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Abstract

Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations over a wide range of operating conditions when pro-
duced in a continuous bioreactor. In this paper the bifurcations leading to these periodic solutions are investigated using an
unstructured, segregated model in which the pppulation balance equation (PBE) for the cell mass distribution is coupled to the mass
balance of the rate limiting substrate, The PBE model is shown to produce periodic solutions over a range of dilution rates due to
the presence of two supercritical Hopf bifurcations. The problem of oscillation attenuation using nonlinear feedback control with
four candidate input/output variable pairings is investigated. The controller designs are based on a low dimensional moment
representation of the PBE model. The performance of the nonlinear controllers are compared and discussed. © 2002 Elsevier

Science Ltd. All rights reserved.

Keywords: Biochemical reactor; Distributed parameter system; Bifurcation analysis; Feedback linearization

1. Introduction

Saccharomyces cerevisiae (baker’s yeasﬁ) is an impor-
tant micro-organism in the brewing, baking, food man-
ufacturing and genetic engineering indhstries. Many
investigators have shown that continuohs cultures of
Saccharomyces cerevisiae exhibit sustained oscillations
in glucose limited environments under aerobic growth
conditions [2,19,21-23,28,30]. A precise characterization
of the environmental conditions that support oscillatory
dynamics has not been developed because oscillations
often appear and disappear without any measurable
change in external inputs such as nutrient flow and
concentration.. The underlying cellular mechanisms that
cause oscillatory yeast dynamics are controversial and
have been a subject of three decades of intensive
research. Understanding and controlling this dynamic
behavior would lead to important advances in yeast
production processes and could provide key insights
into the cellular behavior of more complex eucaryotic
cells present in plants and animals.

* Corresponding author. Tel.: + 1-225-388-1476; |fax: + 1-225-338-
1476.
E-mail address: henson@che.lsu.edu (M.A. Henson).

A number of transient models have been proposed to
explain the sustained oscillations observed in con-
tinuous cultures of baker’s yeast. Existing models can be
classified into three categories: structured and unse-
gregated  [3,8,14]; unstructured and segregated
[1,6,10,12]; and structured and segregated [4,26,27).
Structured models account for various chemical com-
ponents and their interactions within the cell. By con-
trast unstructured models are based on the simplifying
assumption that detailed modeling of intracellular
behavior is not essential to describe cell growth. Segre-
gated models account for differences between individual
cells in terms of properties such as cell mass or cell age.
Unsegregated models are based on the simplifying
assumption that individual cells have identical physical
and chemical properties.

Oscillatory dynamics produced by structured, unse-
gregated models are a direct result of cell metabolism
incorporated into the model. For example in the cyber-
netic model proposed in [14] oscillations arise from
competition between three metabolic pathways: glucose
fermentation, glucose oxidation and ethanol oxidation.
A shortcoming of purely metabolic models is that they
cannot adequately explain cell cycle synchronization
that leads to the formation of distinct cell subpopula-

0959-1524/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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tions. It is well known that synchronization plays a cri-
tical role in the stabilization of oscillatory yeast
dynamics [21,23,24].

In unstructured, segregated models oscillations arise
due to cell population dynamics rather than individual
cell metabolism. The key feature of these models is a
population balance equation (PBE) that describes [the
time evolution of the cell age or cell mass distribution.
Sustained oscillations can be generated by coupling tthe
PBE and the extracellular environment to establish a
synchrony induction mechanism [9]. While they lare
capable of predicting cell cycle synchrony, these models
cannot capture the interplay between cell metabolism
and oscillatory dynamics due to their unstructured nat-
ure [14]. Structured, segregated models have been
developed to address the limitations of the simpler
models described above. The most sophisticated model
of this type is presented in'[27]. A discretized form of lthe
cell mass distribution is. combined with a metabolic
model that accounts for basic intracellular variables
such as storage carbohydrates. The model is capable of
producing sustained oscillations with periods compar-
able to those observed experimentally. However fhe
model is not well suited for control applications due to
its complexity.

Our previous work [33] has shown that an unstriic-
tured, segregated model in which the PBE for the cell
mass distribution is coupled to the mass balance of the
rate limiting substrate can predict sustained oscillations.
However, the underlying mechanism that leads to peri-
odic solutions has not been investigated. Since the
appearance and disappearance of periodic solutions are
attributable to bifurcation phenomenon, a detailed
bifurcation analysis will provide key insights into the
PBE model structure and may motivate further experi-
mental studies aimed at verifying the model predictions.
Such a bifurcation study is presented in this paper.

We have used the PBE model to develop a linear
model predictive control (LMPC) strategy for attenuat-
ing and inducing sustained oscillations in continuous
yeast bioreactors [33]. The linear controller design
model is obtained by linearizing and temporally dis-
cretizing the nonlinear ordinary differential equations
derived from spatial discretization of the PBE model.
The resulting linear state-space model is used to develop
LMPC controllers that regulate the discretized cell
number distribution by manipulating the dilution rate
and feed substrate concentration. While our simulation
tests have been encouraging, the LMPC strategy suffers
from several potential disadvantages including: (i) the
controller design model is linear even though bifurca-
tions are a nonlinear phenomenon; (i) the cell mass
distribution is assumed to be measured or reconstructed
from particle size measurements; (iii) the resulting con-
trol problem is highly non-square (2 inputs, 14 outputs);
and (iv) direct control of the cell distribution is complex
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and often unnecessary as typical end products are
metabolites rather than the yeast population itself. In
this paper we develop nonlinear controllers that are
easier to implement and provide improved performance.
The remainder of this paper is organized as follows.
Our relevant experimental and modeling work is descri-
bed in Section 2. The application of bifurcation analysis
techniques to the cell population model is discussed in
Section 3. Nonlinear controller design based on a
moment representation of the PBE model and closed-
loop simulation. results are presented in Section 4. A
summary and conclusions are presented in Section 5.

2. Cell population model for continuous yeast
bioreactors

2.1. Experimental data

There is a large body of experimental data on the
transient: behavior of intracellular and extracellular
variables: during sustained oscillations of continuous
yeast cultures. It is well known that yeast cultures exhi-
bit oscillations only for a specific range of dilution rates
[22]. Stationary solutions are observed for dilution rates
below and above this range. We have conducted addi-
tional experiments in our laboratory to explore these
oscillatory dynamics. Batch and continuous culture
experiments were performed using a Bioflo 3000 fer-
menter (New Brunswick) with a working volume of 1.0 1
interfaced to a personal computer with the necessary
software for data collection and basic regulatory control
functions. Details on the medium preparation and
experimental protocol are available in [31].

One set of experiments was designed to test our
hypothesis that a stable steady-state and a periodic
attractor can co-exist at the same operating conditions.
A representative set of results for a glucose feed con-
centration of 30 g/l is shown in Fig. 1. The evolved car-
bon dioxide signal is used as a representative output
variable for the culture. The experiment starts with
oscillatory dynamics that are obtained by switching the
culture from batch to continuous operation. At ¢ =20h
the dilution rate is slowly ramped down over a 24 h
period until the oscillations disappear. The stationary
state is preserved for 2 days while the dilution rate is
maintained at the low dilution rate value. At t =92 h
the dilution rate is slowly ramped up at the same rate as
used for the negative ramp. No significant oscillations
are observed when the dilution rate is maintained at the
high value despite the fact that a slightly lower dilution
rate produced oscillations at the beginning of the
experiment.

An enlarged view of the dynamic behavior during the
first and last parts of the experiment is shown in Fig. 2.
The upper plot shows the large amplitude oscillations
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Fig. 1

obtained at the beginning of the experiment. The lower

plot shows the response observed at thé end of the

experiment. The evolved CO, signal in the lower plot

appears to represent a stationary solution. This suggests
the co-existence of a stable steady state and a periodic
attractor at the same dilution rate. When examined
more carefully the signal in the lower plot appears to
contain a periodic component that is not sflely attribu-
table to measurement noise. It is possible that this

steady-state solution actually is unstable but appears to
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Fig. 2. Experimentally observed solutions under the same operating
conditions.
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Experimental ramp changes in dilution rate,

be stable due to the relatively short duration of the test.
Consequently the long-term stability of this “sta-
tionary” solution is questionable. We currently are
conducting experiments aimed at resolving this issue.
Nevertheless a candidate yeast model should be capable
of capturing this apparent hysteresis behavior.

2.2. Cell population model equations

Zhu et al. [33] propose a cell population model for
budding yeast cultures which can be used to predict
operating conditions under which periodic solutions
exist. The model couples the PBE for the cell mass dis-
‘tribution to the substrate mass balance. The simplified
cell cycle from which the PBE model is derived is shown
in Fig. 3. A daughter cell grows until it reaches a critical
mass called the transient mass (m?). At this point the
cell is called a mother cell. Al further growth occurs in
the bud attached to the mother cell. At a critical mass
called the division mass (m;) the mother cell and the
bud divide to produce a newborn daughter cell and a
newborn mother cell. The critical masses that char-
acterize the cell cycle depend on the extracellular condi-
tions as discussed below.

We briefly present the PBE model equations to facil-
itate the subsequent development. Additional details are
available in [33]. The PBE has the form:

Daughter
cell
—————— ~
e - - N
[ X T s |
0 m me mg" mq

Fig. 3. Simplified cell cycle model for budding yeast.
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IW(m, 1) k(SYW(m, t)]
_|_.
or om

= Joo?.p(m, YO, SYW (', t)dm'
0
— [D + T(m)W(m, 1) )

where: m is the cell mass; W(m, t) is the cell number
density; k(S’) is the single cell growth rate; S’ is the |fil-
tered substrate concentration (defined below); p(m, #/)
is the newborn cell probability function; I'(m, S”) is the
division intensity function; and D is the dilution rate.
The initial cell distribution is denoted W(m, 0) and the
boundary condition is W(0, t) = 0. The zeroth moment
of the cell number density represents the total numper
of cells per unit volume and is defined as: my(r) =
o W(m, tydm. The differential equation describing the
evolution of the zeroth moment is easily derived [15]

dWl() *© '
e ~Dmy + J T(m, SYW(m, ydm 93]
0

The division intensity function is modeled as:

0 m<m{ + m,
T(m, S’) = yexp[—e(m - mz‘i)z] m € [m} + my, m}]
y mzmy

()

where mf is the transition mass, m, is the additional
mass that mother cells must gain before division is pos-
sible, € and y are constant parameters and mj is the
division mass at which the division intensity function
reaches its maximum value y. The newborn cell prob-
ability function p(m, n?) is chosen as:

pm, m') = Aexp[ﬂ(m - m’,*)z]

+ Aexp [,B(m —m + mf)z] (4)

when m < m’ and m' > mf + m,; the function is identi-
cally zero otherwise. Here 4 and B are constant para-
meters. This function yields two Gaussian peaks in the cell
number distribution, one centered at the transition mass
m} (which corresponds to mother cells) and one centered
at a location in the mass domain that is determined| by
mass conservation (which corresponds to daughter cells).

As suggested by available experimental data [33], the
transition mass m; and the division mass m} are modeled
as increasing functions of the substrate concentration

my + Ki(S = Sh) S < §
mi(S") = mo + K(S' = S) S’ €[S, Snl ®)]
: b7 S > Sy

mao + Ka(S — Sp) S < S
m;(S') = { mgo + Ka(S" — Sp) S’ €[S, Sul (6)
Mdo S’ > Sy

where Sy, Sh, M0, Mag, K; and Ky are constant param-
eters. The substrate mass balance is:

ds *k(S")
E[— = D(Sf - S) - Jo T W(m’ t)dm
= 0G5t~ 9~ ™

where Y is a constant cell mass yield coefficient. The
single cell growth rate is assumed to follow Monod
kinetics:

UmS’
k(S") = - 8
() =g ®
where the maximum growth rate u, and the saturation
parameter K, are constants. The filtered substrate con-
centration is generated as:

%%— =a(§-5) ®

where the constant parameter « indicates how fast cells
respond to environmental changes.

The parameters used for model simulation are listed
in Table 1. Only a few of the parameter values (e.g.
single cell growth rate constants) are available in the
literature. Therefore, the unknown parameters are cho-
sen heuristically to yield reasonable bioreactor operat-
ing conditions and experimentally observed dynamic
behavior, The key parameters for generation of sus-
tained oscillations are the exponent € of the division
intensity function (3) and the slope Ky of the division
mass function (6). These parameters must be sufficiently
large to create the attractive force that leads to the for-
mation of distinct cell subpopulations. The oscillation
period is same for all variables and is most strongly
affected by the dilution rate (i.e. the reactor residence

Table 1

Cell population model parameters

Variable Value Variable Value

y 200 h! & 5 x1022 g~2
A V2577 x 101 gt B 100x 10?2 g2
S 0.1 g/l Sh 2 g/l

K 0.01x10"" g/g 1 Ky 2x10-" g/g 1
Pito 6x10-1 g Mgy 11x10~" g
TMmax 12x107" g my 1x107" g

Y 0.4 g/g Um 5%10710 g/h
Kn 25 g/ o 20h!

D _ 0.25 h™! St 25 g/l

R R R BRI EEE—— I ————
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time). Because the oscillation amplitude of each variable
is different, it is difficult to adjust the model parameters
to obtain agreement with experiment. It Is important to
emphasize that the cell population model can be expec-
ted only to yield predictions that are|in qualitative
agreement with experiment. As part of oirr future work
we intend to investigate the estimation of unknown
model parameters from experimental data generated in
our laboratory.

2.3. Numerical solution of the cell population model

The PBE model is comprised of a coupled set of non-
linear algebraic, ordinary differential and integro-partial
differential equations. Analytical solution is possible
only under very restrictive assumptions [11,12]. A vari-
ety of numerical solution techniques based on finite dif-
ference, weighted residual and orthogonal collocation
methods have been developed for suchl PBE models
[17,18,29]. In this paper the solution tech ique based on
orthogonal collocation on finite element proposed by
Zhu et al. [33] is used. The mass domain is discretized
into a number of finite elements, each of which contains
several collocation points where the PBE is approxi-
mated by an ODE. Integral terms are pproximated
using Gaussian quadrature. The state vector of the
resulting nonlinear ODE model consists of the cell
number density at each collocation point,|as well as the
substrate and filtered substrate concentrations. We
use 12 finite element and 8 internal collocation points
on each finite element to yield a total of 111 state
variables.

The dynamic response of the cell population model to

experimentally (see Fig. 1) is shown in Fig. 4. The sub-
strate concentration (S) is used as the output variable
since the PBE model does not describe the evolved CO,
concentration. While not considered in this paper, it is
worth noting that we have developed a structured
description of the extracelluar environment that allows
the PBE model predictions to be compared more
directly to extracellular variables measured in our
laboratory [20]. The dilution rate is ramped down from
the oscillatory region (D=0.21 h=) to the non-oscilla-
tory region (D=0.18 h™!) and then ramped back up to
the original dilution rate. The simulated oscillation per-
iod (2.5 h) is very close to the value observed experi-
mentally (2.2 h). However, the simulated negative ramp
leads to very slow damping of the oscillations as com-
pared to that observed experimentaily. On the other
hand, the simulated positive ramp produces oscillations
of a much smaller amplitude than those observed during
the initial portion of the test. It is difficult to ascertain if
the model predictions are consistent with experimental
data due to the questions surrounding the stability of
the steady-state solution in the oscillatory range. A
more thorough analysis of the PBE model behavior is
possible using bifurcation analysis.

3. Bifurcation analysis

Bifurcation analysis is a powerful tool for studying
the dynamic behavior of nonlinear models. We are
interested in characterizing the bifurcations that lead to
the appearance and disappearance of periodic solutions
in the yeast cell population model. This will allow a

a dilution rate ramp test similar to that performed more insightful comparison to experimental data than is
0.75 Y T T T T T T 0.26
7F-—-~ P
° N -7 Jo.2
h ~ N e e o - — e — -— -
0.65]
0.15
3 osf 1%
(%4 [=)
J0.1
0.55| .
-10.05
05t -
1 1 i . 1 1 1 0
0455 2‘0 40 60 80 100 120 140 160
time (Hr)
Fig.|4. Simulated ramp changes in dilution rate.
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possible with dynamic simulation alone. The vast
majority of bifurcation theory is developed for non-
linear ODE systems [16]. Consequently, it is necessary
to spatially discretize the PBE model prior to analysis.
Given the complexity of the resulting model, numerical
bifurcation techniques must be pursued as theoretical
analysis is not possible.

3.1. Computational methods

It is well known that yeast cultures exhibit sustained
oscillations only for a specific range of dilution rates
[22]. This suggests that the dilution rate is an appro-
priate choice for the bifurcation parameter. As the
dilution rate is increased the PBE model should exhibit
two bifurcations corresponding to the appearance and
disappearance of sustained oscillations.

The first task is to determine the local stability| of
steady-state solutions for different values of the bifur-
cation parameter. Steady-state solutions are obtained by
solving the steady-state version of the spatially dis-

}he

cretized PBE model using the nonlinear algebraic eqia-
tion solver FSOLVE available in MATLAB.
Jacobian matrix is generated analytically by linearizrng
the nonlinear model at the steady state solution. Lagcal
stability of the steady state is determined by computan
the eigenvalues of the Jacobian using the MATLAB
routine EIG. A dilution rate where one or more eigen-
values cross the imaginary axis is known as a bifurca-
tion point [16].

Locating periodic solutions and determining their
stability is a much more difficult problem. A stable per-
iodic solution can be located by dynamic simulation if
the initial condition is in the domain of attraction. In
addition to being restricted to stable solutions, this
approach is time consuming and subject to mis-
interpretation if the oscillatory solution exhibits slow
divergence from periodicity. A more efficient and reli-
able alternative is to use the shooting method to locate
both stable and unstable periodic solutions [16}. To
achieve convergence a good initial guess of the state
variables and the oscillation period corresponding to the
periodic solution must be supplied. For stable periadic
solutions, the initial guess is obtained readily | by
dynamic simulation.

The shooting method involves the following iterative
calculation procedure. First the model is integrated gver
one oscillation period. The difference between the initial
and ending points is used to adjust the values of |the
state vector and the period. During each of these New-
ton iterations, one preselected state variable is fixed to
provide a basis for determining the period. This is
known as the pinning condition. The iterations continue
until a convergence criterion is satisfied. The procedure
is repeated for other dilution rates using a progess
known as continuation [16] such that it is necessarl/ to

provide an initial guess only at one value of the bifur-
cation parameter.

The shooting method effectively transforms the n-
dimensional continuous-time system into an (n—1)-
dimensional discrete-time system. The Poincaré map
transforms a periodic solution of the continuous-time
system to a fixed point on the (n—1)-dimensional
hyperplane [16]. Stability of the periodic solution is
determine¢d by examining the magnitude of the Floquet
multipliers which characterize the stability of the line-
arized Pdincaré map. There always is a single Floquet
multiplier of unity magnitude due to the translational
invariance of the solution in time. The periodic solution
is stable fif the remaining n—1 Floquet multipliers are
inside the unit circle.

Several continuation packages have been developed
for detailed bifurcation analysis of low-dimensional
systems. The high dimensionality of the discretized cell
population model (x € Ry precludes the use of such
general purpose continuation packages. We have
obtained from Professor Yannis Kevrekidis (Princeton)
a contindation code based on the numerical techniques
discussed above that is specifically designed to locate
limit cycles of high-dimensional systems. Stability of the
periodic ‘solution is determined from the associated
Floquet multipliers. The ODE solver ODESSA is used
for numerical integration. A limitation of the code is
that it only allows one-parameter bifurcation analysis.

3.2. Results

A bifurcation diagram for the spatially discretized cell
population model is shown in Fig. 5 where the dilution
rate (D) is the bifurcation parameter and the substrate
concentration (S) is chosen as a representative output
variable.. The feed substrate concentration (St) is held
constant iat 25 g/l. The model possesses a single stable
steady-state solution (+) at low dilution rates. As the
dilution 'rate is increased a bifurcation occurs at
D=0.205 h~! where the steady-state solution becomes
unstable (o) and a stable periodic solution with oscilla-
tions of the magnitude indicated (*) appears. The spec-
trum of the Jacobian matrix shows that a pair of
eigenvalues cross from the left-half plane (LHP) to the
right-half plane (RHP) at this point. This is a super-
critical Hopf bifurcation [16] characterized by the
appearance of small amplitude oscillations. For a large
range of dilution rates the stable periodic solution co-
exists with the unstable steady-state solution. As the
dilution rate is increased to D=0.285 h ~!, the periodic
solution disappears and the steady-state solution regains
its stability. The RHP eigenvalues cross back into LHP
in a second supercritical Hopf bifurcation.

Fig. 6 shows the spectrum of the discretized cell
population model at the steady-state solution for the
dilution rate D=0.25 h~! located in the middle of the
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parameters can be adjusted such that the nature of the
bifurcation is changed, this result suggests that the
model is incapable of producing the rapid transition
observed experimentally for the negative ramp change
(see Fig. 1). On the other hand, the supercritical Hopf
- bifurcation mechanism provides a plausible explanation
for the apparent hysteresis behavior observed experi-
mentally for the positive ramp change since the “sta-
tionary” solution actually may represent an oscillatory

: odic solutions are quite slow (see Fig. 4). Unless the solution of very small amplitude.
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Since the feed substrate concentration (S¢) also is a
bioreactor input, it is useful to investigate the dynamic
behavior of the model with respect to this variable.
Fig. 7 shows the bifurcation diagram of the discretized
PBE model where Sy is the bifurcation parameter and
the substrate concentration S is the output variable. The
dilution rate is fixed at 0.25 h~!. For small feed sub-
strate concentration (S¢ < 12.7 g/l) there is only a single
stable steady-state solution. For S values above this
limit the steady-state solution becomes unstable and a
stable period solution is observed. The transition is
attributable to a supercritical Hofp bifurcation.

In our previous work we suggested that the steady-
state solution is stable at dilution rates that support
sustained oscillations [32]. A mechanism involving fold
bifurcations of limit cycles [16] was proposed to explain
this behaviour. In that work the Jacobian matrices were
calculated using finite difference approximation. While
all the eigenvalues of the approximate Jacobian matrix
are in the left-half plane, a complex conjugate pair of
eigenvalues is located very close to the imaginary axis.
We have found that the calculation of the approximate
Jacobian is numerically ill-conditioned and the asso-
ciated stability results are not reliable.

In this paper Jacobian matrices are calculated analy-
tically from the discretized PBE model and the bifurca-
tion results have been verified with open-loop
simulations using the ODE solver ODESSA. Tﬁese
results indicate that the steady-state solution is unstable
at dilution rates that support sustained oscillations| To
explore the possible effects of spatial discretization, we
have performed the linear stability analysis for D = 0.25
h~! and S = 25 g/l with different numbers of finite|ele-
ments (7e) and internal collocation points (s.). The real

part of the complex conjugate pair of eigenvalues (4; )
located ¢losest to the imaginary axis is shown below for
different discretizations. The results in Fig. 6 have been
generated with n, = 12 and »n, = 8.

ne =12, n, =8: Re(4;2)=0.01382

ne =12, n. = 12: Re(4, )=0.01356
ne =16, n. = 12: Re(412)=0.01387
ne =24, n. = 16: Re(1;2)=0.01362

The location of the eigenvalues are not affected by
different discretizations. Therefore, we are confident
that the bifurcation diagrams in Figs. 5 and 7 are indeed
correct. ‘

4. Nonlinear control

Contrpl objectives for oscillating yeast cultures can
include the attenuation or the stabilization of limit
cycles. Clearly the attenuation of undesirable oscilla-
tions will lead to improve bioreactor operability under
normal conditions. Oscillation stabilization may be
desirable in certain situations; e.g. to increase the pro-
duction jof key metabolites produced preferentially dur-
ing part of the cell cycle. In this work only the
oscillation attenuation problem will be investigated. The
bifurcation diagrams in Figs. 5 and 7 show that the PBE
model has a stable periodic solution and an unstable
steady-state solution over a wide range of operating
conditions. Our goal is to modify the bifurcation struc-
ture such that periodic solutions are rendered unstable
under féeedback and the desired steady-state solution
become globally asymptotically stable.
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Ideally this would be achieved through the applica-
tion of bifurcation-theoretic control techniques [5].
Unfortunately the complexity of the spatially discretized
PBE makes this approach intractable. Zhu et al. [33]
have developed a linear model predictive control strat-
egy for oscillation attenuation of yeast cultures. As dis-
cussed in Section 1 this approach has several potential
disadvantages, most notably the use of a linear model
for the controller design. Input-output linearization [13]
appears to be a good strategy for this problem since it
allows the use of a nonlinear model, yet the controller is
simple to design and implement. Kurtz et |al. [15] have
successfully used this approach for the attenuation and
stabilization of oscillations in binary fission| cultures.

4.1. Controller design issues

The cell population model contains two variables that
may serve as manipulated inputs: the dilution rate D)
and the feed substrate concentration (Sp). It is not pos-
sible to achieve an arbitrary cell number |distribution
with these two inputs [33]. As a simple alternative, we
consider the cell number concentration {(mo) and the
substrate concentration (S) as candidate controlled
outputs. Therefore, the finite dimensional model used
for nonlinear controller design is:

00
my = —Dmy +J I'(m, S"YW(m, t)ydm
0

S:D(Sf—"S)—‘]fg?S/sz
S = a(S - §) (10)

First single-input, single-output (SISO) controllers will

be designed and evaluated. Then a multiple-input, mul-

tiple-output (MIMO) controller will be des igned, and
the performance of the SISO and MIMO |controllers
will be compared.

Given the two manipulated inputs (D, St) available
and the two controlled outputs (n, S) chosen, there are
a total of four candidate input/output pairings for non-
linear controller design. The D/my, D/S and St/S pairs
have relative degree one [13] since the input| affects the
output through a single integrator. By contrast, the
ODE for my does not include S¢ as an input. This input/
output pair has a relative degree of three since S; affects
my through the filtered substrate concentration (S’) and
the substrate concentration (S) equations. Construction
of the associated input-output linearizing| controller
reintroduces the PBE equation through the term 2 that
appears in the first time derivative of the my equation.
Since the goal of introducing the zeroth moment is to
obtain a finite dimensional representation of the cell
population model, the S;/myq pair is not used for con-
troller design. Consequently, the input/output pairs
considered are D/my, D/S and S;/S.

Using equipment available in our laboratory, my and
S can be measured every 10~15 min. Because these
measurements are not avaijlable continuously, it is
necessary to implement discretized approximations of

- the continuous-time nonlinear controllers. The 10—15

min sampling period is not sufficient for satisfactory

~performance of the sampled nonlinear controllers.

However, state-of-the-art measurement technologies
(25] are available that allow the 3 min sampling time

-assumed in this study.

4.2. Results and discussion

First the D/my pair is considered for nonlinear con-
troller design. The input/output linearizing control law

is synthesized directly from the zeroth moment equa-
tion:

D = v— [ T(m, SYW(m, ydm a
“mo

The integral term in this equation represents the growth
rate of the cell number concentration due to cell division
and can be inferred from common on-line measure-
ments [7]. This integral is assumed to be known in this
study. The input v of the feedback linearized system is
chosen to place the closed-loop poles and to include
integral action for offset error tracking of the setpoint
my:

t

V= —aymy + aOJ (m§ — my)de (12)
0

where the tuning parameters oy and «y are chosen such
that s% + a5 4 g is a Hurwitz polynomial. The second
term in the right hand side of (12) is chosen as ~ a my
instead of ay(m§ — mp) to eliminate overshoot in the
dlosed-loop response. It is easy to show that this control
law yields the following closed-loop transfer function:

mo(s) _ @
my(s)  s*+ s+ ap

gas) = 13)

The desired closed-loop response is obtained by appro-
priate choice of the controller tuning parameters (oo,
o).

The performance of the D/my feedback linearizing
controller with @; =1 h™! and oy = 0.25 h~2 is shown
in Fig. 8. These tuning parameters yield a critically
damped second-order response with a time constant of 2
h. The open-loop response (- —) is the stable periodic
solution obtained for D = 0.25 h~! and S; = 25 g/. The
controller is turned on at ¢ =4 h yielding the closed-
loop response shown ( — ). The ideal response corre-
sponding to the closed-loop transfer function (13) also is
shown (- - ). The setpoint m = 1.55 x 10! cells/l is the

—F'———_—
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Fig. 8. Feedback lines

total cell concentration for the nominal operating ¢
ditions in Table 1. The corresponding steady-state v
of the substrate concentration (S) is 0.8 g/l. The ¢
trolled output my closely follows the reference trajec
and the oscillations are completely eliminated. De
tions from the ideal closed-loop response are dug
sampling. In addition, oscillations in the uncontrg
output § are effectively damped and this variable is
ven to its steady-state value. Also shown in Fig. 8 is
closed-loop response (- - —) for a.+10% error in
integral that appears in the D/my controller (11).
performance only is slightly degraded as compare
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the perfect model case. This test shows that the non-
linear controller has some degree of robustness to such
measurements errors.

The cell mass distribution obtained with the D/mq
controller in the absence of modeling error is shown in
Fig. 9. The initial distribution corresponds to a parti-
cular point of the stable periodic solution for D = 0.25
h~! and S; = 25 g/l. Note the presence of two distinct
cell subpopulations that are typical of a synchronized
yeast culture [21]. Under open-loop: conditions this
initial distribution leads to sustained oscillations as seen
in Fig. 8. The feedback linearizing controller rapidly

time (hr}

tribution corresponding to Fig. 8.
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drives the culture to a steady-state operating point with
a more dispersed cell distribution. This result demon-
strates that a nonlinear controller based on the finite-

dimensional moment mode] can vield effective damping
of oscillations in the entire cell distribution.

The second controller is designed using the D/S pair.
The input/output linearizing control law is synthesized
directly from the substrate concentration equation:

D=—_1 (14)
where the input v is:
t
V= —qu+ozof (8™ = S)dr (15)
0

The third controller is designed using the St/ pair. The
input/output linearizing control law is:

v+k(S)m0

— - 16
St D + .5 (16)

The input v is chosen as in (15). As compared to the
D/my controller (11), an advantage of using S as the
controlled output is that the resulting controllers (14)
and (16) only require measurements of mgy and S.

The tuning parameters for the D/S and S;/S con-
trollers are chosen as before: oy =1h""and o = 0.25
h~2. The closed-loop performance of the D/ S controller
for the same test as in Fig. 8 is shown in Fig. 10. The

1800

controller attenuates oscillations in the controlled out-
put S, but the damping is not as effective as that for the
D/myg controller due to higher sensitivity to sampling. -
Moreover, the control moves are quite oscillatory and
oscillations in the zeroth moment are barely attenuated.
Although not shown here, similar results are obtained
for the S;/S controller. Consequently, these two con-
trollers are less desirable than the D/my controller
despite the additional measurement required to imple-
ment the D/my controller.

The different closed-loop responses generated by the
three feedback linearizing controllers are difficult to
predict a priori. Of particular interest are the differences
observed in damping of the uncontrolled output. Below
this behavior is analyzed for each controller using the

- closed-loop transfer function between the uncontrolled
output and the setpoint. Linearization of the model Eqgs.
(10) at the steady-state operating point yields the trans-

 fer function matrix:

[mo(s)]_[gn(s) glz(S)][D(S)] 7
SG) |7 Leal®  g2209) || Si(s)

Denote the linearized controller transfer function for

- the D/my pair as g.(s). The closed-loop system can be
written as:

mo(s) = g11()ge(s)[mis(s) — mo(s)] 18)
- 8(5) = ga1(5)ge()[m5(s) — mo(s)]

The control objective is to make my follow the second-
order response defined by (13): mo(s) = ga(s)mi(s). The
icontroller transfer function can be represented as:
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Fig. 10. Feedback linearizing control using the D/S pairing.
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1 ga(s)
gu(s) 1 — ga(s)

g($) = 19)

Therefore, the closed-loop response of the uncontrolled
output § has the form: 3

_gul(s)
Ste) = g11(s)

ga()mg(s) 20)

Similarly the closed-loop responses of the uncontrolled
output my for the D/S and S¢/S controllers are:

_gu(s) *
mo(s) = 215) 8a(5)S™(s) o
mo(s) = 29 95
g2(s)

respectively. Since gq(s) is chosen to have the form (13)
and the open-loop transfer functions have the same
poles, the zeros of the open-loop transfer functions gj(s)
are primarily responsible for the observed differences in
the closed-loop response of the uncontrolled output
variables.

Fig. 11 shows the zeros (z;) of the transfer functions
defined in (17). The transfer function gy has sevlaral
pairs of complex conjugate zeros very close to the ima-
ginary axis, while the zeros of gi; are much furﬁher
removed from the imaginary axis. This partiplly
explains why oscillations in the substrate concentration
are rapidly damped by the D/myg controller while |the
response of the zeroth moment is very oscillatory for|the
D/S controller. Similarly g;> has several pairs of com-
plex conjugate zeros that are very close to the imagiqary
axis, which causes the my oscillations to be slowly

damped; Also note that g, has a right-half-plane zero
which would cause instability if the S¢/myq controller
were dedigned and implemented.

Finally a MIMO feedback linearizing controller that
regulates both ny and S by manipulation of D and S; is
designed. The design model (10) is rewritten below in
state-space form where x =[my S ), u= [D DS;)"
and y =[my S]":

Xy = —xjuy + r(x3)

k(x3)

sz:Uz*—qul— % My

X3 = a(xy — x3)

[0

Here r(x3) = [ T(m, SYW(m, £)dm is the growth rate of
the cell number concentration; it is assumed to be mea-
sured as before. Using standard input-output decou-
pling [13] the following control law is obtained:

1-—0
up | r(x3)
[u;]_ _ﬁ 1 {v_[—kzm)yl]} @3)
N

where v is the two-dimensional input vector of the
feedback linearized system. Each input v; is designed as
in (12):

_ o) 0 o 0 ! 4
T O

where «; and B; are tuning parameters.

20
T + 1; T T T |+ T T T ¥ g1 ]
* * N * + + 9
10h + * + i
+ *
. * +
e Ik + % * +
& I Foke .
E ok * * +
+ : * +
of t * + -
+ ™ " .
+ * +
_20 1 + &t 1 ] 1 L 1 i 1. 1 i
-0.5 -0i45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05
Re(zi)
30 T T T T T
* * 9 |)
20[ *x L + %
+
10[ + Ty E
- & * T
N L T o + *
£ 0 o 1
+ + ]
~10k A } +*
Y +
# i
20}, PP
-3 s 1 I L 1
91 -0.5 ¢} 0.5 1 15 2

Re(z)

Fig. 11. Open-loop zeros of the momient model.

e T SN o W NP N S gy

'n

L R N S e T R o S R S T o T o T o S =Y

R—_—'_'_——ﬁ




Y. Zhang et al. | Journal of Process Control 12 (2002) 721-734 733

LIV ey
[ T Y
t LN IENTRR TR [
[ T Y [
LTI N

i
{
I
‘l

I Vibye by

| R TETNTET \
PNy
LI A

15 20 25

0.95

0.9
A S A O A A
"””"“'llll"l" (]
P g b [
~ Travrigngty Vg

1! 1
» gg 1

Pervrayugd ,,_,_.H..s_,_L~L_I_
T (AN
TR vl 1yl

0.7 L A Y L B AN
S WAy g I‘llln‘

[

vy 1

5085
3

07
0 5 10 15 20 25
time (hr)

The closed-loop response (—) of the |[MIMO con-
troller is shown in Fig, 12. Also shown is the oscillatory
response (- - - -) obtained in the absence of control. The
tuning parameters used are o; = 8; = 1 h—! and oy =
Bo=10.25 h™2. Both output variables are effectively
regulated to their setpoints when the controller is turned
on at t = 4 h. However, the control moves generated are
excessive and preclude suocessful implementation of the
controller on a real bioreactor. Therefore, the D/my
feedback linearizing controller appears to| be the most
promising option for oscillation attenuation.

5. Summary and conclusions

We have performed bifurcation analysis on a popula-
tion balance equation (PBE) model for budding yeast
cultures grown in continuous bioreactors. The model
exhibits two supercritical Hopf bifurcations that are
consistent with the spontaneous appearance and dis-
appearance of sustained oscillations observed experi-
mentally. However, there are some discrepancies
between experimental data and the model simulation
results. These include the speed of transition from sus-
tained oscillations to steady state and the perplexing
question of possible existence of multiple attractors
under the same operating conditions. We| hypothesize
that the first problem can be attributed to the lack of

chemical structure in the PBE model. The
blem needs to be investigated with addit
mental work. We have developed and ev
feedback linearizing controllers that emp

second pro-
onal experi-
aluated four
loy different

input-output variable pairings. Each controller is able
to effectively attenuate oscillations in the controlled
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Fig. 12. MIMO feedback linearizing control.

output variable(s), but the three SISO controllers have
very different closed-loop responses for the uncontrolled
output variable. The zeros of ‘the linearized closed-loop
system have been used to analyze this behavior.
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