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Constrained Output Feedback Control of a
Multivariable Polymerization Reactor

Michael J. Kurtz, Guang.-Yan Zhu, and Michael A. Henson, Member, IEEE

Abstract—A multivariable nonlinear control strategy which ac-
counts for unmeasured state variables and input constraints is de-
veloped for the free-radical polymerization of methyl methacrylate
in a continuous stirred tank reactor. Monomer concentration and
reactor temperature are controlled using a technique which com-
bines nonlinear input–output decoupling and linear model predic-
tive control. Input constraints are handled explicitly by applying
linear model predictive control to the constrained linear system ob-
tained after feedback linearization and constraint transformation.
Unmeasured initiator and solvent concentrations are accounted for
by treating the live polymer concentration as an unknown param-
eter which is estimated on-line. The performance of the control
strategy is compared to other nonlinear control techniques through
closed-loop simulations.

Index Terms—Chemical industry, multivariable systems, non-
linar systems, output feedback, process control.

I. INTRODUCTION

POLYMERIZATION reactors are difficult to control
effectively due to their highly nonlinear behavior. Two

important problems which sometimes are neglected in aca-
demic studies of polymerization reactor control are lack of
on-line measurements and input constraints. Consider a typical
free-radical polymerization system. Reactor temperature is
readily measured, and monomer concentration usually can
be inferred from other measurements. However, accurate and
reliable measurements of initiator concentration and solvent
concentration are difficult to obtain with available on-line
sensors [2]. Furthermore, potential manipulated inputs such
as monomer feed concentration and coolant temperature are
subject to constraints dictated by operational limitations.

Most nonlinear control techniques proposed for polymer-
ization reactors are based on feedback linearization [7], [8] or
nonlinear model predictive control (NMPC) [13]. A serious
disadvantage of NMPC is the need to solve a nonlinear pro-
gramming problem on-line at each sampling period. This makes
NMPC computationally expensive and potentially unreliable
as the nonlinear program may converge to a local minimum or
even diverge. On the other hand, feedback linearization is an
analytical design method which yields easily implementable
nonlinear control laws if the system is input–output decouplable
and possesses stable zero dynamics.
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Several applications of feedback linearizing control to contin-
uous polymerization reactors have been presented. Daoutidiset
al.[5] consider the problem of designing a multivariable, feed-
forward–feedback controller for a free-radical polymerization
reactor. The problems of unmeasured state variables and input
constraints are not addressed. These same issues are neglected in
the polymerization reactor control study presented by Alvarezet
al.[3]. McAuley and MacGregor [12] propose a nonlinear con-
trol method which utilizes an extended Kalman filter (EKF) to
estimate disturbances and remove offset due to plant/model mis-
match. The EKF is not used to provide estimates of unmeasured
state variables. To account for input saturation a simple opti-
mization problem which penalizes instantaneous deviations of
the outputs from their setpoint values is proposed. This method
is similar to nonlinear antiwindup techniques [10] it provides
only indirect compensation for saturation constraints and does
not provide any means of handling rate-of-change input con-
straints or output constraints.

Adebekun and Schork [1], [2] investigate some polymeriza-
tion reactor control problems associated with input multiplici-
ties and propose the use of a least-squares control technique to
regulate four outputs with three inputs. Unmeasured state vari-
ables are estimated using a EKF, but the control technique does
not provide explicit compensation for input constraints. Soroush
and Kravaris [19] conducted an experimental test of a nonlinear
multivariable control technique for a free-radical polymeriza-
tion reactor in which the problems of unmeasured variables and
input constraints are addressed. Unmeasured state variables are
estimated via a reduced order open-loop nonlinear observer.
This approach has several drawbacks, including the possibility
of biased estimates and the lack of a tuning parameter which
allows the convergence rate of the estimation error to be ad-
justed. Input constraints are handled by eliminating integral ac-
tion in the nonlinear controller whenever a constraint is active.
Although this method of indirect constraint compensation is ad-
equate for the tests shown, it is expected that a technique which
explicitly accounts for input constraints can provide improved
performance over a wider range of operating conditions.

Previously, we have developed an explicit constraint com-
pensation technique for single input–single output (SISO) sys-
tems under full-state feedback via feedback linearization and
linear model predictive control (FBL-MPC) [11]. Using a chem-
ical reactor example, it was demonstrated that the combined
FBL-MPC technique provided superior performance to linear
model predictive control methods based on Jacobian lineariza-
tion [15] and successive linearization about the current oper-
ating point [6]. In this paper, we develop a multivariable ex-
tension of the FBL-MPC control strategy for the free-radical
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polymerization of methyl methacrylate in a continuous reactor.
The technique accounts for unmeasured state variables as well
as input constraints. A feedback linearizing controller compen-
sates for process nonlinearities, and a linear model predictive
controller compensates for input constraints transformed into
the feedback linearized space. Unmeasured solvent and initiator
concentrations are handled by treating the live polymer con-
centration as an unknown parameter which is estimated on-line
from available measurements. Simulation studies are used to
compare the proposed control strategy to alternative constraint
handling techniques for nonlinear systems.

II. POLYMERIZATION REACTOR MODEL

The process considered is the free-radical polymerization of
methyl methacrylate in a constant volume continuous stirred
tank reactor. The model equations are [2]

(1)

where is the monomer concentration, is the reactor tem-
perature, is the initiator concentration, is the solvent con-
centration, is the reactor volume, is the feed flow rate,
is the monomer feed concentration, is the feed temperature,

is the initiator feed concentration, is the solvent feed con-
centration, and is the coolant temperature. Other model pa-
rameters are defined in [2]. The live polymer concentrationis
calculated via the following equation:

(2)

where is the initiator efficiency.
The associated rate expressions are

(3)

The expression for is obtained using (3) and the Schmidt-Ray
correlation for the gel effect [18]

(4)
The glass effect correlation sometimes used for the propaga-
tion rate constant is set to unity as this is a good
assumption except when the reactor fluid is extremely viscous

(i.e., low solvent fraction) [1], [9]. The free volume is cal-
culated from the volume fractions of monomer, polymer, and
solvent in the reactor through the following equations [2], [18]:

if
if

(5)

where

(6)

Volume fractions are calculated using the reactor concentrations
and physical property data under the assumption of ideal mixing

(7)

where is the molecular weight of species is the pure
component density of species, and is the density of the fluid
in the reactor (which is assumed to be constant). The equation
for is derived from the requirement that the mass fractions
in the reactor sum to unity. The initiator concentration in the
reactor usually is very low relative to the other species. As a
result, it is reasonable to make the approximation .

Perfect control of the reactor volume via manipulation of the
solvent flow rate is assumed. As a result, the feed concentra-
tions of the individual species are not independent. In partic-
ular, the mass fractions of the feed stream must sum to unity.
This means the feed solvent concentrationis a function of
the feed monomer and feed initiator concentrations

(8)

where and are the volume fractions of initiator and
monomer in the feed stream, respectively.

The polymerization reactor equations (1) are nondimension-
alized to give the following state-space model [2]:

(9)

where

(10)
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TABLE I
DIMENSIONLESSVARIABLES

A description of the dimensionless variables is given in Table I.
While not given here for the sake of brevity, the auxiliary equa-
tions for free volume, reaction rates, and solvent feed concen-
tration also are nondimensionalized.

The molecular weight distribution (MWD) is largely de-
termined by the first three moments of the distribution which
often are called the principle moments. Differential equations
describing the evolution of the principal moments are derived
in [1] and [18] for methyl methacrylate polymerization. In this
application, the principle moments areuniquefunctions of the
reactor state variables – at steady state [1]. It is easy to
verify that the steady-state values of the initiator concentration

and the solvent concentration are given by the
following equations:

(11)

where

(12)

These functions depend uniquely on the model parameters,
the feed conditions, and the temperature. Thus, the MWD
can be approximately controlled by driving the monomer
concentration and the reactor temperature to par-
ticular setpoints as long as the feed conditions are constant.
This implies that polymer grades corresponding to different
steady-state reactor conditions but the same feed conditions
can be produced using monomer concentration and reactor

temperature as the controlled variables and monomer feed
concentration and coolant temperature as the manipulated vari-
ables. For the more general case (i.e., polymers corresponding
to different feed conditions), this is not necessarily true due
to the coupling of monomer concentration and monomer feed
concentration which introduces the possibility of multiple
steady-state values of the solvent concentration.

III. N ONLINEAR CONTROL SYSTEM DESIGN

In this section, a multivariable, nonlinear controller is de-
signed for the polymerization reactor presented in the previous
section. The controller design procedure used is analogous to the
method of feedback linearization with linear model predictive
control for SISO systems previously presented by the authors
[11]. The major contributions of this paper are that the method
is extended to multivariable processes and used to solve an im-
portant polymerization reactor control problem.

For some polymerization reactors, the controlled outputs are
chosen to include moments of the MWD [16]. We do not follow
this approach because it is difficult to obtain accurate and re-
liable on-line measurements of MWD moments. Initiator con-
centration is another common controlled output because it has
a strong effect on the molecular weight distribution through the
live polymer concentration . However, initiator concentration
is more difficult to measure on-line, thereby necessitating the
use of state estimation. In general, controlling the initiator esti-
mate will lead to offset in the actual variable. As shown above,
the initiator concentration is a unique function of the reactor
temperature at equilibrium. All these factors contribute to the
choice of monomer feed concentration and coolant temperature
as manipulated inputs and monomer concentration and reactor
temperature as controlled outputs.

Therefore, the objective is to control monomer concentration
and reactor temperature by manipulating

monomer feed concentration and coolant temper-
ature . We assume the availability of on-line mea-
surements of monomer concentration and reactor temper-
ature ; the initiator concentration and solvent concen-
tration are assumed to be unmeasurable. For convenience,
the nondimensional reactor equations (9) are written as

(13)

where is the dimensionless live polymer concentration,
which is a function of the unmeasurable state variablesand

is a known constant that appears due to the solvent feed
relation (8); and the functions follow from (8) and (9).

A. Feedback Linearization

Nonlinear controller design is based on input–output decou-
pling [8]. Consider a control-affine nonlinear system within-
puts and outputs

(14)
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The input–output decoupling control law is [7]

...
...

...

...
...

(15)

where is the vector relative degree, and

are Lie derivatives of the scalar function ,
and is a vector of new manipulated inputs. If the decou-
pling matrix is nonsingular, the control law is well defined
and a suitable change of coordinates yields a
closed-loop system in the normal form [7]

(16)

If we define , then: and are -dimensional
and -dimensional state vectors, respectively; the triplet

is in Brunovsky block canonical form; and is a
vector of nonlinear functions which characterize the zero dy-
namics [8]. It can be shown that the zero dynamics of the poly-
merization reactor model are locally stable at the steady states
considered in Section IV.

For the polymerization reactor model given by (13), the
input–output decoupling control law is

(17)

where

(18)

The variable represents an estimate of the live polymer con-
centration , which is unknown because the initiator and
solvent concentrations are unmeasurable. Althoughcan be
generated by explicitly estimating and , this approach re-
quires the design of a nonlinear state estimator such as an ex-
tended Kalman filter [14]. As discussed below, we utilize a sim-
pler adaptive approach in which is viewed as an unknown
parameter.

The vector of new inputs typically is used to place the
closed-loop poles and to provide integral action in the nonlinear
control law [8]. In the absence of constraints this simple
approach usually is sufficient to provide good performance.
However, in the presence of active constraints this method can
result in very poor (and even unstable) closed-loop responses
due to the input being “clipped” [11]. We propose using linear
model predictive control [15] to provide explicit compensation

for input constraints. As shown below, the main challenge of
this technique is to transform the constraints onto constraints
on .

B. Parameter Estimation

The live polymer concentration is an unknown quan-
tity since it is a function of the unmeasured state variables
and . Rather than design a nonlinear observer to generate the
unmeasured variables, we estimatedirectly using on-line pa-
rameter estimation. This approach is justified theoretically if
changes “slowly” with respect to time [17]. Although this does
not strictly hold for the polymerization reactor studied here, the
simulation results in Section IV show the parameter estimator
is able to track sufficiently well to yield good closed-loop
performance.

We utilize an indirect estimation technique since this allows
considerable flexibility with respect to the controller design
method. If direct adaptive control is used, the exact form of the
control law must be specifieda priori; this is not straightfor-
ward in the present application due to the use of linear model
predictive control. Note that if the feed initiator concentration is
chosen as a manipulated input, this estimation technique cannot
be used and more complex nonlinear state estimation would
be required. The following gradient update law is derived by
assuming is an unknown constant [17]

(19)

where , and and
are tuning parameters.

C. Transformed System Equations

When linear model predictive control is applied to the feed-
back linearized system, it is necessary to map the constraints
from the original input space to the feedback linearized space.
This mapping is based on the transformed system equations
obtained by applying the input–output decoupling control law
to the nonlinear system. Therefore, these equations must be
derived before linear model predictive control can be applied.
From the standpoint of controller design the original system
equations are

(20)

This form is obtained because is assumed to be an unknown
constant parameter rather than a state-dependent function.
Using the fact that , we can derive the associated normal
form equations by choosing and . Applica-
tion of the input–output decoupling control law (17) then yields

(21)
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where

(22)

Although this represents the true equations for the transformed
space, the form obtained is not useful for constraint calcula-
tion because the equations contain the unknown variable.
To eliminate this variable, it is assumed that (i.e.,

) since the true value of the live polymer concentra-
tion is unknown. Therefore, the transformed system equations
used for constraint calculation are

(23)

D. Linear Model Predictive Control

The monomer feed concentration and the coolant tem-
perature are subject to hard constraints of the form

(24)

The goal is to apply linear model predictive control (LMPC) to
the feedback linearized system to account for these constraints.
Since LMPC is more naturally formulated in discrete time, the
linear subsystem in (16) is discretized exactly with a sample-
period to yield

(25)

where the matrices and follow directly from the contin-
uous-time matrices and [4]. This model is used in the infi-
nite horizon LMPC strategy proposed by Muske and Rawlings
[15]. The open-loop optimal control problem can be expressed
as

(26)

where and are target values for and , respectively, and
, , are tuning matrices. The decision vector

is defined as ,
where is the control horizon. All future moves beyond the
control horizon are set equal to the target value. As discussed
in [11], the matrix is unstable and in order for the LMPC
problem to have a feasible solution it is necessary to impose the
equality constraint .

To obtain constraints on the new input, the constraints on
are mapped into the feedback linearized space using a multi-

variable extension of the procedure in [11]. As discussed below,
this yields constraints of the following form:

(27)
The resulting optimization problem can be solved efficiently as
a standard quadratic program [11].

Discretization of the decoupling control law (17) yields

(28)

The transformed constraints are determined at each sampling
period by solving the following optimization problem subject
to the inequality constraints (28):

(29)

Note that the variables and cannot
be calculated until the input sequence is calculated, which is
not possible until the constraints are specified. We address this
difficulty by approximating the current input sequence with a
shifted version of the sequence calculated at the last time step

(30)

As discussed in [11], the shifted input sequence can be used to
integrate the normal form (23) with the initial condition

and in order to obtain future
values of the transformed state variables

(31)

These predictions can be used in the optimization problem (29)
in place of the actual values. Although this method yields ap-
proximate future constraints for, the constraints calculated for
the first input move correspond exactly to the actual constraints
on since the current measurements and estimates are used.

To remove offset caused by modeling errors, a disturbance
model which assumes unmeasured disturbances enter through
the state equations is introduced as described in [15]. The
disturbances are estimated with a linear observer designed for
the augmented system consisting of the linear state equations
(25) and assumed state equations for the disturbances. The
disturbances are assumed to be constant: . The
estimated disturbancesare used to shift the target values
and in the open-loop optimal control problem (26) as de-
scribed in [11]. The disturbance estimator is tuned by choosing
the desired eigenvalues of the associated closed-loop error
equation.

IV. SIMULATION RESULTS

The combined feedback linearization/linear model predictive
control (FBL-MPC) strategy is applied to the free-radical poly-
merization of methyl methacrylate as described by the dimen-
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Fig. 1. Open-loop estimation of live polymer concentration.

TABLE II
NOMINAL OPERATING CONDITIONS AND PARAMETER VALUES

sionless equations (9). The nominal operating point and param-
eter values are given in Table II. These values are taken from [2],
with the exception that which has been changed from 3.25 to
1.3 to reflect a smaller heat transfer rate. The manipulated in-
puts are constrained as follows:

mol
L

mol
L

K K (32)

which correspond to the following constraints on the dimension-
less inputs:

(33)

The tuning parameters for the FBL-MPC controller (26) and the
parameter update law (19) are chosen as

(34)

The parameter estimator is initialized with , while
the actual value is . The sampling time

is chosen as 0.02 dimensionless time units in the subsequent
simulations. A larger sampling time would reduce on-line com-
putation at the expense of closed-loop performance.

The estimation of under open-loop conditions is shown
in Fig. 1. The inputs are initially set to the nominal values in
Table II, and then are changed to at and

at . The estimate does not track the ac-
tual value during periods of rapid change caused by the input
changes. However, the estimate converges rapidly to the actual
value once the initial spike decays. This will be shown to be ade-
quate for the FBL-MPC strategy. While improved estimates can
be obtained using a higher adaptation gain, modeling errors
typically preclude the use of high gains. It is important to note
that all controllers discussed in this section use the same param-
eter update law and identical tuning parameters when possible.

The FBL-MPC strategy is compared to standard feedback
linearization using pole placement and no constraint compen-
sation (FBL-PP). Tests for the FBL-PP controller are shown
in Figs. 2 and 3. The FBL-PP controller is tuned such that the
dimensionless closed-loop time constant for each decoupled
SISO loop is 0.2, which is approximately one-fifth the dom-
inant open-loop time constant. This value of the closed-loop
time constant gives very similar responses for the FBL-PP and
FBL-MPC controllers in the absence of constraints.

Fig. 2 illustrates the inability of the FBL-PP controller to sta-
bilize the nominal operating point in the presence of constraints.
The incorrect initial parameter value causes the coolant
temperature toencounterthelowerconstraint.Thecontroller
is unable to recover as the gel effect becomes prevalent, and the
monomerconcentration thensaturatesat itsupperconstraint.
As a result, the outputs are unable to attain the setpoints. Also
shown in Fig. 2 is the response of the FBL-PP controller in the
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Fig. 2. Nominal point stabilization (FBL-PP).

absence of constraints. In this case, the perturbation is handled
easily. It is important to note that the steady-state input values
required to achieve the setpoints are within the constraint region
defined by (33). The only way we found to make the controller
stabilize the nominal point in the presence of constraints is to use
tighter tuning such that the closed-loop system is at least twice as
fastastheoriginalcase(i.e., theclosed-looptimeconstant is0.1or
less).Undersuchtuning, theconstraintsarebarelyencounteredso
thecontrollercanrecover fromtheinitialperturbation.

Fig. 3 shows the response of the FBL-PP controller for a se-
quence of setpoint changes. At the setpoints are changed
from the nominal values in Table II to , and
then changed again at to . The first set-
point corresponds to a step change to a lower conversion, while
the second setpoint is a step change to a higher conversion as
compared to the nominal point. The outputs are unable to attain
the setpoints as a result of the constraints. Also shown in Fig. 3
is the FBL-PP response in the absence of constraints. In this
case, the setpoint changes are tracked very effectively. As for the
case of stabilization, the controller must be tuned much tighter
to obtain stable responses under input constraints. Even under
these conditions, the performance is highly degraded as com-
pared to the FBL-MPC controller (see below) and even tighter

Fig. 3. Sequence of setpoint changes (FBL-PP).

tuning leads to complete failure. The “working region” of the
FBL-PP controller corresponds to closed-loop time constants in
the narrow range from 0.05 to 0.1. This is unacceptably small
for an actual application.

The ability of the FBL-MPC controller to stabilize the nom-
inal operating point in the presence of constraints is shown in
Fig. 4. Despite the fact that constraints on both inputs are en-
countered, the FBL-MPC controller provides satisfactory per-
formance. Note that the estimate of the live polymer concentra-
tion converges rapidly to the true value. The closed-loop
response for a sequence of setpoint changes with the FBL-MPC
method is shown in Fig. 5. The setpoint changes are the same
as those used in Fig. 3. The outputs smoothly track the setpoints
despite the fact that the input constraints are encountered. The
estimate of effectively tracks the true value.

To compare the FBL-MPC control strategy to other non-
linear constraint handling techniques, a nonlinear antiwindup
controller based on feedback linearization (FBL-AW) [10]
and a nonlinear model predictive controller (NMPC) [13] are
designed. The nonlinear antiwindup design is presented in
[10]. In the present application, the multivariable antiwindup
controller can be designed as two SISO antiwindup controllers
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Fig. 4. Nominal point stabilization (FBL-MPC).

because the decoupling matrix is diagonal. The linear anti-
windup compensator has the following components:

(35)

where is the feedback linearized model after prestabiliza-
tion, is the part of the compensator which penalizes the
error between the output and its setpoint, and is the part
of the compensator which penalizes calculated input moves out-
side the constraints. It is easy to verify that these components
satisfy all of the requirements for internal stability as given by
Zhenget al. [20]. The antiwindup controller is tuned to give a
similar response to the FBL-MPC controller in the absence of
constraints for the test shown in Fig. 6. The controller parame-
ters are

(36)

Fig. 5. Sequence of setpoint changes (FBL-MPC).

The parameter estimator for is tuned as for the FBL-PP and
FBL-MPC controllers.

The nonlinear model predictive controller [13] has the ob-
jective function as shown in [(37)] at the bottom of the next
page: with the tuning .
A terminal state constraint [13] is not included because other
tests (not shown) indicate that its inclusion does not improve
the closed-loop response but does increase on-line computation.
The sampling time of the NMPC controller is taken to be the
same as the FBL-MPC controller .

Figs. 6 and 7 show the response of the three nonlinear
constraint handling techniques for a step change from the
nominal values to at . This cor-
responds to a change to a higher conversion compared to
the nominal point. Fig. 6 shows that the antiwindup con-
troller fails completely despite the fact that it was tuned to
give a similar response to the FBL-MPC controller in the
absence of constraints. The antiwindup controller must be
tuned to avoid the input constraints to achieve satisfactory
setpoint tracking. However, it should be mentioned that the
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Fig. 6. Comparison of FBL-AW, FBL-MPC, and NMPC for a setpoint change
to higher conversion.

FBL-AW controller did perform well in other tests such as
the setpoint sequence shown in Fig. 5. The FBL-MPC con-
troller provides good performance despite encountering the
constraints. The NMPC controller provides excellent perfor-
mance as the setpoints are reached significantly faster than
with the FBL-MPC controller. On the other hand, the NMPC
controller produces an appreciable overshoot.

The major shortcoming of the NMPC controller is computa-
tional overhead. For the test shown in Figs. 6 and 7, the approx-
imate computation times on an IBM RS/6000 workstation run-
ning MATLAB are FBL-AW (3 min), FBL-MPC (30 min), and
NMPC (24 h). The most computationally efficient algorithm is
FBL-AW, which has a computation time about one-tenth that of
FBL-MPC. The computation time for NMPC is approximately
40 times greater than that of FBL-MPC. It is important to note
that a sampling time of 0.02 dimensionless time units is
used in these comparisons. Similar relationships would be ob-

Fig. 7. Inputs for Fig. 6.

tained for larger sampling times since computational time scales
linearly with sampling time.

The closed-loop response obtained with the FBL-MPC con-
troller for a disturbance in the reactor feed temperature
is shown in Fig. 8. The value of is changed from its nom-
inal value in Table II to 0.3 at . The disturbance is rejected
effectively even though the coolant temperature temporarily sat-
urates at its lower constraint. As before, the initial transient is
due to the initialization error in . In this case the estimate of

is biased due to modeling error.

V. SUMMARY AND CONCLUSIONS

A nonlinear output feedback control strategy which explicitly
accounts for input constraints has been developed for a multiple
input–multiple output polymerization reactor. Input–output de-
coupling is used to obtain a linear model between the controlled
outputs (monomer concentration and reactor temperature) and a

(37)
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Fig. 8. Feed temperature disturbance (FBL-MPC).

vector of new manipulated inputs. Constraints on the actual ma-
nipulated inputs (monomer feed concentration and coolant tem-
perature) are mapped into the feedback linearized space using
the decoupling control law, and linear model predictive control
is applied to the resulting constrained linear system. The un-
measured live polymer concentration is treated as an unknown
parameter and estimated on-line using a gradient update law.
Excellent servo and regulatory performance has been demon-
strated via simulation. The proposed method offers superior per-
formance as compared to a nonlinear anti windup controller and
significantly reduced computational requirements as compared
to a nonlinear model predictive controller.
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