithm converges to the exact constraints and an
asymptotically stable closed-loop system is obtained.

As shown in the proof of Lemma 1, special considerations are required to
guarantee feasibility of the ® nal input (i.e. 0) in the sequence V (k|k - 1) . The ® nal
input is more likely to cause infeasibilities than the other inputs because it is not an
element of the previous sequence V (k - 1|k - 1) . This is supported by our
computational experience that infeasibilities can usually be resolved by removing
constraints on the ® nal input only. Thus, it is important to explore conditions under
which this input is feasible, independent of the other N - 1 inputs. Furthermore,
feasibility of the ® nal input implies asymptotic stability for the N = 1 case. We
restrict this analysis to nonlinear systems which are completely linearizable (r = n) .

Assumption 7: There exists an output function ~y(k) = ~h[x(k)], ~h(0) = 0, and globally
de® ned di� eomorphism x (k) = U [x(k)], U (0) = 0, such that the nonlinear state
feedback (6) with h[x(k)]= ~h[x(k)]yields a completely linear system

x (k + 1) = Ax (k) + Bv(k)
~y(k) = C x (k) } (23)

where the triplet (A, B, C) is in Brunovsky canonical form.
Su� cient conditions for a local solution to this problem are given in Nijmeijer and
van der Schaft (1990); we are not aware of similar results for the global case. The
following assumption is required to ensure feasibility of the LMPC problem with
terminal constraint (13).

Assumption 8: For all x (k) there exists a feasible input sequence v(k|k), . . . ,
v(N* - 1|k) such that x (k + N*|k) = 0.
This assumption implies that the LMPC controller can satisfy the terminal
constraint (13) with any control horizon N ³ N*. The following result provides
su� cient conditions for feasibility of the ® nal input in the sequence V (k|k - 1) for
the fully linearizable case.

Lemma 2: If Assumptions 1, 7 and 8 hold and N ³ N*, then the L MPC problem (11)
with terminal constraint (13) yields a feasible input v(k + N - 1|k) = 0 for all k ³ 1.

The proof is presented in the Appendix. The same conditions cannot be used to
prove feasibility for partially linearizable systems due to the presence of the zero
dynamics. In this case, driving the transformed state vector x (k) to zero does not
ensure the actual state vector x(k) goes to zero at the end of the control horizon.

5. Summary and conclusions

A feedback linearizing control strategy for discrete-time nonlinear systems
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subject to input constraints has been proposed. The actual constraints are
transformed into constraints on the input of the feedback linearized system. The
constrained linear system is regulated with a linear model predictive controller that
provides explicit constraint compensation. Stability analysis is di� cult because the
transformed constraints are state dependent. The main result demonstrates that the
stability problem can be reduced to establishing conditions under which a particular
input sequence is feasible. Some su� cient conditions which guarantee feasibility of
this sequence have been presented. In addition, a new stability result for uncon-
strained discrete-time nonlinear systems, which parallels a well know continuous-
time result, was derived.
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Appendix

S tability of perturbed nonlinear systems

The following result is proven in Scokaert and Rawlings (1997).

Lemma 3: L et F : Rn ® Rn satisfy a global L ipschitz condition with F(0) = 0, and
let the origin be a globally exponentially stable ® xed point of x(k + 1) = F[x(k)]. If
p(k) is an asymptotically convergent sequence, then the origin is an asymptotically
stable ® xed point of the perturbed system x(k + 1) = F[x(k)]+ p(k) .
S tability of linear model predictive control

The following result is proven in Muske and Rawlings (1993a).

Lemma 4: For stable A and N ³ 1, x (k) = 0 is a globally asymptotically stable
solution of the linear model predictive controller with objective function (11) and
feasible constraints.

Proof of Lemma 1: Assumptions 1 and 2 are required to ensure the normal form (7)
is well de® ned. For reasons discussed below, the ® rst N - 1 inputs and the ® nal input
in V (k|k - 1) are considered separately. The ® rst N - 1 inputs are feasible if
vmin(k + j|k) £ v(k + j|k - 1) £ vmax(k + j|k) for 0 £ j £ N - 2 and " k ³ 1. The
inputs must satisfy the constraints calculated at the previous time step:
vmin(k + j|k - 1) £ v(k + j|k - 1) £ vmax(k + j|k - 1) . Therefore, the inputs are feas-
ible if vmin(k + j|k - 1) = vmin(k + j|k) and vmax(k + j|k - 1) = vmax(k + j|k) . The
constraints at k - 1 and k are calculated from the state vectors x(k + j|k - 1) and
x(k + j|k) , respectively. Thus, the constraints are equal if x(k + j|k - 1) =
x(k + j|k) for 0 £ j £ N - 2 and " k ³ 1.

As shown by (22), a direct implication of Assumption 6 is that x( j|0) = x( j) for
0 £ j £ N - 2. Therefore, the aforementioned condition will hold by induction if
x(k + j|k - 1) = x(k + j) implies x(k + j|k) = x(k + j) . This can be shown to be true
via a straightforward, but tedious, analysis of the LMPC problem (11) as N ® ¥ .
This result establishes that the ® rst N - 1 inputs in V (k|k - 1) are feasible for
" k ³ 1. The ® nal task is to show the ® nal input (i.e. 0) in V (k|k - 1) is feasible for
" k ³ 1. A necessary condition for the objective function U (k) in (11) to be ® nite as
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N ® ¥ is that v(k + j|k) ® 0. Thus, zero must be a feasible value for the ® nal input
v(k + N - 1|k) . u

Proof of Lemma 2: Assumptions 1 and 7 are required to ensure the feedback
linearized system (23) is well de® ned. The input is feasible if vmin(k + N - 1|k) £
0 £ vmax(k + N - 1|k) " k ³ 1. Since N ³ N*, Assumption 8 implies that the se-
quence V (k - 1|k - 1) yields x (k + N - 1|k - 1) = 0. Because the state values used
to calculate the constraints at k are computed from the same input sequence
V (k|k - 1) , it follows that x(k + N - 1|k) = U - 1[x (k + N - 1|k - 1)]= 0. There-
fore, the ® nal constraints at k are

vmin(k + N - 1|k) = min
u

h f (r)[0,u]
vmax(k + N - 1|k) = max

u
h f ( r)[0,u]

Because h f (r)[x,u]is a monotonic function of u by Assumption 1, h f (r)[0,0]= 0,
and umin £ 0 £ umax , it follows that vmin(k + N - 1|k) £ 0 £ vmax(k + N - 1|k)
" k ³ 1. u
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