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Abstract

We investigate the sensitivity of an inverse population balance equation (PBE) modeling technique for extracting single particle functions
from transient size distribution measurements. A dynamic PBE model of a turbulently agitated batch emulsification vessel is used to generate
volume size distribution data under the assumption of negligible drop coalescence. The distribution data are subjected to various types of error
consistent with available measurement technologies and then introduced as input data to the inverse PBE modeling algorithm, which includes
validation of the self-similar assumption. The errors considered include measurement noise, data skewed towards smaller or larger drops,
skewed data due to the presence of large dust peaks, and reduced resolution caused by data binning. For each case, the computed functions
for the drop breakage rate and the distribution of daughter drops are compared to the actual functions to assess the impact of input data errors
on the effectiveness of the inverse PBE modeling approach. The type of measurement errors considered generally lead to underprediction of
the breakage rate and, consequently, to overprediction of the number of large drops. Because the estimated and actual breakage rates tend to
converge at small drop sizes, the inverse algorithm generates accurate predictions of the drop size distribution at sufficiently long batch times
when small drops dominate. Implications for our future work on PBE modeling of drop size distributions in pharmaceutical emulsions prepared
with high pressure homogenization are discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate systems are ubiquitous in the agricultural, chem-
ical, polymer, food and beverage, consumer products and phar-
maceutical industries. Emulsions are common dispersed phase
systems with diverse applications that include processed foods,
polishes, waxes, agricultural sprays and road surfacing (Becher,
2001, Chapter 8). We are particularly interested in pharmaceu-
tical applications where hydrophobic drugs are encapsulated
in oil-in-water emulsions and delivered to patients via oral
administration, parenteral delivery, ophthalmic medicine, and
topical and transdermal creams (Marti-Mestres and Nielloud,
2002). Important criteria for the formulation of pharmaceutical
emulsions include biocompatibility, biodegradability, toxicity,
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and targeting to specific organs and tissues to improve drug
effectiveness and reduce undesirable side effects. Thus, the drug
properties, emulsion characteristics and administration route
must be matched properly for each application (Nielloud and
Marti-Mestres, 2000).

Pharmaceutical emulsions are often manufactured by sub-
jecting a coarse emulsion containing a small molecule, hy-
drophobic drug to high pressure homogenization where the
dispersion is forced through a small orifice under very high
pressure. The homogenization process produces an emulsion
with a distribution of drop sizes that is determined by the
chemical formulation, the initial coarse distribution, and the
homogenizer operating conditions (Becher, 1983, Chapter 2;
Floury et al., 2004a,b; Soon et al., 2001; Walstra, 1993). Like
other particulate systems, the final properties of a pharmaceu-
tical emulsion are a complex and often unknown function of
many different variables. Clinical studies have shown that the
drop size distribution has a significant impact on emulsion
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properties and the ultimate effectiveness of the drug delivery
system (Malmsten, 2002). For example, the biodistribution of
the encapsulated drug is strongly affected by drop size as well as
complex physiological processes (Nielloud and Marti-Mestres,
2000, Chapter 5). In addition to exhibiting long-term stability
and producing the desired drug release kinetics, the emulsion
should usually be nearly monodisperse with a mean drop size
chosen to target specific tissues and organs.

The population balance equation (PBE) modeling framework
has been used to describe the evolution of the particle size
distribution in systems ranging from liquid–liquid dispersions
to microbial cell populations (Alexopoulos and Kiparissides,
2005; Alexopoulos et al., 2004; Chen et al., 1998; Coulaloglou
and Tavlarides, 1977; Kostoglou et al., 1997; Kostoglou and
Karabelas, 1997; Ramkrishna, 2000). Representative applica-
tions of PBE modeling to dispersed phase systems include the
description of drop interaction processes in continuously ag-
itated liquid–liquid dispersions (Alopaeus et al., 1999, 2002,
2003; Coulaloglou and Tavlarides, 1977; Kostoglou and Kara-
belas, 2001; Sovova, 1981; Sovova and Prochazka, 1981), the
simulation of drop size distributions for liquid–liquid extrac-
tors (Ruiz et al., 2002; Ruiz and Padilla, 2004; Simon et al.,
2003), the prediction of drop size distributions in a continu-
ous flow screw-loop reactor (Chen et al., 1998), simulation of
bubble size distributions (Wang et al., 2006) and the emulsi-
fication of coarse suspensions or formation of small vesicles
in ultra-high velocity jet homogenizers (Maguire et al., 2003;
Soon et al., 2001). Successful application of the PBE modeling
approach requires knowledge of functions for phenomena such
as particle formation, aggregation, and breakup (Chen et al.,
1998; Coulaloglou and Tavlarides, 1977; Ramkrishna, 2000;
Ruiz and Padilla, 2004; Tsouris and Tavlarides, 1994). Because
functions that accurately predict experimental data are difficult
to develop from fundamental principles, several inverse PBE
techniques for extracting the single particle functions from par-
ticle distribution data have been developed (Kostoglou et al.,
1997; Kostoglou and Karabelas, 2005; Mahoney et al., 2002;
Sathyagal et al., 1995).

In this paper, we consider an inverse PBE modeling method
developed by Ramkrishna (2000) and co-workers, which is
based on the concept of self-similar solutions (Kumar and
Ramkrishna, 1996a,b; Ramkrishna and Mahoney, 2002; Ramkr-
ishna et al., 1995). Transient particle size distribution data are
first tested for self-similarity, and then used for non-parametric
reconstruction of the functions for drop breakup and the cre-
ation of daughter drops if the self-similarity property holds.
This inverse PBE method has been applied to both simulated
and experimental data for various dispersions prepared with
turbulent agitation in well-mixed batch vessels (Narsimhan et
al., 1980, 1984; Ramkrishna, 1974; Sathyagal and Ramkrishna,
1996; Sathyagal et al., 1995; Wright and Ramkrishna, 1992).
Because different combinations of single drop functions can
provide agreement with the limited transient drop size distri-
bution data typically available for estimation, the inverse prob-
lem is inherently ill-posed (Ramkrishna, 2000). Consequently,
function approximation results are expected to be highly sen-
sitive to the quality and quantity of the input data.

Techniques for measuring emulsion drop size distributions
include optical microscopy and various light scattering tech-
niques. Dynamic light scattering (DLS) (Schmitz, 1990) allows
for measurement of droplets in the 10–1000 nm range, and is
ideal for many pharmaceutical applications that target droplets
in the 100 nm range. These small droplets cannot be observed
by optical microscopy. In addition, DLS enables much larger
sample volumes to be probed than is possible using optical mi-
croscopy. However, DLS measurements are subject to various
errors that degrade data quality like sensor noise. Because larger
drops scatter more strongly than small drops, DLS has a ten-
dency to skew the size distribution towards larger drops. Dust
particles can introduce artificial peaks at large drop sizes that
may be difficult to remove. Automated signal filtering can inad-
vertently remove signals associated with large droplets, while
emulsion sample filtering can induce changes in the drop size
distribution due to shearing. The calculation of the autocorrela-
tion function and subsequent inversion to produce the particle
size distribution involves binning operations that reduce reso-
lution. While numerous application studies of the inverse PBE
approach have been reported, we are not aware of any investi-
gations focusing on the effects of such input data errors.

In this paper, we utilize a previously published model of a
well-mixed batch emulsification vessel (Sathyagal et al., 1995)
to examine the effect of transient drop size distribution mea-
surement errors on the quality of the function approximation
results obtained with the inverse PBE method of Ramkrishna
and co-workers. The remainder of the paper is organized as
follows. The PBE model and the inverse PBE method are de-
scribed in Sections 2 and 3, respectively. New results on the
sensitivity of the PBE method to input data errors are presented
and discussed in Section 4. Finally, we summarize our main
findings and discuss their implications for PBE modeling of
drop size distributions in pharmaceutical emulsions prepared
with high pressure homogenization in Section 5.

2. PBE model

The PBE describes the evolution of the drop size distribution
that results from particulate processes such as formation, ag-
gregation and breakup. We utilize a volume structure model in
which drops are characterized by their volume. The population
balance requires that for any volume element dv, the number of
drops moving in and out of the element are balanced by drops
accumulating within the element. Let n(v, t) dv represent the
number of drops per unit volume of the dispersion at time t with
volumes between v and v + dv. We neglect drop coalescence
by assuming a small dispersed phase volume fraction and the
presence of large amount of surfactant.

This formulation yields the following PBE for a well-mixed,
batch vessel (Coulaloglou and Tavlarides, 1977; Ramkrishna,
2000):

dn(v, t)

dt
= − �(v)n(v, t)

+
∫ ∞

v

�(v, v′)�(v′)�(v′)n(v′, t) dv′, (1)
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Fig. 1. Inverse population balance modeling results for perfect drop volume distribution data. (a) Transient number drop distributions. (b) Predicted and actual
drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative drop distributions. (d) Predicted and actual transient
number drop distributions.

where �(v) is the breakage rate (fraction of drops of volume
v breaking per unit time), �(v, v′) is the probability density
function (probability of forming drops of volume v from
breakage of drops of volume v′), and �(v′) is the number
of daughter drops formed by breakage of drop of volume
v′. The initial condition n(v, 0) is the number density of the
coarse emulsion introduced to the vessel and can be measured
experimentally.

For application of the inverse modeling approach of Ramkr-
ishna and co-workers (Ramkrishna, 2000), the PBE model
is conveniently reformulated in terms of the cumulative dis-
tribution rather than the number distribution as in (1). In
this case, the PBE for a pure breakage process assumes the
form:

�F(v, t)

�t
=
∫ ∞

0
�(v′)G(v, v′)�vF (v′, t), (2)

where F(v, t) is the cumulative volume fraction of drops of
volume less than or equal to v at time t, �(v) is the breakage rate

of drops of volume v, and G(v, v′) is the cumulative volume
fraction of drops of volume less than or equal to v formed by
breakage of drop of volume v′. The function G(v, v′) combines
the two functions �(v, v′) and �(v′) in (1).

The PBE model (2) is completed by specifying the breakage
rate �(v) and the daughter drop distribution function G(v, v′).
A wide variety of functional forms have been proposed for dis-
persed phase systems (Ramkrishna, 2000). In this paper, we
employ the functions introduced in Sathyagal et al. (1995) for
drop breakage in a well-mixed dispersion. While these func-
tions were not determined from experimental data, the inverse
PBE method has been extensively studied for this problem un-
der the assumption of perfect input data. We will utilize these
results as the basis for assessing the impact of input data errors
on the quality of the function approximation results. The break-
age rate function used in our analysis has the form (Sathyagal
et al., 1995):

�(v) = 1.2 exp[0.12(ln v + 3.5) − 0.20(ln v)2 − 12.25]. (3)
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Fig. 2. Effect of the drop breakage and daughter drop distribution functions
on the predicted cumulative distribution (t = 5 min). (a) Estimated break-
age function and actual distribution function. (b) Actual breakage function
and estimated distribution function. (c) Estimated breakage and distribution
functions.

The assumption of self-similarity allows the daughter drop dis-
tribution function to be represented compactly as

G(v, v′) = g(x) = g

[
�(v)

�(v′)

]
. (4)

We have used the following function in our analysis (Sathyagal
et al., 1995):

g(x) = 8
3

√
x − 5

3x0.8. (5)

3. Inverse PBE modeling

The objective of the inverse PBE modeling approach of
Ramkrishna and co-workers (Ramkrishna, 2000, Chapter 6) is
to construct functions for single particle processes from tran-
sient measurements of the particle size distribution. A desir-
able feature of this methodology is that a priori specification of
functional forms is not required. The concept of self-similarity
is exploited repeatedly, starting with the assumption that the
daughter drop distribution function can be represented as a
function of the breakage rate function as in (4). While this
functional form might appear to be highly restrictive, it sub-
sumes power law relationships often used to describe drop
breakage processes (Narsimhan et al., 1980; Sathyagal et al.,
1995). The interested reader is referred elsewhere for a de-
tailed treatment of self-similarity (Ramkrishna, 2000, Chapter
6). In this paper, we investigate approximation of the break-
age rate function �(v) and the daughter drop distribution func-
tion g(x) from transient drop volume distributions obtained
by simulating the PBE model (2) with the functions in (3)
and (4). This simulation approach allows direct comparison
of the approximated and actual functions to assess the im-
pact of input data errors on the effectiveness of the inversion
procedure.

3.1. Breakage rate function

The calculation of the breakage rate function requires testing
of the similarity hypothesis and then determination of the break-
age function if the similarity hypothesis is valid (Ramkrishna,
2000, Chapter 6; Sathyagal et al., 1995). Curves of ln t versus
ln v are plotted for different values of the cumulative distribu-
tion F. The similarity property can be tested by evaluating the
arc lengths of different ln t versus ln v curves using the follow-
ing formula:

s(x) =
∫ x

x0

[
1 +

(
dy

dx

)2
]1/2

dx, (6)

where x = ln v and y = ln t . The arc length calculation re-
quires evaluation and integration of the first derivative. If a
single arc length curve is obtained from the different ln t ver-
sus ln v curves, then the data are self-similar. Typically, self-
similarity is validated by visual inspection of the arc length
curves. We found that each ln t versus ln v curve must be fit
to a different linear or quadratic equation to obtain acceptable
results.
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Fig. 3. Inverse population balance modeling results with six noisy drop volume distributions. (a) Noisy and actual transient number drop distributions. (b)
Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative drop distributions. (d) Predicted
and actual transient number drop distributions.

From the arc length equation (6), a relation for the complete
ln t versus ln v curve can be obtained:

d ln t

d ln v
=
[(

ds

d ln v

)2

− 1

]1/2

. (7)

This relation can be used to evaluate the partial derivative in the
following equation, which allows calculation of the breakage
function up to a multiplicative constant �:

�(v) = � exp

[
−
∫ ln v

ln v0

(
� ln t

� ln v

)
F

d ln v

]
, (8)

where � is the breakage function evaluated at the reference
volume v0 used in the arc length calculations: � = �(v0).
The unknown constant � is determined as part of the pro-
cedure for approximating the daughter drop distribution
function.

3.2. Daughter drop distribution function

The calculational procedure for the daughter drop distribu-
tion function utilizes the similarity variable defined as:

� = �(v)t

�
, (9)

where the ratio �(v)/� is obtained from the breakage rate
calculation (8). Application of the similarity transformation
F(v, t) → f (�) to the cumulative form of the PBE (2) yields
the following equation for the similarity distribution �f ′(�)

(Ramkrishna, 2000; Sathyagal et al., 1995):

�f ′(�) =
∫ 1

0

�2

x3 f ′
(

�

x

)
�g(x) dx, (10)

where x = �(v)/�(v′) as in (4). This equation is the basis for
determining the daughter drop distribution function g(x) and
the unknown breakage constant �.
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Fig. 4. Inverse population balance modeling results with twelve noisy drop volume distributions. (a) Noisy and actual transient cumulative drop distributions.
(b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative drop distributions. (d)
Predicted and actual transient number drop distributions.

As suggested in Sathyagal et al. (1995), the unknown product
�g(x) is expanded in terms of orthogonal basis functions chosen
to be the modified Jacobi polynomials (Abramowitz and Stegun,
1964)

�g(x) =
nb∑
i=1

ajGj (x) =
nb∑
i=1

ajx
�Jj (x). (11)

Three basis functions were used for our analysis. We found that
nb = 3 was the minimum number of basis function required
for approximating the distribution function without the need for
regularization (Sathyagal et al., 1995). Because �f ′(�) ∼ ��

for � ≈ 0, the power � can be obtained from the behavior of the
self-similar distribution as � → 0. We found that small, trial-
and-error adjustments in this � value may produce improved
distribution predictions. Once the product �g(x) is determined
via the procedure described below, the constant � is readily
determined since g(1) = 1.

The similarity variable � is discretized to generate {�i} and
the matrix X = {Xij } associated with (10) is defined as

Xij =
∫ 1

0

�2
i

x3 f ′
(

�i

x

)
Gj(x) dx. (12)

As suggested in Sathyagal et al. (1995), the similarity distribu-
tion �f ′(�) was expanded in terms of gamma distributions:

�f ′(�) =
nterm∑
k=1

Ak�
�k−1 exp(−�k�). (13)

We used two-term expansions (nterm = 2) for our analysis. The
unknown parameters (Ak , �k , �k) of the expansion are deter-
mined from the known similarity distribution using nonlinear
regression. By substituting the expansion (13) into (12) and
performing the necessary integration, an explicit formula for
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Fig. 5. Inverse population balance modeling results with transient drop volume distributions skewed towards larger drops. (a) Skewed and actual transient
number drop distributions. (b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.

the elements Xij can be derived (Sathyagal et al., 1995):

Xij=
√

2j

nterm∑
k=1

Ak

j∑
m=1

(−1)m−1 (2j−m)!
(m−1)!(j−m)!(j−m+1)!

× �j−m+�
i

�c(�k+m−j−�, �k�i )

��k+m−j−� , (14)

where �c is the complementary incomplete gamma function.
Let the vector a contain the coefficients aj of the expansion

(11) and define the vector �={�i}=�if
′(�i ). Then the inverse

problem arising from (10) can be written as: � = Xa. This
inverse problem is ill-posed in the sense that small changes in
the similarity distribution �f ′(�) can induce large changes in
the approximated function �g(x). This difficulty is addressed
by posing the inverse problem as a least-squares minimization
problem:

min
a∈Rnb

‖Xa − �‖ (15)

that is solved subject to the following constraints on the daugh-
ter distribution function:

g(x) > 0, g′(x)�0, g′(1) = 0. (16)

The first two constraints ensure that the distribution function is
positive and monotonically increasing. The third constraint re-
sults from the assumption that breakup cannot produce daughter
drops of near zero volume. The minimization problem equation
(15) can be rewritten as

min
a∈Rnb

aTXTXa − 2aTXT�. (17)

The least-squares problem (17) is solved by enforcing the con-
straints (16) at each discretization point �i (Sathyagal et al.,
1995).
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Fig. 6. Inverse population balance modeling results with transient drop volume distributions skewed towards smaller drops. (a) Skewed and actual transient
number drop distributions. (b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.

4. Simulation results and discussion

The number distribution form of the PBE model (1) was
solved numerically by approximating the integral expression
using Simpson’s Rule with 500 equispaced node points, which
was sufficient to obtain a converged solution. This discretization
method was used primarily due to its simplicity and ease of im-
plementation. The daughter drop distribution function G(v, v′)
(4) was converted to the form �(v, v′) used in the number dis-
tribution PBE model. The resulting system of 500 nonlinear
ordinary differential equations describing the evolution of the
number distribution at each node point (vi) was solved using
Matlab integration code ode45. A single simulation run was
used to generate transient drop volume distribution data for the
initial coarse distribution:

n(v) = 1

	
√

2

exp

(
−a(v − �)2

2	2

)

= 1

50
√

2

exp[−5000(v − �)2]. (18)

Unless otherwise stated, the number distributions at six time
points t = 5, 10, 15, 30, 60 and 90 min were converted to cu-
mulative distributions for the inverse algorithm (Sathyagal et
al., 1995). These time points were chosen to concentrate data at
small times when rapid changes were observed and to include
a single data point at a large time when the cumulative dis-
tribution was changing very slowly. In the subsequent figures,
result at only 4 time points are shown for better readability of
the plots. For each test presented below, the cumulative distri-
butions were manipulated before being used as input data to
the inverse algorithm to mimic various types of measurement
errors. Each data was judged to be self-similar by visual in-
spection of the arc length curves and allowed application of the
inversion procedure. The approximate functions for the break-
age rate �(v) and the daughter drop distribution g(x) were
compared directly to the actual functions. The impact of mea-
surement errors were further assessed by performing dynamic
simulation with the approximate functions and comparing the
computed cumulative distributions with the original distribu-
tions obtained with the actual functions.
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Fig. 7. Inverse population balance modeling results with transient drop volume distributions skewed by dust peak. (a) Skewed transient number drop distributions.
(b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative drop distributions. (d)
Predicted and actual transient number drop distributions.

4.1. Perfect data

We first solved the inverse problem with six unaltered, tran-
sient drop volume distributions generated directly from the PBE
model. These data were not manipulated by introducing mea-
surement errors and was used to determine the upper limit of
estimation performance. The term “perfect data” thus denotes
data without any manipulation. Turbulent agitation reduced the
mean drop size and produced a more monodispersed emulsion
than the original coarse emulsion (Fig. 1(a)). Good approxima-
tion results were obtained for both the breakage rate and the
daughter distribution function (Fig. 1(b)) over a wide range of
drop volumes. PBE model simulation with the approximated
functions produced good agreement with the actual cumulative
(Fig. 1(c)) and number (Fig. 1(d)) distributions.

We recalculated the cumulative distributions using two other
combinations of the breakage and daughter distribution func-
tions to assess the impact of each function on prediction accu-
racy. When the approximate breakage function was combined

with the actual daughter distribution function (Fig. 2(a)), the
cumulative distribution (t = 5 min) was skewed towards larger
drops for small drop volumes and skewed towards smaller
drops for large drop volumes. These errors were a direct result
of the breakage rate (Fig. 1(b)), which was slightly underes-
timated for small drop volumes and overestimated for large
drop volumes. When the approximate distribution function was
combined with the actual breakage function (Fig. 2(b)), the
cumulative distribution was skewed towards smaller drops for
small drop volumes. This trend was caused by the distribution
function being skewed towards smaller x values (Fig. 1(b)),
which corresponds to a larger distribution of small drops.

The interpretation of results is more complicated when both
approximate functions were used to generate the cumulative
distributions, which is the case of primary interest. The indi-
vidual errors obtained with the approximate breakage function
(Fig. 2(a)) and the approximate distribution function (Fig. 2(b))
were largely cancelled when the approximate functions were
combined to generate the final distribution (Fig. 2(c)). However,
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Fig. 8. Drop size distribution measurements obtained with dynamic light
scattering for a mineral oil in water emulsion with Pluronic F-68 as the
surfactant. (a) Results for a coarse emulsion obtained with a stator–rotor
device. (b) Results for a processed emulsion obtained with a single pass of
a high-pressure homogenizer.

the effects of the approximation errors were more evident in
the transient prediction (Figs. 1(c), (d)). The distributions were
skewed towards smaller drops at small times due to underpre-
diction of the distribution function, while they were skewed to-
wards larger drops at large times due to underprediction of the
breakage rate.

4.2. Noisy data

To investigate the impact of measurement noise, we cor-
rupted the drop volume distribution data with artificial noise as
follows:

n̄(v, t) = n(v, t) + �(r − 0.5)n(v, t), (19)

where n(v, t) is the number distribution data obtained with the
actual functions (see Fig. 1(a)), r is a random number between

0 and 1, � = 0.3 and n̄(v, t) is the noisy number distribution
data used to generate the input data for the inverse algorithm.
We utilized uniform rather than normal noise to ensure that the
noisy data n̄(v, t) remained positive, which is expected from
any measurement device.

First we solved the inverse problem with six cumulative
distributions generated from the noisy number distributions at
t = 5, 10, 15, 30, 60, and 90 min (Fig. 3(a)). Fig. 4(a) shows
the associated cumulative distributions. The noisy cumulative
distributions had fewer large drops than the noise-free distribu-
tions, leading to underestimation of the breakage rate at large
drop volumes (Fig. 3(b)). More difficult to explain was the
behavior of the daughter distribution function, which produced
a larger number distribution of small drops and a smaller
number distribution of large drops than the actual function
(Fig. 3(b)). These approximation errors were manifested in the
predicted cumulative (Fig. 3(c)) and number (Fig. 3(d)) distri-
butions. Both functions were important at short times, thereby
yielding overprediction of small drops and underprediction of
very large drops. At longer times the breakage rate became
dominant, and a larger proportion of large drops was predicted
compared to the original noise-free data.

We repeated the noisy data test with twelve cumulative dis-
tributions generated from the noisy number distributions at t =
5, 7.5, 10, 12.5, 15, 22.5, 30, 45, 60, 75, 90 and 105 min with
the expectation that more transient data would improve the
function approximation results. The daughter distribution func-
tion was significantly improved, while the breakage rate was
slightly degraded (Fig. 4(b)). Consequently, only modest im-
provements in transient distribution predictions at short times
were obtained (Figs. 4(c), (d)). Because the noisy cumulative
distributions were skewed towards smaller drops, these results
suggest that the collection of more transient data will prove
largely ineffective if the data are uniformly skewed.

4.3. Skewed data

Available technologies such as dynamic light scattering (e.g.
Schmitz, 1990) have a tendency to skew measured drop size
distributions. To examine the impact of such measurement er-
rors, we skewed the drop volume distribution data as follows:

n̄(v, t) = n(v̄, t), v̄ = v ± �v, (20)

where n(v, t) is the number distribution data obtained with
the actual functions (Fig. 1(a)), v̄ is the skewed volume. �
determines the amount of skewness, the sign determines the
direction of skewness, either towards smaller drops (negative)
or larger drops (positive), and n̄(v, t) is the skewed distribution.
Skewed distributions at t = 5, 10, 15, 30, 60, and 90 min were
used as input data to the inverse algorithm.

First, we examined skewing towards larger drops with � =
+0.0005, which produced number distributions that increas-
ingly deviated from the original distributions at large drop vol-
umes (Fig. 5(a)). Substantial underestimation of the breakage
rate was observed, while only small errors were obtained in
the daughter distribution function (Fig. 5(b)). The predicted



N.B. Raikar et al. / Chemical Engineering Science 61 (2006) 7421–7435 7431

0 0.005 0.01 0.015 0.02
0

50

100

150

drop volume mm3

nu
m

be
r

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5
x 10-7

drop volume mm3

B
re

ak
ag

e 
ra

te

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

D
au

gh
te

r 
dr

op
 d

is
tr

ib
ut

io
n

actual
predicted

actual
predictedactual

predicted

0.005 0.01 0.015 0.02

0.2

0
0

0.4

0.6

0.8

1

drop volume mm3

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

0 0.005 0.01 0.015 0.02
0

100

200

300

400

500

drop volume mm3

nu
m

be
r

(a) (b)

(c) (d)

binned data
actual

Fig. 9. Inverse population balance modeling results with transient drop volume distributions represented by 10 bins. (a) The binned transient number drop
distribution at t = 5 min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.

cumulative distributions consistently trailed the actual distri-
butions (Fig. 5(c)) in that the number of large drops was gen-
erally overpredicted. This behavior is easily interpreted from
the number distribution predictions (Fig. 5(d)), which show an
overprediction of small drops at small times and a consistent
overprediction of large drops.

Next, the number distributions were skewed towards smaller
drops with � = −0.0005. Because the number distributions
were more skewed towards small drops at large drop volumes
(Fig. 6(a)), the breakage rate function only agreed with the
actual function at very small drop volumes (Fig. 6(b)). Inter-
estingly, the daughter distribution was significantly underesti-
mated except at large drop volumes where the data was most
skewed (Fig. 6(b)). The predicted cumulative distributions led
the actual distributions until the approximate breakage func-
tion approached the actual function at large times (Fig. 6(c)).
The predicted number distributions produced a larger number
of small drops than the actual distributions (Fig. 6(d)), which
was consistent with overprediction of the breakage rate.

4.4. Dust particles

Drop size distribution measurements produced by dynamic
light scattering are sensitive to contaminants such as dust par-
ticles that create artificial peaks at large drop sizes (Schmitz,
1990). For emulsions, dust particles are not easily removed
by filtering because shearing can cause drop breakage. While
dust peaks can be eliminated by restricting the size range an-
alyzed, this approach requires a priori knowledge about the
drop size distribution. Therefore, we investigated the effect of
artificial peaks in the number distribution data at large drop
volumes. For simplicity, a single peak was assumed to be
normally distributed about a large drop volume and to remain
constant with time (Fig. 7(a)). This peak caused significant
underestimation of the breakage rate (Fig. 7(b)) and produced
a daughter distribution that predicted a larger proportion of
small drops (Fig. 7(b)). The tradeoff between these two errors
was evident in the predicted cumulative (Fig. 7(c)) and number
(Fig. 7(d)) distributions, where the daughter distribution
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Fig. 10. Inverse population balance modeling results with transient drop volume distributions represented by 50 bins. (a) The binned transient number drop
distribution at t = 5 min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.

function was dominant for small drop volumes and the break-
age rate function was dominant for large drop volumes. The
breakage function became dominant at longer times when the
predicted distributions trailed the actual distributions due to un-
derestimation of drop breakage.

4.5. Binned data

In the previous simulation tests, the distribution data was es-
sentially a continuous function of the drop volume due to the
large number (500) of node points used for numerical solution.
By contrast, drop size distributions measured by dynamic light
scattering (DLS) have limited resolution due to binning opera-
tions. We have used DLS (Brookhaven Instruments) to measure
drop size distributions for mineral oil (≈ 0.04 wt%) in water
emulsions with Pluronic F-68 (≈ 0.008 wt%) as the surfactant.
Initial coarse emulsions prepared using a stator–rotor device
(Ultra-Turrax, T 25 basic, IKA Works, Inc.) were introduced
to a high pressure homogenizer (Emulsiflex C-3, Avestin, Inc.)

operated at 25,000 psig. The mean and variance of the coarse
drop size distribution (Fig. 8(a)) were significantly reduced by
a single homogenization pass (Fig. 8(b)). However, the instru-
ment produced low resolution distributions due to the small
number of bins used.

We conducted a final set of simulation tests to investigate
the impact of drop size binning on the inverse algorithm. Num-
ber drop distributions were used as input data by holding the
distribution constant at the mean volume across each bin. Each
number distribution was converted to a cumulative distribution
from which volume values were interpolated to generate the ln t

vs ln v plots. Then the inversion procedure was implemented
as described earlier. Initially, 10 bins were used to mimic
the DLS experimental results (Fig. 9(a)). The breakage rate
was underestimated at large drop volumes, and the daughter
distribution function exhibited errors at intermediate volumes
(Fig. 9). Consequently, the predicted cumulative distributions
(Fig. 9(c)) trailed the actual continuous distributions. The
number distributions (Fig. 9(d)) showed that a greater number
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Fig. 11. Inverse population balance modeling results with transient drop volume distributions represented by 200 bins. (a) The binned transient number drop
distribution at t = 5 min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.

of large drops are predicted due to the underestimation of the
breakage rate.

We repeated the test with 50 bins to determine if the con-
tinuous data results could be recovered (Fig. 10). While the
breakage rate was estimated slightly more accurately than
with 10 bins, the daughter distribution function exhibited
larger errors at large drop volumes (Fig. 10). As a result,
the predicted cumulative distributions (Fig. 10(c)) were only
slightly improved compared to ten bins (Fig. 9) and signif-
icantly degraded compared to continuous data (Fig. 1). The
number distributions (Fig. 10(d)) showed underprediction of
small drops and overprediction of large drops, especially at
long times. To validate the binning procedure, we repeated the
test with 200 bins (Fig. 11). The breakage rate and daugh-
ter distribution functions (Fig. 11), the cumulative distribu-
tions (Fig. 11(c)), and the number distributions (Fig. 11(d)
compared favorably to those obtain with continuous data
(Fig. 1). Very close agreement was obtained when 500 bins
were used (results not shown). Taken together, these results

suggest that the inverse method can be rather sensitive to data
binning.

5. Conclusions and future work

We investigated the impact of measurement errors in tran-
sient particle size distributions on the inverse PBE modeling
method of Ramkrishna and co-workers. A previously published
model of liquid–liquid dispersion drop volume evolution in a
turbulently agitated batch vessel was used to generate transient
distribution data, which were subjected to various types of er-
rors before being used as input data to the inverse algorithm.
The quality of the inversion results were assessed by comparing
the estimated breakage rate and daughter distribution functions,
as well as predicted distributions, to the original model.

We found that most errors considered degraded estimation of
the breakage rate function at large drop volumes, presumably
due to the limited data available for large drops in the tran-
sient distributions used as input data. The daughter distribution
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function also exhibited significant errors for most of the cases
considered. However, the breakage function, and to a lesser
extent the distribution function, often showed good agreement
with the actual functions at small drop volumes. Consequently,
predicted distributions tended to be more accurate at longer
times when there was a preponderance of small drops due to
repeated breakage. Our results suggest that the inverse algo-
rithm can generate PBE functions that allow sufficiently accu-
rate prediction of final drop size distributions despite errors in
measured distributions used as input data.

Our long-term goal is to develop inverse-based methods for
extracting PBE model functions of emulsion drop breakage and
coalescence in high-pressure homogenization. This future work
will require modification of the inverse method presented be-
cause homogenization is not properly modeled as a well-mixed,
batch process. However, the sensitivity analysis techniques pre-
sented in this paper will provide a suitable framework for as-
sessing the impact of distribution measurement errors on the
inversion procedure. These modeling and analysis studies will
be reported in our future publications.
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