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Abstract

The problem of estimating unmeasured state and disturbance variables for nonlinear process control
applications is considered. We assume that the process model is affine with respect to the unmeasured
disturbances and any unmeasured state variables. The disturbances are considered as additional state variables,
and a nonlinear observer is designed for the augmented state-space system. The observability of the augmented
system is analyzed, and a constructive procedure for calculating the nonlinear observer gains is proposed.
Full-order and reduced-order observers are constructed for both the full-state and partial-state feedback cases.
Stability results for the nonlinear observer are presented. An output feedback controller is obtained by
combining the nonlinear observer with an input-output linearizing controller. The proposed estimation
strategy is compared to linear estimation techniques using a fluidized bed reactor model. © 1998 Elsevier

Science Ltd. All rights reserved
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1. Introduction

High-performance estimation and control techni-
ques are needed for chemical processes due to in-
creased demands on productivity, product quality,
and environmental responsibility. Most control sys-
tems in the process industries are based on linear
models despite the fact that a large number of chemi-
cal processes are inherently nonlinear. Estimation and
control strategies based directly on nonlinear models
can be expected to provide significantly improved
performance for highly nonlinear processes. Non-
linear model predictive control (Bequette, 1991;
Rawlings et al., 1994) and feedback linearization
(Henson and Seborg, 1991) are the most widely
studied nonlinear control techniques for chemical
process applications. Both approaches require full-
state feedback when a state-space model is used
for controller design. In many process control
applications, the entire state vector cannot be mea-
sured on-line and unmeasured state variables must
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be estimated from available measurements to imple-
ment the nonlinear controller.

Several nonlinear process control strategies which
use an open-loop observer to reconstruct unmeasured
state variables have been proposed (Daoutidis and
Kravaris, 1992; Henson and Seborg, 1991). Open-loop
observers have several obvious disadvantages includ-
ing: (i) the error dynamics cannot be altered; (ii) biased
estimates may be obtained if the process has multiple
steady states; and (iii) unbounded estimates may result
for unstable processes. The design of closed-loop
nonlinear observers is an active area of research,
and a variety of techniques are now available (Bastin
and Gevers, 1988; Gauthier et al., 1992; Krener and
Isidori, 1983; Misawa and Hedrick, 1989; Nicosia
et al., 1989; Zeitz, 1987). Several of these methods
have been applied to nonlinear models of chemical
processes (Gibon-Fargeot et al., 1994; Kantor, 1989;
Limqueco et al., 1991). However, available techniques
suffer from at least one of the following shortcomings:
(i) the underlying assumptions are restrictive and diffi-
cult to verify; (ii) the observer design procedure is
complex; or (iii) the computational requirements are
high. Consequently, there is considerable motivation
to develop nonlinear observers which are easy to
design and implement.
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Input-output linearization provides a very com-
putationally efficient means to enact nonlinear control.
Unfortunately, unmeasured disturbances present
a problem in that a linear input-output map is
achieved only if disturbance variables satisfy a res-
trictive matching condition (Isidori, 1989). For single-
input, single-output systems, the matching condition
requires that each disturbance has a less direct effect on
the controlled output than does the manipulated input.
In many process applications, the matching condition
is not satisfied and exact linearization of the closed-loop
system is not possible. As a result, input—output lineariz-
ing controllers can yield unacceptable performance and
robustness (Henson and Seborg, 1994). Hence, it is im-
portant to develop feedback linearizing controllers
which provide more effective rejection of unmeasured
disturbances. Improved disturbance rejection also
could enhance the performance of other control tech-
niques such as nonlinear model predictive control.

Several control strategies which attempt to address
the problem of unmatched disturbances have been
proposed. Sliding mode control (Colantonio et al.,
1995; Sira-Ramirez, 1989) and almost disturbance
decoupling (Marino et al., 1989) techniques provide
approximate disturbance decoupling, but require high
gain feedback that is unacceptable in most process
control applications. In robust nonlinear control
strategies (Arkun and Calvet, 1992; Behtash, 1990),
unmeasured disturbances are viewed as unmodeled,
state-dependent perturbations. The controller is de-
signed to handle a large class of such perturbations,
and therefore it tends to yield poor performance for
any particular disturbance. If viewed as unknown, con-
stant parameters, disturbances can be estimated on-line
using nonlinear adaptive control methods (Henson and
Seborg, 1991; Sastri and Isidori, 1989). Although they
can provide good performance, nonlinear adaptive
controllers often are difficult to design and implement.

In this paper, an alternative method to estimate
unmeasured state and disturbance variables for a spe-
cific class of nonlinear systems is proposed. The model
form and some specific process examples are given
in Section 2. The state and disturbance estimation
problems are considered in Sections 3 and 4, respec-
tively. The combined state/disturbance estimation
problem is explored in Section 5. In each case, the
nonlinear estimation technique is compared to a
linear estimation method using a nonlinear model of
a fluidized-bed reactor. Stability of the observer is
discussed in Section 6. Finally, Section 7 provides
a summary and conclusions.

2. Class of nonlinear systems

The state/disturbance estimator design is based on
the nonlinear state-space model,

X =f()+gx)u+p(x)d,

VYm = Cx,
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where x is an n-dimensional vector of state variables,
u and y,, are the manipulated input and measured
outputs, respectively, and d is a g-dimensional vector
of unmeasured disturbances that are estimated. The
estimation techniques are developed for the single-
input case, but they are easily extended to multiple-
input systems. Note that the model is affine with
respect to the estimated disturbances (d), and the
measured outputs (y,,) are assumed to be a linear
combination of the state variables (x). It is assumed
that y,, is available continuously, or these measure-
ments have sampling times much less than the domi-
nant time constant of the process such that they can
be considered continuous. If this condition does not
hold, then it may be necessary to design a discrete-
time nonlinear observer (Moraal and Grizzle, 1995;
Song and Grizzle, 1995). The design of nonlinear
observers for sampled data systems is not considered
here.

If only state estimation is considered, then the
disturbance vector d is assumed to remain constant,
and the functions f(x), g(x), and p(x) are assumed
to be affine with respect to the unmeasured state
variables:

S &) =f1(m) + f2(0m)x,
g(x) = g1(ym) + g2(ym) X, (2
p(x) = p1(ym) + P2(ym)x.

We denote the controlled output as y = h(x) and
assume y depends only on measured signals: h(x) =
h(y,,)- The resulting system is affine with respect to the
unmeasured state variables. Note that all bilinear
models have this form. It should be mentioned that
the factorization of the functions f(x), g(x), and p(x)
may not be unique. It is desirable to make f5(y,,),
g2(¥m)> and p(y,,) as simple as possible to simplify the
observer gain calculations.

In the case of disturbance estimation alone, the
entire state vector is assumed to be measured (y,, = x).
The disturbances are considered as unmeasured state
variables and an observer is constructed for the
following augmented model:

X=f(x)+g(x)u+px)d,
d=0, 3)
Ym = CX.

Although the estimator design is based on the
assumption of constant disturbances, the technique
also is applicable to systems with slowly varying
disturbances. It also is possible to include a priori
knowledge about the class of disturbances which will
be encountered by using a different type of distur-
bance model. The basic observer design procedure
will remain the same; however, the conditions for
observability will change. The performance of the
observer will depend on how closely the chosen model
matches the actual disturbances. Which unmeasured
disturbances are chosen to be estimated depends on
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the system to be controlled and the type of controller
used. In the input—output linearization approach, dis-
turbances that do not satisfy the matching condition
are estimated. The matching condition implies that
the manipulated input has a more “direct” effect on
the controlled output than does the disturbance. The
concept of “directness” is formalized by introducing
the relative degree r of the manipulated input (u) and
the relative degree p; of the ith disturbance (d;)
(Henson and Seborg, 1991). The disturbance is said to
satisfy the matching condition if p; > r. Hence, each
disturbance contained in the vector d has the property
that p; <r. If another technique such as nonlinear
model predictive control is used, then knowledge of
which disturbances cause the most deleterious effects
determines the choice of the vector d.

In the case where both unmeasured state and dis-
turbance variables are estimated, the functions f(x)
and g(x) are assumed to be affine with respect to the
unmeasured state variables as in equation (2). Fur-
thermore, the function p(x) is assumed to depend
only on measured outputs: p(x) = p(y,,)- The resulting
system is affine with respect to the unmeasured vari-
ables. We refer to this problem as disturbance estima-
tion under partial-state feedback.

It is important to note that the observer design
procedures can be applied to nonlinear systems in
which some of the unmeasured variables do not
appear linearly. This is accomplished by linearizing
the model only with respect to the unmeasured state
and disturbance variables, thereby producing a state-
affine model of the form required. This approach
generally will provide a more accurate description
of the nonlinear system than traditional Jacobian
linearization. We have used this technique to estimate
substrate concentration (which appears nonlinearly)
in a nonlinear bioreactor model (Kurtz and Henson,
1996). 1t is, of course, preferable to measure as many
“nonlinear” variables as possible.

2.1. Process examples

Although the class of systems considered is restric-
tive, a number of chemical processes have the affine
form discussed above. For example, continuous stir-
red tank reactors (CSTR) which involve first-order
kinetics yield model equations that are affine in the
reactor concentrations. Consider a CSTR with the
irreversible reaction A — B given by the following
equations (Henson and Seborg, 1991):

. E
CA=%(CAfCA)kOEXp<ﬁ>CAa
. q (—AH) E
T==(T,—T —k ——|C
y Ty =T+ =2c — koexp| = ¢ ) Ca
UA
+——(T.—T),
pC,V
: dc
T,=2(T, —T. T —T.), 4
(T = To+ o (T =T 4

1443

where C 4 is the concentration of reactant A, T is the
reactor temperature, T, is the coolant temperature,
C,, is the feed concentration, T, is the feed tempe-
rature, ¢, is the coolant flow rate, and T, is the
coolant feed temperature. Usually, the variable to be
controlled is reactor temperature (y = T') while the
manipulated input is chosen as the coolant flow rate
(u=gq.). If the reactor temperature is measured
(ym = T), then the reactor concentration C,, the
coolant temperature 7T, and the disturbances
d=[Cy, T, T.]" appear linearly. State and distur-
bance estimation for this reaction system is discussed
by Kurtz and Henson (1995).

As a second example, consider a fluidized bed reac-
tor (FBR) in which the oxidation of benzene to maleic
anhydride and carbon oxides takes place (Perrier,
1982):

Benzene > Maleic Anhydride
N '
Carbon Oxides

This system has been described by a simple two phase
model under the assumption of a perfectly mixed
dense phase. The resulting dimensionless equations
are as follows (Aoufoussi et al., 1992):

X1 = ay(dy — x1) + ax(x> — x1) + az[ki AH1E1(x1)
+ k3fAHr3é3(xl)]x3 + a3k2fAHrzfz(x1)x4,
.)%2 =C1 + azbl(xl — Xz) + bz(dz — Xz) u,

X3 = as(ds — x3) — as[ki;E1(x1) + k3p&a(xi)] X3,

Xa = ag(ds — x4) + as[kipE1(x1) x3 — kap&r(x1) Xal,

)

where x; is the dimensionless reactor temperature,
X, is the dimensionless wall temperature, x5 is the
dimensionless benzene mole fraction, x, is the dimen-
sionless maleic anhydride mole fraction, u is the
dimensionless coolant flow rate, d; represents the inlet
reactor temperature, d, represents the inlet coolant
temperature, d; represents the inlet benzene mole
fraction, and d, represents the inlet maleic anhydride
mole fraction. The reaction rate expressions ¢; are
described as:

1+ (x1/Bw)

A full description of the dimensionless variables
and parameter values can be found in Kendi and
Doyle (1996). The controlled output usually is chosen
as the reactor temperature (y = x,). If reactor tempe-
rature is measured, all the other state variables (x,, x3,
Xx4) appear linearly. In addition, all the disturbance
variables (d,—d,) appear linearly, thus making the
FBR system an ideal candidate for the proposed
method. The simulation studies performed in sub-
sequent sections are based on this FBR model.

Ei(x1) = exp <ﬁ7") . ©)
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2.2. Related work

It should be noted that the design of observers and
output feedback controllers for the class of systems
described above has been explored elsewhere. Praly
(1992) designs an output feedback controller using
a Lyapunov technique which necessitates the inclu-
sion of a strong detectability condition as well as
growth conditions on the Lyapunov function candi-
date. Pomet et al. (1993) design a Lyapunov-based
output feedback controller, but do not explicitly con-
sider the problem of observer design. Gibon-Fargeot
et al. (1994) propose a nonlinear observer which re-
sembles the linear Kalman filter. Although the design
yields a stable observer, a potentially computationally
expensive calculation is required to determine the
observer gains. As compared to these techniques, the
proposed method offers several important advantages
including: (i) technical assumptions such as persistent
excitation and Lipschitz continuity are not required;
and (ii) the design procedure is similar to that em-
ployed for linear systems, thus making the observer
easy to construct, implement, and tune.

3. State estimation

First we consider the estimation of unmeasured
state variables only (i.e. disturbances are not con-
sidered). Estimates of the state variables are generated
by a nonlinear closed-loop observer. In this section,
we present the basic observer design procedure, dis-
cuss the observability of the affine model, and propose
two methods to calculate the nonlinear observer gain.
To simplify the subsequent analysis, the model con-
sisting of (1) and (2) is rewritten as,

X =a(u, yu) X + U, yuw),
Ym = CX, (M

where OC(U, ym) :fZ(ym) + gZ(ym)u and ﬁ(u’ ym) =
fl(ym) + QI(ym)u

3.1. Basic design procedure

The objective of the observer design is to exactly
linearize the estimation error dynamics in the sense
described below. The observer is chosen to have the
form

X = o, yu)R + B, ) + kG, ) [ym — CX] - (8)

where k(u, y,,) is an nxm nonlinear observer gain
matrix which depends only on the manipulated input
and the measured outputs. By defining the estimation
error as ¢ = x — X, it is easy to show that the observer
error dynamics are:

é= [a(u, ym) - k(“: ym) C] e = AO(“s ym) e. (9)

Note that the error dynamics resulting from a linear
observer are obtained if the model (7) is linear
(o(uy ym) = A, p(u, y,n) = bu) and the observer gain is
constant (k(u, y) = k). The objective is to design the
gain k(u, y,,) such that the matrix A (u, y,,) has speci-
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fied eigenvalues that are invariant with respect to
u and y,,. The existence and computation of such an
observer gain are discussed below.

The proposed approach is considerably less de-
manding than alternative observer design techniques
based on exact linearization of the error dynamics
(Isidori, 1989; Krener and Isidori, 1983). In these
methods, additional assumptions are required to
guarantee the existence of the observer and the con-
struction of the necessary coordinate transformations
often is intractable. Consequently, the proposed
method is applicable to a larger class of process con-
trol systems. On the other hand, our technique is
restricted to nonlinear models which are affine in the
unmeasured state variables and it is more difficult to
prove stability (see Section 6).

3.2. Observability

The existence of observer gains which achieve the
desired objective is related to the observability of the
nonlinear system. The nonlinear system (1) without
input is locally observable (Hermann and Krener,
1977) at the point X if the following matrix has rank
n when x = x,

0

—h

7 ()
0
a Lf hm(x)

Wo(x) = (10)

0

- 1 hm
[ ox 7 (<)

where h,,(x) is the (possibly nonlinear) output
measurement map. By analogy to the linear case,
Wy (x) is called the nonlinear observability matrix. If
the system is observable for all X in a set S, then we say
that the system is observable on the set S. The system
with input is considerably more difficult to analyze
because an input u(t) can cause two different initial
conditions to produce identical output trajectories. In
this case, we say that u(¢) is a singular input (Gibon-
Fargeot et al., 1994).

By treating u and y,, as known signals, the nonlinear
observability matrix for (7) can be written as:

C

Co(u, yp)

Wo(u, ym) = (11)

Cot" ™ty Ym)

If the system remains at rest (u(t) = i, y,(t) = y,), the
observability matrix W, is independent of time, and
the nonlinear system is globally observable if and only
if Wy (i, y,,) is full rank. For the general time-varying
case, the nonlinear system is locally observable at the
point (i, y,,) if and only if Wy (@, y,,) has rank n. In
most cases, observability cannot be checked a priori
since values of u(t) and y,,(t) are not known.
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Table 1. Parameter values for the fluidized bed reactor
model

Parameter Value Parameter Value
i 19.1172 by 12.0169

B 1.1626 b, 0.1388

B 0.6747 ¢y 0.2646

B 1.1626 AH,, 1.5165¢ + 06
a, 0.0014 AH,, 1.1521e + 06
a, 0.01 AH,; 2.6885¢ + 06
as 0.0005457 kiy 0.1186e-04
a, 0.6265 kyy 0.0525¢-04
as 12847 ks 0.0509e-04
T* 33.1115K y* 2

F* 1 m3/s T, 633K

3.3. Calculation of the observer gain

Recall that the nonlinear observer (8) yields the
error dynamics (9). We seek a nonlinear observer gain
k(u, y,,) which allows the spectrum of A4y (u, y,,) to be
assigned arbitrarily. The spectrum should be invari-
ant with respect to u and y, to guarantee certain
stability properties of the observer (see Section 6). If
the system is time invariant, these properties can be
achieved if and only if Wy(i, y,,) is full rank. In the
general time-varying case, the spectrum is assignable
if and only if Wy(u, y,,) is full rank for all (u, y,,) in the
compact set in which the system evolves.

Assuming the nonlinear system is observable, the
remaining problem is to calculate the observer gain. If
the model is low dimensional, the gain often can be
determined analytically by setting the characteristic
polynomial of the error dynamics (9) equal to a
desired polynomial,

det [AI + k(u, y,) C — o(u, ypu)]

=" s A e 0 (12)
where the y; are observer tuning parameters chosen to
make the polynomial Hurwitz. This method is used in
most of the subsequent simulation examples. How-
ever, an analytical solution is difficult to obtain for
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higher-dimensional systems. An alternative approach
is to calculate the gain at each sampling instant by
solving equation (12) using the current values of u and
Vm- As compared to the analytical technique, this
method is computationally expensive since a linear
observer design problem must be solved at each
sampling instant. This approach is demonstrated
when simultaneous state and disturbance estimation
is considered.

In order to simplify the gain calculation, it may be
possible to reduce the order of the observer by elimi-
nating a subset of the state equations when forming
the affine model. The reduced-order observer still
utilizes all available measurements when possible, but
only uses the chosen subset of measured outputs to
form the estimation error. This order reduction is
demonstrated in the following simulation example.

3.4. Simulation example

The proposed state estimation technique is eva-
luated using the fluidized-bed reactor model (5).
Nominal parameters and initial conditions for the
model are given in Tables 1 and 2, respectively. Since
disturbances are not considered in this example, the
term p(x)d can be incorporated into f(x) in the model
equation (1).

3.4.1. Nonlinear controller design. The objective is
to control reactor temperature (x;) with the coolant
flow rate (u). It is easy to verify that the relative degree
r = 2; therefore, the input—output linearizing control-

ler has the following form (Isidori, 1989)
— L2h
U= v— Lyh() ) (13)
Lgth(X)

The “new” input v is chosen as (Henson and Seborg,
1991)

3 3 1
v=—=Lsh(x) =5 —yo) + 5[ (v —y)dt
& & &y
(14)
where y,, is the setpoint, y, is the nominal value of the
output, and ¢ > 0 is the controller tuning parameter.

Explicit expressions for the Lie derivatives L} i(x) and
L,L,h(x) can be found in (Aoufoussi et al., 1992).

Table 2. Nominal values for the fluidized bed reactor model

Physical variable

Nominal value Dimensionless variable

Bed temperature (T,)

Wall temperature (T,,)

Benzene mole fraction (y.)

Maleic anhydride mole fraction (y,,,)

Inlet reactor temperature (7T,()

Inlet coolant temperature (T)

Inlet benzene mole fraction (yy.o)

Inlet maleic anhydride mole fraction (y,,40)
Coolant flow rate (F,)

703.175K x, =(T,—Ty)/T*
572.437K x, =(T,, — Ty)/T*
0.47686 X3 = Vp/V*
0.76672 X4 = Vma/V*
633 K dy=(T,o—Ty))T*
303 K dy=(Teo — Ty)/T*
2 ds = ypzo/y*
0 dy = yma()/y*
0.65437 m3/s u=F/F*
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Full-state feedback is required to implement the
control law. If any state variables are unmeasured,
then an observer is used to provide estimates of those
variables for the controller. The resulting control law
can be represented as,

0= L3 h(y, %)

- - 15)
Ly Ly h(ym, %) (

where the design of v is modified accordingly. The
controller parameter is chosen as ¢ = 10 s. Saturation
constraints are imposed on the input to keep it within
the physically meaningful range (0—1). However, no
constraint handling technique, such as anti-reset
windup (Kendi and Doyle, 1996), is used in the simu-
lations that follow.

3.4.2. Nonlinear observer design. We consider the
problem of estimating the benzene mole fraction (x3)
and the maleic anhydride mole fraction (x,) from
measurements of reactor temperature (x;) and wall
temperature (x,). A reduced-order observer is ob-
tained by basing the estimation error on the reactor
temperature only. It is important to note that the
measurement of the wall temperature is used else-
where (i.e. in the controller and observer equations),
but it is not used to drive the observer. The order
reduction is realized by effectively eliminating the
X, state equation. That is, the state vector of the
observer is defined as:

>

5. (16)

4

=

£ =

>

The x, state equation can be eliminated because it
offers no additional information beyond what the
x; state equation provides. Working from the flui-
dized bed reactor model (5), the matrices in the ob-
server (8) are as follows:

M.J. KURTZ and M.A. HENSON

a locally exponentially stable observer (see Section 6).
The nonlinear observer gains are calculated analyti-
cally by equating the characteristic polynomial of the
error dynamics to the characteristic polynomial A3 +
124% + 71/ + 70, where the y; are chosen to give roots
atr=[—1 —1.1 —1.05]. These poles are chosen
such that the dominant time constant of the observer
is much faster than the controller time constant. Dis-
tinct roots are used to allow a more direct comparison
with the linear observer described below. The gain
matrix k(u, y,,) calculated for the nonlinear observer is
shown in the Appendix.

The nonlinear observer design procedure is analo-
gous to that used for linear systems (Brogan, 1991)
and maintains the computational simplicity of its
linear counterpart. Therefore, it is meaningful to com-
pare the proposed observer and a conventional linear
observer. The linear observer is designed by lineari-
zing the nonlinear model (via Jacobian approxima-
tion) at the nominal operating point shown in Tables
1 and 2. An order reduction is performed as in the
nonlinear case. Specifically, the wall temperature
measurement is treated as an additional measured
input rather than a state variable. The MATLAB
routine PLACE is used to calculate the gains of the
linear observer. This routine does not allow pole
multiplicities greater than the number of outputs;
thus, the poles are chosen to have distinct values:
r=[—-1 —11 —1.05].

3.4.3. Simulation results. The open-loop responses
of the linear and nonlinear observers to an initial
condition error are shown in Fig. 1. The initial error is
+ 0.1 for the benzene mole fraction and — 0.2 for the
maleic anhydride mole fraction. The responses are
comparable for the benzene estimates, but slightly
better estimates of maleic anhydride mole fraction are
obtained with the nonlinear observer. Figure 2 shows

0 a3[k1fAHr1£1(x1)+k3fAHr3£3(x1)] a3k2fAHrzfz(x1)

a(u, ym) =| 0
0 ask1f51(xl)

ay(dy — xq1) + az(x; — xq)
Qqd; 5

:8(”5 ym) =

a4d4

c=1

o
Ym = .
[ X2
Note that the matrices are not a function of the input
due to the elimination of the x, state equation. It is
easy to show by the tests discussed above that the

reduced-order system is locally observable around the
nominal values given in Table 2 and, therefore, yield

0 0],

(17)

—ag — as[kyEq(x1) + k3 pE&3(x1)]

0 ;

— a4 — asszéz(xl)

results for the same initial condition error with a
— 0.1 change in coolant flow rate at t = 0. The esti-
mates of the linear observer do not converge to the
true values since the system moves from the region
where the linear model is valid. Note the large error
produced by the linear observer for the maleic
anhydride mole fraction. The nonlinear observer,
however, rapidly converges to the true values.
Closed-loop responses of the observer/controller
combinations are shown in Figs 3 and 4. Stabilization
of the nominal point in the presence of a + 0.1 initial
condition error in the benzene mole fraction and
a — 0.2 initial condition error in the maleic anhydride
mole fraction is shown in Fig. 3. Reactor temperature
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=
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=

0.55 1 | | 1

0 2 4 6 8 10

Fig. 1. Open-loop responses to an initial condition error.

is effectively controlled with the controller utilizing
the nonlinear observer. The response of the controller
utilizing the linear observer is oscillatory, but conver-
gence to the desired setpoint eventually is achieved.
However, the state estimates produced by the linear
observer are much less accurate despite the small
changes in reactor temperature. The error in the
maleic anhydride mole fraction is especially large,
indicating the possibility of problems for more severe
tests such as setpoint or disturbance changes. On the
other hand, the nonlinear observer quickly converges
to the true values, thus yielding an output that only
slightly deviates from the setpoint.

The responses of the observer/controller combina-
tions to a + 33 K setpoint change and the same
initial condition errors as in the previous test are
shown in Fig. 4. The response obtained when the
controller has full-state feedback also is shown. The
nonlinear observer yields an output response almost
identical to that in the full-state feedback case. When

Time (s)

the linear observer is employed, the closed-loop
system is unstable due to the input encountering the
saturation constraints. This behavior is attributable
to the poor estimates produced by the linear observer
which, in turn, is a result of the linear model used for
observer design.

4. Disturbance estimation

Now we consider the estimation of unmeasured
disturbances under full-state feedback. The distur-
bances are treated as unmeasured state variables and
estimated using a nonlinear observer designed for
the augmented system (3). The design is simplified
considerably by exploiting the affine structure of the
augmented system.

4.1. Basic design procedure

As in the state estimation problem, it is convenient
to rewrite the augmented system to simplify the
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development of the observer. The model (3) can be
written as,

Z. = ONC(M, ym)z + E(u, ym)’
. (18)

where z is the (n + g)-dimensional vector of aug-
mented state variables defined by

Z:m.

Because we are considering full-state feedback (y,, =
x), the matrices in equation (18) are

0
) = [O ! ((y)'")}

S Ow) + g(ym)u
0 9

(19)

B, yu) = (20)

C=I[I, 0]

The nonlinear observer for the augmented system
(18) is constructed as,

2= G, yu) 2 + Bty yu) + Kt y) (v — C2) (21)

where 7 denotes the estimated state vector and k is
a nonlinear observer gain matrix that depends only
on measurable signals (u, y,,). If the estimation error is
defined as e = z — Z, then the observer error dynamics
can be written as:
¢ = [, ym) — k(u, yu) Cle = Ao(u, ywe  (22)
As before, the objective is to design the observer
gain k(u, y,,) such that the matrix 4,(u, y,,) has arbi-
trary, constant eigenvalues. It should be noted
that the dimension of the augmented system
does not necessarily determine the complexity
of the observer design problem. Under full-state
feedback, a number of chemical process systems have
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Fig. 3. Closed-loop stabilization in the presence of an initial condition error.

a special form, or can be put into this form by order
reduction, such that the observer gains can be more
readily determined analytically. This is discussed
in Section 4.3.

4.2. Observability

We seek to determine conditions under which the
eigenvalues of the matrix Ao(u, y,) can be placed
arbitrarily. As expected, the conditions are related to
the observability of the augmented nonlinear system
(18)—(20). The augmented system is locally observable
at the point x if the nonlinear observability matrix
Wo(x) has full rank at x = x (i.e. rank (W) =n + q)
(Isidori, 1989). Treating u and y,, as known signals,

the observability matrix assumes the following form
in this case:

I, 0
0 p(ym
Wolbw) =[O0 0 (23)
0 0

Since p(y,,) € R"*4, it follows that the observability
matrix is full rank if and only if p(y,) has rank gq.
A necessary condition for this to hold is that n > q.
Hence, the number of estimated disturbances cannot
exceed the number of state variables. In general, W, is
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an implicit function of time, and the system is locally
observable at the point j,, if and only if p(y,) has
rank q. The system is observable on a set S if p(y,,) has

rank q for all y,, €S.

4.3. Reduced-order observer
The full-order observer presented above uses all the
state equations of the augmented system. As a result,
the observer has dimension n + ¢. It is possible to
construct a reduced-order observer if the number of
state variables (n) is strictly greater than the number
of estimated disturbances (g). Using observability
arguments, it is easy to show that the minimal order
possible is 2g. Under full-state feedback, the order
reduction allows the error matrix to be partitioned as,

AU, Yi)

All(u’ ym) :|
AZZ(u’ ym)

Az (U, ym)

Ao(u, ym) = [ (24)

where each matrix A4;;is square. For some systems this
block structure greatly simplifies the calculation of the
observer gain matrix, as discussed below.

The order reduction is performed by using a subset
of the process state vector to form the augmented

state vector,

where we have assumed, without loss of generality,
that the first [ state variables are chosen. The reduced-
order augmented system is represented as,

W =3t yu) W+ B, v, (25)

v

Ym

(@S

w,
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where weR'* and the “*” is used to denote sub-
matrices of the full-order matrices in equation (18).
The matrices in equation (25) have the following form
for the full-state feedback case (y,, = x):

0 p(ym
a(u,ym){o w )},
B y) = [f (Vm) JE) g(ym)u} ) 26)
C=[I O0].

Observability of the reduced-order augmented
system can be checked using the methods presented
earlier. More precisely, the observability test deter-
mines whether a particular order reduction is valid. It
follows that the system is observable if and only if the
reduced-order matrix p(y,,) has rank g. This result
indicates that it is always possible to perform an order
reduction under full-state feedback as long as n > ¢
and the original system is observable. If p(y,) has
rank g then an [ x g (¢ < I < n) submatrix of p(y,,) with
rank g can be extracted. The reduced-order system is
formed based on this submatrix of p.

There is a particular class of systems that admits an
order reduction such that the observer gain calcu-
lation is simplified considerably. This is possible when
P(ym) 1s either an upper or lower triangular matrix.
By choosing particular elements of the gain matrix
k(u, y,,), the matrix Ay(u, y,) has the following form
when p(y,,) is upper triangular,

kl s Ym
a(u,ym)—[ .y )} i, 0]

ko(tt, yrm)
[ — ki, 0 pu P1q)
_ 0 e =kl 0 P
— k3 0 0
| 0 e =k, 0 0 i
= M(u, yp) (27)

where the dependence of the matrix elements on u and
ym has been omitted for convenience. The following
property of matrix determinants is very useful for this

system:
A B
T =
<)

If
with A, B, C, D all upper or lower triangular matrices
of equal dimension j, then:

det(T)-det([a“ b“})det([a” b“D
c11 diq C2z da
...detq“ff bﬂ]).

ST

1451

Because the matrix AI — M has this special form, it
follows that:

det(Al — M) = (A2 + ki, 2 + p11k?y)
X (22 + kdsr A + pask3s) -+

By factoring the desired polynomial into quadratics,
the observer gains are easily calculated by equating
the corresponding coefficients. Note that there is con-
siderable freedom as to which roots are assigned to
which gains.

Another potential disadvantage of the full-order
observer is that unmeasured disturbances that would
be decoupled by a standard input—output linearizing
controller may no longer be decoupled due to interac-
tions between the controller and the estimator. In the
full-state feedback case, it may be possible to perform
the order reduction such that n—q of these distur-
bances remain decoupled despite the introduction of
the estimator.

4.4. Simulation example

The proposed disturbance estimation technique is
evaluated using the fluidized bed reactor model. The
input-output linearizing control law based on the
augmented model (18) is the same as that derived
in the case of state estimation since constant dis-
turbances are assumed. The implementation of the
controller, however, is different because full-state
feedback is used, and disturbance estimates generated
by the nonlinear observer are used directly in the
control law.

4.4.1. Nonlinear observer design. We estimate the
inlet reactor temperature (d,) and inlet benzene mole
fraction (d5) from the available state measurements. If
the entire process state vector is used to drive the
observer, then the matrix p(y,) in equation (20) is

aq 0
0 0
PO ={ 4 , (28)
Qg
0 0

It is clear that estimates of d; and d3 can be generated
by using only the x; and x; state equations. That is,
by choosing the reduced state vector w as,

(29)

a reduced-order observer can be constructed with the
reduced-order disturbance matrix:

o - aq 0
p(ym)—[0 aj-

By utilizing only the diagonal elements of the gain
matrices kq(u, y,,) and k,(y, y,) , the error dynamics of
the reduced-order system can be put into the special

(30)
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form (27), thus making the calculation of the observer
gains almost trivial. In this case, the gain matrix is,

M.J. KURTZ and M.A. HENSON

where the r; are the desired poles of the error dyna-
mics. For the simulation studies in this section, the
polesarechosenasr=[ —1 —11 —1.05 —1.15].

A
iy (1) As before, the reason for the choice of distinct values is
k(u, yn) = 0 k2, to conform to the design of the linear observer so that
£l m. . . . . . . .
ki 0 a more direct comparison is possible. It is interesting
0 k3, to note that, in this case, the error dynamics (22)
- _ depend on constant matrices. Therefore, placement of
—(ry +12) 0 the eigenvalues in the open left-half plane guarantees
global exponential stability. In general, this condition
0 —(r3+rg) does not hold and stability of the observer requires
= Fits (31)  stronger conditions (see Section 6).
o 0 For the sake of comparison, a linear estimator is
! Fals designed using a linear model obtained via Jacobian
0 da approximation of the reduced-order augmented
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Fig. 5. Closed-loop responses for changes in estimated disturbances.



model (25)-(26) at the nominal operating point.
The poles of the estimator are placed at r=
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[—1 —11 —1.05 —1.15].

4.4.2. Simulation results. Figures 5 and 6 compare
the disturbance rejection performance of three alter-

%(U, Ym) = [

native control schemes, all of which utilize the input—

0
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augmented system can be written as equation (18)
with the matrices having the form:

F2(0m) + g2(ym)u p(ym)}
0

output linearizing controller. The control systems o, yw) p(ym)

differ only with respect to the type of disturbance = 0 o |

estimator used. The three schemes considered use:

(i) a nonlinear estimator; (ii) a linear estimator; and ~ S1m) + g1(ym)u B, ym)

(iii) no estimator. Figure 5 shows closed-loop res- B, yu) :[ 0 :|E[ 0 :| (32)

ponses for disturbances which are explicitly estimated.
A —33.1 K change in the inlet reactor temperature C=[Cc 0]
occurs at t = 10 s, followed by a + 0.2 change in the

inlet benzene mole fraction at t = 50 s. Each of the
controller/estimator combinations handle the inlet
reactor temperature disturbance quite easily. How-
ever, the control system with the nonlinear distur-

bance estimator clearly outperforms the other

schemes for the inlet concentration change as a result
of improved disturbance estimates. The responses of
the controller/estimator combinations to a + 66.2 K
change in the inlet coolant temperature are shown in
Fig. 6. It is important to note that this disturbance is
not measured or estimated. While all three estimators

5.1. Observability

produce good responses, this test indicates that the 7+ q):
nonlinear estimator has some desirable robustness

characteristics.

5. State/disturbance estimation

Finally, we consider simultaneous estimation of
state variables and unmeasured disturbances which

a(a5 .)77") p(ym)
C

appear linearly in the process model. This case is

Assuming the system is observable, the observer is
constructed as in the previous section on disturbance
estimation, thereby yielding the error dynamics (22).
The gain calculation also is performed as before.

Observability of the augmented system (18) and (32)
is guaranteed locally at the point (i, j,,) if and only if
the following conditions hold: (i) the original system
without disturbances is observable at (i, y,); and
(ii) the following matrix is full rank (i.e. has rank

0 } (33)

This result can be proven using standard rank condi-
tion tests [ 6], which require that the following matrix
is full rank for all values of the variable 1:

referred to as “partial-state feedback” since it is assu- (il ) = 2L (V)
med that some subset of the state variables is directly 0 — Ay |. (34)
measurable (or inferred from measurements). The C 0
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Fig. 6. Closed-loop responses for a change in an unestimated disturbance.
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The first condition guarantees that the first column of
matrix (34) has rank n. This means an additional
q independent columns must be obtained from the
second column, which is ensured if 4 is nonzero. The
second condition is needed to guarantee a total of
(n + g) independent columns if A = 0. It is obvious
that a necessary condition for the second condition to
be true is that the matrix p(y,,) has rank g. Thus, the
number of measured state variables must be greater
than or equal to the number of disturbances that are
estimated.

5.2. Reduced-order observer

Note that the full-order observer has dimension
n + g. It may be possible to construct a reduced-order
observer if the number of measured outputs (m) is
strictly greater than the number of estimated distur-
bances (¢). In this case, it can be shown that the
minimal order possible is 2q + n — m. Assuming that
| state variables are chosen to form the closed-loop
observer, the reduced-order augmented system is
represented by equation (25) where the matrices have
the following form:

M.J. KURTZ and M.A. HENSON

rank | + ¢

oty Ym)  P(Vm)
[ c 0 ] . (36)
Thus, the first step is to perform the reduction such
that the reduced-order system without disturbances is
observable. The next step is to check the observability
of the reduced-order system with disturbances. This
procedure is demonstrated below.

5.3. Simulation example

The proposed method for simultaneous estimation
of unmeasured state and disturbances variables is
evaluated using the fluidized-bed reactor model (5).
The input—output linearizing controller design is the
same as that described in Section 3.4. The only differ-
ence is that disturbance estimates are utilized directly
in the control law.

5.3.1. Nonlinear observer design. Consider the pro-
blem of constructing estimates of the unmeasured
state variables (x5, x4) and disturbances (d;, d5) from
the measured outputs (x;, x,). The resulting aug-
mented system is observable if the following matrix is
full rank:

0 0 aslkiAH, &i(x1) + k3pAH,385(x1)] asky s AH,»C5(x4) ap 0
0 0 0 0 0 O
0 0 —ay—aslki;&i(x1) + kapls(xq)] 0 0 ag (37)
00 askyp&i(xy) — ayxg — askyplsa(xy) 00
10 0 0 0 O
0 1 0 0 0 O
9 _fv'z(ym) + Go(ymu P(Vm) It is obvious that the matrix is rank deficient and,
(ut, ym) = 0 0 therefore, the augmented system is unobservable.
- However, the system that results when x3, x4, and
[y B d5 are estimated is observable based on the techniques
= 0 o | described above. These three variables can be esti-
y mated with a reduced-order observer which utilizes
o [ i) + G1(ymu only x; to drive the error dynamics. This is possible
B, ym) = 0 ’ (35 because the X, state equation does not provide new

C=[C o]

The “~” is used to denote submatrices of the full-order
matrices in equation (32).

In the partial-state feedback case, it cannot be
guaranteed that an order reduction can be performed
such that the reduced-order system is observable. The
requirements for observability are: (i) the reduced-
order system without disturbances must be observ-
able; and (ii) the following matrix must have full

information on the estimated variables. The
x, measurement, however, is used clsewhere in the
observer.

The order reduction is performed by defining the
following state vector:

X1
il (38)
Xq

dy
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This gives the following matrices for design of the algorithm PLACE. The poles are placed at r =
reduced-order observer (35): [-1 —11 —1.05 —1.15]. This approach is sim-

0 az[ki,AH, E1(xq) + k3 AH, 3E5(x1)] azk,;AH,,E5(x4) 0

5 = 0 —dy — as[kypEi(xy) + kar&a(xy)] 0 a4
0 askypE(xy) — a4xq — asky;Cr(xq) 0 ’
0 0 0 0
a(d; — x1) + ax(xz — xy) ple to implement, but it is computationally expensive
v 0 . as compared to the analytical method described
B= 0 ,C=[1 0 0 0]. earlier.
0 It is important to note that if nonlinear observer

39 design is not possible because of structural unobserva-
(39) bility, then linear observer design also will not be
The nonlinear observer gains are calculated at each  possible. This is a consequence of the nonlinear
time step using the MATLAB linear pole-placement  observability tests reducing to the linear case when
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Fig. 7. Closed-loop responses for an initial condition error and a change in an estimated disturbance.
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dealing with a linear model (Isidori, 1989). maleic anhydride mole fraction, while the disturbance
Consequently, the linear observer is designed isa + 0.2 change in the inlet benzene mole fraction at

based on the Jacobian linearization of the reduced-
order system described above. The observer poles are
placed in the same locations as the nonlinear observer
poles.

5.3.2. Simulation results. We compare three con-
trol systems, each of which uses the input—output
linearizing controller. The first system uses the non-
linear observer to provide state and disturbance
estimates, while the second system uses the linear
observer for simultaneous state and disturbance
estimation. The third system uses the nonlinear
observer to provide state estimates, but disturbance
estimation is not attempted.

The responses of the three closed-loop systems to
a simultaneous initial condition error and disturbance
are shown in Figs 7 and 8. The initial condition error
is + 0.1 in the benzene mole fraction and — 0.2 in the

t = 0. As discussed below, the response obtained with
the nonlinear observer without disturbance estima-
tion is not shown in this case. The nonlinear observer
with disturbance estimation produces a vastly supe-
rior response as compared to the linear observer
(Fig. 7). This behavior is attributable to the nonlinear
observer producing more accurate state and distur-
bance estimates (Fig. 8), which allows the closed-loop
system to avoid input constraints. The saturation
constraints cause the undesirable response shown for
the linear observer. The response of the closed-loop
system utilizing a nonlinear observer only for state
estimation is not shown because it is even worse than
the response obtained with the linear observer. For
instance, the linear observer with disturbance estima-
tion yields oscillations around 790 K while the
nonlinear observer without disturbance estimation
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Fig. 9. Closed-loop responses for an initial condition error and a change in an unestimated disturbance.

produces oscillations at a higher value of approxi-
mately 900 K.

In Fig. 9, the three control systems are subjected to
a + 33.1 change in the inlet reactor temperature at
t =10s in addition to the same initial condition
error used in the previous test. It is important
to note that this disturbance is not measured or
estimated. The inputs generated by the control
systems which utilize the linear observer with
disturbance estimation and the nonlinear observer
without disturbance estimation encounter the
saturation constraints, resulting in poor performance.
By contrast, the nonlinear observer with disturbance
estimation easily handles the disturbance. The
estimates are not shown since all the observers,
whether linear or nonlinear, necessarily yield biased
predictions. This test indicates the proposed method
has some reasonable robustness to plant/model
mismatch.

6. Stability of the nonlinear observer

The simulation results presented in the previous
sections demonstrate that the proposed estimation
technique can lead to excellent closed-loop perfor-
mance. We now investigate the stability of the
nonlinear observer. More precisely, conditions
under which the error dynamics given by equation (9)
are stable around the zero steady state are explored.
The results can be extended to disturbance estimation
and combined state/disturbance estimation in
a straightforward manner. We are mainly concerned
about stability under a constant input, although the
results can be extended to a time-varying input
if observability is retained. We assume that the
nonlinear system is observable, which allows the
observer gain matrix k(u, y,,) to be chosen such that
the matrix Aq(u, y,) has constant eigenvalues with
negative real part.
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The first result demonstrates that the observer (8) is
stable in a small region around a nominal point.

Theorem 1. The zero steady state of the observer error
dynamics (9) is locally stable at any point (i, y,,) where
the nonlinear system (7) is observable.

The proof follows by examination of the error
dynamics ¢é = Ay(#, y,,) e obtained by linearizing
around the point (u, y, e) = (i, j,,» 0). The observer
design guarantees that A[Aq(@, y,)] <O, which
yields local exponential stability. There are counter-
examples (Khalil, 1996; Slotine and Li, 1991) that
show the eigenvalue condition on Ay(u, y,) is not
sufficient to ensure global stability of the error dynam-
ics. Therefore, additional assumptions are required to
guarantee stability in a larger operating region.

The next result uses the theory of slowly varying
systems to extend the region of stability.

Theorem 2. If the following conditions hold:

1. yu is slowly varying,

. Ao(y) is continuously differentiable in y',
Ao (y') is bounded for all y',

. (0/0y") Ao (') is bounded for all y',

. The nonlinear system (7) is observable,

TR VN

then the zero steady state of (9) is exponentially stable.

The proof of Theorem 2 follows directly from
Lemma 5.12 and Example 5.13 in (Khalil, 1996) and
the fact that the eigenvalues of 4,(y’) are chosen to
lie in the open left-half plane for every )’. Global
exponential stability is achieved if the conditions hold
globally. If the conditions hold in some region, then
exponential stability is guaranteed only if the system
evolves within that region. It should be noted that for
many chemical processes, the system outputs evolve
only within a finite region (e.g. temperature does not
escape to infinity). Thus, condition (2) will imply
conditions (3) and (4) since a continuous function of
bounded variables is itself bounded.

To use Theorem 2, it is necessary to characterize
when y,, is “slowly varying”. A bound on y,, is found
by constructing the following Lyapunov function
based on the linear, “frozen” system (Khalil, 1996)

V =xTP(y)x

where y' is a “frozen point” of the system. One of the
properties of the “frozen” matrix P()’) is that its deri-
vative with respect to y’ is bounded:

)
P(y)

-~ <c
ay

By taking the derivative of ¥V with respect to time and
determining the conditions required for negative defi-
niteness, it can be shown that y,, must be strictly less
than 1/c. This condition, unfortunately, is difficult to
verify in practice.

Other stability results are potentially applicable. For
example, the error dynamics are globally exponentially-
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stable if the matrix 4 + A" has eigenvalues that remain
in the open left-half plane (Slotine and Li, 1991). Unfor-
tunately, this result is not particularly useful because it
is difficult (and sometimes impossible) to design the ob-
server gain matrix k such that the condition is satisfied.
Additional stability theorems for linear time-varying
systems can be found in (Hahn, 1963, 1967). However,
the conditions imposed usually are very difficult to
verify, especially for high-dimensional systems.

7. Summary and conclusions

A state and disturbance estimation technique for
an important class of nonlinear systems has been
proposed. By considering unmeasured disturbances
as additional state variables, a nonlinear closed-loop
observer is designed to provide estimates of unmea-
sured state and disturbance variables. The approach
is restricted to process models in which the unmea-
sured variables appear (or can be made to appear) in
an affine manner. This class of models includes all
bilinear systems, as well as a number of chemical
reaction processes. The design of full-order and
reduced-order observers was discussed, and the stabi-
lity of the nonlinear observer was analyzed. The pro-
posed technique was shown to provide significantly
improved open-loop and closed-loop performance as
compared to linear methods when applied to a
fluidized bed reactor model.
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Appendix

The observer gains are more easily represented by
defining the following functions:
a(x1) = as[kisAH:E1(x1) + kapAH,3¢3(x1)],
b(x1) = askayAH,285(x1),
c(x1) = —as — as[kis&1(x1) + kap&s(x1)],
d(x1) = askisE1(x1),
e(x1) = —as — askyp&a(x1)

Then the observer matrix has the following form:

—ki(x1) a(x1) b(x1)
Ao(x1) =| —ka(x1) clx1) O
—ka(x1) d(x1) e(x1)

The associated characteristic polynomial is,
73 4+ [k — ¢ — €]A? + [bks + aky — c(ky — e) — kie] A
+ [cek1 + bdks — bcks — aek2]

where the dependence of the functions on x; has been
omitted for simplicity. This is equated to the desired
characteristic polynomial, 2% +7,4% + 714 + 70, to
give the following expressions for the observer gains,

c(x1)71 + vo 4 (x1)72 + A (xy)

ky(xqy) =

b(xy)d(x;) — a(xy)e(xy) + a(xy)c(xy)’

k3(xy) =

Perrier, M. Etude de la cinetique d’oxidation du bensene en
anhydride maleique dans un reactor tubulaire integral.
Master’s thesis, Ecole Polytechnique de Montreal,
Montreal, Canada, 1982.

c(xp)e(xy)(y2 + c(xy) + e(xq)) + (b(xy)d(xy) — alxq)e(xq)) kz(x1) — 7o '

b(x1)c(xy)

As long as the system is observable, the denominators
in the k, and k3 equations are bounded away from
zero and the gains are well defined.



