
T
he biotechnology indus-
try is expanding rapidly
due to advances in
understanding complex
biological systems and

the high demand for biologically
manufactured products such as
foods and beverages, pharmaceu-
ticals, and commodity and spe-
cialty chemicals. The impact of
the biotechnology industry on
the global economy is substantial. The revenues of the top
ten U.S. pharmaceutical manufacturers totaled US$217 bil-
lion in 2002 with profits of US$36 billion [1]. A growing
biotechnology market is the large scale production of
ethanol as a renewable liquid fuel. The production of
ethanol in 1998 was 31.2 billion liters worldwide and 6.4
billion liters in the United States with roughly two-thirds of
the ethanol produced targeted for biofuel applications [2].

A typical biochemical manufacturing process consists
of a reaction step in which a large number of cells are used
to synthesize the desired product followed by a series of
separation steps, in which the product is recovered from
constituents of the reaction liquid. The key requirement for
the manufacturing process is the identification of a cell
type that converts a relatively inexpensive chemical
species to the desired biochemical product. Advances in
recombinant DNA technology facilitate the design of

genetically engineered cell
strains to enhance the yield of a
target product [3]. While most
industrial processes are based on
microbial cells such as bacteria
and yeasts, other cell types
obtained from plants and animals
are increasingly being utilized to
produce high-value pharmaceu-
tical products such as therapeu-
tic proteins [4].

Because each cell produces only a miniscule yield of a
given product, a large number of cells are needed to obtain
commercially viable production rates. The cells are grown
and products are harvested in large vessels known as bio-
chemical reactors or fermenters. Penicillin production was
revolutionized by the combination of genetically engi-
neered cell strains and large-scale fermentation, as illustrat-
ed in “Penicillin Production.” The liquid removed from the
reactor contains a mixture of biochemical species that must
be separated to recover the desired product. The recovery
step is usually achieved through a series of separation units
[5]. The development of process control strategies for these
separation systems is an important research problem.

Process control has played a limited role in the biotech-
nology industry as compared to the petroleum and chemi-
cal industries. This demand for process modeling and
control is increasing, however, due to the expiration of
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pharmaceutical patents and the continuing development
of global competition in biochemical manufacturing. The
lack of online sensors that allow real-time monitoring of
the process state has been an obstruction to biochemical
process control. Recent advances in biochemical measure-
ment technology, however, have enabled the development
of advanced process control systems.

BIOCHEMICAL REACTOR TECHNOLOGY

Basic Operating Principles
A schematic representation of a biochemical reactor (biore-
actor) is shown in Figure 1. The cells are innoculated in the
bioreactor to initiate cell growth. Inoculation occurs
through a multistep procedure in which cells grown in a
shake flask are transferred to increasingly larger bioreac-
tors. This procedure is necessary for  achieving sufficiently
large density (∼1013 cells/l) to sustain growth. The cells
are continuously fed a liquid medium stream containing
chemicals that act as carbon, nitrogen, and phosphorous
sources as well as other components including salts, min-

erals, and vitamins that replicate the natural growth envi-
ronment. These chemicals serve as the nutrients, which are
also called substrates. Careful preparation of the medium
is essential since most cells are sensitive to changes in their
growth environment. In aerobic operation, the cells utilize
oxygen as a substrate, and air must be continuously sup-
plied to maintain the necessary dissolved oxygen concen-
tration. By contrast, anaerobic operation does not require
oxygen to achieve cell growth and product formation.
Usually the medium is prepared such that a single nutrient
such as glucose limits growth. This nutrient is thus a
growth-limiting substrate.

An agitator is used to continuously mix the liquid con-
tents, thereby minimizing spatial gradients in substrate
concentrations and cell density, which can reduce bioreac-
tor productivity. The agitator speed is chosen to provide
adequate mixing while avoiding excessive shear forces
that can rupture the cells. In Figure 1, a stream is continu-
ously removed from the reactor to achieve constant liquid-
volume operation. The liquid removal rate is characterized
by the dilution rate, which is the ratio of the volumetric

Penicillin can be considered the first biotechnological product

produced on a large scale with bioreactor technology. In

1929 the antibiotic capabilities of penicillin were discovered by

Alexander Fleming at St. Mary’s Hospital in London using sim-

ple Petri dish experiments in which bacterial colony growth was

prevented by the application of penicillin produced by the mold

Penicillium notatum. Twelve years later, during World War II

(WWII), research and development efforts focused on large-

scale penicillin production to reduce the devastating effects of

infections in wounded soldiers. The two landmarks that allowed

rapid achievement of this goal were the discovery of Penicillium

strains that achieved substantially higher penicillin production

rates and the development of bioreactor technology for large-

scale growth of Penicillium populations [35].

As part of an extensive effort to identify an improved penicillin-

producing strain, in 1942 researchers in the United States fortuitous-

ly discovered that the mold Penicillium chrysogenum obtained from

a supermarket cantaloupe in Peoria, Illinois, yielded approximately

200 times more penicillin than Penicillium notatum. Further

enhancements in penicillin production were achieved by introducing

random genetic mutations into this Penicillium chrysogenum strain

through the application of X-ray and ultraviolet irradiation. This primi-

tive form of genetic engineering ultimately yielded Penicillium

chrysogenum strains that produced approximately 1,000 times

more penicillin than the original Penicillium notatum cultures. These

strains remain the basis for commercial penicillin production [35].

Despite these advancements, the vast amount of penicillin

required for the war effort was seriously impeded by the lack of

large-scale production technology. Oxford researchers had

shown that Penicillium could be grown in nutrient-rich broths

introduced into small shallow containers. However, hundreds

of these small containers were needed to produce enough

penicillin for a single individual. Subsequent research in the

United States demonstrated that substantially enhanced pro-

duction could be achieved by growing Penicillium cells in large

“deep fermentation” tanks with liquid volumes of 25,000 gal.

These bioreactors were continuously supplied with purified air

and agitated to allow aerobic growth throughout the tank rather

than just on the liquid surface as with previous technology.

Further production enhancements were realized when corn

steep liquor, a waste material of corn processing, was utilized

as a cheap source of concentrated nutrients.

These developments combined to make large-scale

penicillin production a reality [35]. By the end of WWII,

pharmaceutical companies were producing enough peni-

cillin to treat 7 million patients per year. As a result, the

death rate from pneumonia in the U.S. Army dropped from

18% in World War I to less than 1% by the end of WWII.

Penicillin is now the most widely prescribed antibiotic for ill-

nesses ranging from strep throat to venereal diseases. The

bacterial diversity that allowed the discovery of highly pro-

ductive Penicillium strains has the unfortunate consequence

of promoting mutations that produce bacteria resistant to

penicillin and other antibiotics. For this reason, advances in

production technology must be accompanied by efforts to

discover new antibiotics.

Penicillin Production
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feed flow rate to the liquid volume. The effluent stream
contains unconsumed media components, cellular bio-
mass, and products excreted by the cells. The desired
product, consisting of the cells themselves or a product of
cell metabolism such as ethanol, is separated from the
other components by a series of recovery and purification
operations. Off-gases such as carbon dioxide are also gen-
erated as byproducts of cell metabolism.

Effective operation of an industrial bioreactor requires
not only supplying the necessary nutrients and extracting
the desired products but also maintaining the sterility of
the medium and processing equipment. A miniscule
amount of microbial contamination can lead to production
of a foreign microbe rather than the desired microbe, result-
ing in complete loss of productivity and an unscheduled
shutdown of the bioreactor. Process control plays an impor-
tant role in maintaining an environment that facilitates cell
growth and product synthesis. Each cell type has a unique
and narrow range of temperature and pH that supports cell
growth. Most bioreactors use simple proportional-integral-
derivative (PID) feedback control loops to maintain the liq-
uid temperature and pH at predetermined setpoints.

A feature of bioreactors is their unusually slow dynamics,
which are characterized by the residence time (inverse of the
dilution rate) for continuous operation. A typical dilution
rate of 0.2 h−1 is equivalent to an open-loop time constant of
5 h. The slow speed of these dynamics has important impli-
cations for control system design. In the United States, all

aspects of biochemical manufacturing processes are subject
to stringent validation mandated by the Food and Drug
Administration. These requirements place demands on the
process control system to achieve reproducible operating
conditions and consistent product quality.

Most industrial bioreactors are operated in batch or fed-
batch mode to allow more efficient media utilization and
to avoid sterility problems caused by continuous liquid
removal. In batch operation, the bioreactor is initially
charged with cells and medium containing essential sub-
strates for growth. The bioreactor then evolves to a prede-
termined final time with no media feed or liquid
withdrawal. Fed-batch operation differs from batch opera-
tion in that fresh media feed is continuously supplied.
Because there is no liquid withdrawal, the reactor volume
increases until the final batch time. An advantage of fed-
batch operation is that nutrient levels are continuously
varied to achieve favorable growth conditions without sig-
nificant risk of culture contamination. As discussed below,
the fed-batch mode involves dynamic optimization of the
bioreactor operating conditions.

COMMERCIAL EQUIPMENT
An industrial-scale bioreactor system manufactured 
by New Brunswick Scientific is shown in Figure 2. This
1,500-l bioreactor, consisting of the cylindrical stainless
steel vessel, is equipped with numerous stainless steel
tubes, valves, and electronic instruments to manipulate

feed-stream and withdrawal-stream flow
rates and to monitor growth conditions.
The headplate located at the top of the
bioreactor and shown in Figure 2(b) has
openings to allow the insertion of tubes for
feed and withdrawal streams and online
probes for measuring temperature, pH,
level, and oxygen concentration of the liq-
uid mixture (see Figure 1).

Conventional bioreactor control sys-
tems are designed to supply the pre-
scribed flow of nutrients while avoiding
growth conditions that adversely affect
productivity. PID control loops are used to
regulate temperature, pH, and dissolved
oxygen concentration. This simple regula-
tory structure is effective due the availabil-
ity of cheap, accurate, and reliable sensors
for these environmental variables [6] in
contrast to physiological variables, such as
the growth rate, which provide a more
direct measure of the cellular state. With
regard to key output variables such as cell 
density and product concentration, this
regulatory structure represents an open-
loop control strategy that fails to account
for cellular and media variations present
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FIGURE 1  Continuous biochemical reactor (bioreactor) for aerobic manufacturing of
biological products. A liquid media stream containing nutrients and an air stream con-
taining oxygen are continuously supplied to the bioreactor to sustain cell growth. The
liquid level is maintained constant by continuously removing a stream containing
unconsumed nutrients, cellular biomass, and products of cellular metabolism. The
level, temperature, pH, and oxygen content of the reaction liquid are measured online
and used as feedback signals for regulatory control.
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in an industrial manufacturing environment. Most physio-
logical measurement techniques are limited to offline
analysis in a research laboratory environment [7].

Recent advances in online measurement technology have
resulted in model-based control strategies that offer the
potential for improved bioreactor performance. Online spec-
trophotometers are routinely used to measure the cellular
biomass concentration [7]. Figure 3 shows commercially
available technologies for measuring the compositions of
the bioreactor off-gas and liquid-reaction media. The New
Brunswick gas analyzer in Figure 3(a) provides real-time
measurements of the gas-phase oxygen and carbon dioxide
concentrations, which are indicative of the cellular state.
Direct information on substrate utilization and product for-
mation rates can be obtained from the biochemical analyzer
shown in Figure 2(b). When combined with an automatic
sampling system, this analyzer provides simultaneous con-
centration measurements of two biochemical species, such
as glucose and ethanol, every few minutes. Simultaneous
measurements of extracellular species are obtained with
online gas chromatography and high-performance liquid
chromatography [6], [7]. More sophisticated measurement
technologies that provide online measurements of intracel-
lular species concentrations and heterogeneities across the
cell population are under development [7].

DYNAMIC MODELING OF BIOCHEMICAL REACTORS

Model Complexity
Mathematical modeling of bioreactors is a challenging
problem due to the complexity of cellular metabolism. The
appropriate degree of model complexity is determined by
factors such as the amount of fundamental knowledge,
data requirements for model construction and validation,
computational requirements, and the intended use of the
model. Dynamic bioreactor models are classified according
to the level of detail used to describe an individual cell.
The most mechanistic descriptions of cellular metabolism
are based on structured kinetic models, where the rates of
individual enzyme-catalyzed reactions are embedded
within dynamic mass balance equations for the intracellu-
lar species [8]. Due to experimental difficulties associated
with large-scale identification of enzyme kinetics, these
ordinary differential equation models are effectively limited
to primary metabolic pathways and are not well suited for
capturing whole-cell metabolism, which impacts cellular
growth and product synthesis rates. As a result, these
models have not yet been used for bioreactor control.

Segregrated models account for population hetero-
geneities by differentiating individual cells according to
scalar variables such as cellular mass or DNA content.
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FIGURE 2  Industrial scale bioreactor for manufacturing biological products. The complete bioreactor system shown in (a) includes the 1,500-l
reaction vessel and stainless steel tubes, valves, and electronic instruments for flow-rate manipulation and continuous monitoring of growth
conditions. The bioreactor headplate in (b) provides openings for inserting feed and withdrawal tubes as well as submerged sensors for
measuring properties of the reaction liquid. (Courtesy of New Brunswick Scientific.)
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While control strategies based on segregated models have
been explored in simulation studies [9], the construction
and validation of these partial differential equation models
is difficult in practice. Due to their mathematical simplicity,
dynamic models based on unstructured descriptions of
cellular metabolism and unsegregated representations of
the cell population are best suited for model-based con-
troller design [10]. Rather than model individual enzyme-
catalyzed reactions, lumped descriptions of cellular
metabolism are employed. Cellular heterogeneities are
ignored, and the model equations represent the dynamics
of an “average” cell. The use of such unstructured models
for bioreactor control is the focus of this article. 

Continuous Bioreactor Model
A simple anaerobic growth model for a continuous biore-
actor consists of the ordinary differential equations [11]

dX
dt

= −DX + µ(S, P)X,

dS
dt

= D(Sf − S) − µ(S, P)X/YX/S,

dP
dt

= −DP + [αµ(S, P) + β]X,

where X is the concentration of the cellular biomass, S is
the concentration of the growth limiting substrate such as
glucose, P is the concentration of the desired product such
as ethanol, Sf is the concentration of the growth limiting

substrate in the feed stream, and D = F/V is the dilution
rate, where F is the volumetric flow rate of the feed stream
and V is the constant liquid volume in the bioreactor. Cel-
lular growth is characterized by the specific growth rate µ.
The yield parameter YX/S represents the cell mass pro-
duced from a unit mass of substrate. The parameter α is
the inverse of the product yield associated with cellular
growth, while β is the inverse of the growth-independent
product yield. Although yield coefficients often vary with
the environmental conditions, these parameters are usually
treated as constants for simplicity.

The overall accuracy of the bioreactor model depends
strongly on identification of a growth-rate function that
adequately describes cellular growth over the range of
environmental conditions. The function 

µ(S, P) = µm(1 − P/Pm)S
Km + S + S2/Ki

,

where µm is the maximum growth rate, Km is the substrate
saturation constant, Ki is the substrate inhibition constant,
and Pm is the product inhibition constant, is sufficiently gen-
eral to describe many situations of practical interest [12]. A
saturation function is obtained when substrate and product
inhibitory effects are negligible in the limit of large Ki and
Pm. In this case, the growth rate increases monotonically
with substrate concentration, and µm represents the maxi-
mum growth rate obtained in the limit of infinite substrate
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FIGURE 3  Commercial technology for online measurement of bioreactor growth conditions. The exhaust gas analyzer in (a) provides contin-
uous measurements of oxygen and carbon dioxide concentrations in the vapor space above the reaction liquid. (Courtesy of New Brunswick
Scientific.) The biochemical analyzer in (b) provides online concentration measurements of two biochemical species such as glucose and
ethanol in the reaction liquid. (Courtesy of YSI Incorporated.)
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concentration. The expression for µ(S, P) given above is
needed when high substrate or product concentrations
inhibit cellular growth. For example, high concentrations of
the product ethanol are known to inhibit yeast growth. Yield
and growth-rate parameters are available for well-studied
cell types grown under standard conditions. Otherwise,
these parameters can be determined from experimental data
using offline parameter estimation techniques [4].

The steady-state behavior of the bioreactor model is char-
acterized by two types of equilibrium solutions. The first type
corresponds to the undesirable trivial or washout solution 

X̄ = 0, S̄ = Sf , P̄ = 0,

where the overbar denotes a steady-state solution.
Washout occurs when none of the substrate entering the
bioreactor is converted to biomass or product. The number
of nontrivial steady-state solutions for which the biomass
and product concentrations are strictly positive depends
on the specific growth rate function. If substrate and prod-
uct inhibition effects are negligible, then the growth rate is
a saturation function that yields a single nontrivial solu-
tion. In this case, when the dilution rate D is less than a
critical dilution rate Dc that depends on the model parame-
ter values, the nontrivial steady-state solution is stable [13].
Otherwise, for large D the washout steady state is stable
because the bioreactor residence time is not sufficiently
large to sustain cell growth. Consequently, control system
design must consider the tradeoff between stability mar-
gin, which requires small D, and high throughput, which
requires large D. 

The growth rate function µ(S, P) yields steady-state
input multiplicity. For example, each value Q = DP of the
productivity can be obtained with two different dilution
rate values [12]. The input multiplicity is characterized by
a maximum in the productivity versus dilution rate curve,
where the steady-state gain changes sign. The presence of

a zero steady-state gain poses difficulties for control design
when the objective is to stabilize the bioreactor near the
point of maximum productivity. The continuous bioreac-
tor model also exhibits a significant degree of open-loop
nonlinearity [12]. Figure 4 shows the evolution of the prod-
uct concentration P from a common initial condition for
step changes in the dilution rate D [Figure 4(a)] and the
feed substrate concentration Sf [Figure 4(b)]. The larger D
steps induce highly asymmetric responses because the
washout steady state becomes stable for the positive
change. For the small changes of Sf , significant differences
in characteristic time constants and steady-state gains are
observed. Even more pronounced asymmetries are evident
for the large Sf steps, where the positive change induces
an inverse response due to the zero gain singularity at the
maximum productivity. These strong nonlinearities must
be considered in the controller design process [14].

Fed-Batch Bioreactor Model
The bioreactor model equations can be rewritten to
describe batch or fed-batch operation by modifying the
flow-dependent terms. For fed-batch operation, the model
equations are

d(VX)

dt
= µ(S, P)XV,

d(VS)

dt
= FSf − µ(S, P)XV/YX/S,

d(PV)

dt
= [αµ(S, P) + β]XV,

dV
dt

= F,

where the last differential equation models the time-vary-
ing, liquid-volume V. Fed-batch bioreactors are operated
by initially charging the vessel with medium and pre-
grown cells, feeding fresh medium as cell growth
progresses and then removing the reaction liquid at a
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FIGURE 4  Dynamic responses of the continuous bioreactor model for symmetric step changes in (a) the dilution rate D and (b) feed-
substrate concentration Sf from a common initial condition. The ±65% D steps induce highly asymmetric responses because the
washout steady state becomes stable for the positive change. The large  steps in Sf yield more severe asymmetries due to the inverse
response for the +50% change [12].
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predetermined time to recover the desired product. Batch
processes are operated similarly except that fresh medium
is not provided during the batch. Consequently, the con-
cept of a steady-state operating point is not meaningful for
batch and fed-batch bioreactors. Instead of designing a
feedback controller to stabilize a particular equilibrium
point, the prototypical control problem for a fed-batch
reactor is to determine a nutrient feeding policy that maxi-
mizes the amount of product at the final batch time.

PROCESS CONTROL OF BIOCHEMICAL REACTORS

Control Objectives
Regardless of the bioreactor operating mode, the overarch-
ing control objective is to maximize total production of the
desired product. Most bioreactors are equipped with sen-
sors for online measurement of the temperature, pH, level,
and oxygen concentration of liquids. Simple PID regulatory
loops are used to maintain the pH and temperature at con-
stant setpoints predetermined to promote cell growth and
product formation. The primary manipulated inputs avail-
able for higher level controllers are the nutrient flow rates
and concentrations. For the simple case of a single rate-lim-
iting substrate, the available manipulated inputs are the
dilution rate D and the feed substrate concentration Sf . 

The appropriate strategy for achieving the control
objective depends strongly on the operating mode, the
availability of additional online measurements, and the
accuracy of the dynamic bioreactor model. The most
important determinant is the operating mode since contin-
uous operation involves regulation at an equilibrium point
whereas fed-batch operation requires computing and
tracking dynamic trajectories. The continuous and fed-
batch control problems are considered separately below
due to their fundamentally different nature. Batch bioreac-
tors are not discussed further since their lack of feed and
withdrawal streams does not allow feedback control dur-
ing the batch. However, run-to-run control strategies have
been successfully applied to batch operation [15].

Continuous Biochemical Reactors
A control objective for the bioreactor is regulation at an
operating point that maximizes the steady-state produc-
tivity. Determination of an appropriate operating point
is challenging due to the effect of the environment on
cellular metabolism resulting in highly nonlinear behavior
(Figure 4). Common industrial practice is to determine
the operating point through a time-consuming and
expensive experimental design procedure [16]. When a
sufficiently accurate bioreactor model is available, the
optimal operating point can be determined offline using
simple optimization techniques [12]. Online optimization
strategies based on adaptive extremum seeking control
address the significant errors present in many unstruc-
tured bioreactor models [17].

Once the desired operating point is determined, the next
step is to design a feedback controller that achieves regulation
despite unmeasured disturbances that emanate from sources
such as nutrient variations, inadequate liquid mixing, poor
pH and temperature control, and time-varying cellular
metabolism. Both simple PID and model-based control strate-
gies are used. Controller design is heavily influenced by the
online measurements available as feedback signals. Due to
their high reliability and low cost, analyzers that provide dis-
solved oxygen concentration and exhaust gas concentration
measurements (Figure 3) are commonly used for control sys-
tem design [18]. The main limitation of this approach is that
oxygen and carbon dioxide concentration measurements pro-
vide indirect measures of cellular metabolism, and thus regu-
lation of these measurements at predetermined steady-state
values cannot be expected to result in optimal productivity.

The availability of online analyzers that provide direct
measurements of substrate and product concentrations has
enabled the development of more effective control strate-
gies for continuous bioreactors. Commercial instruments
such as the YSI biochemical analyzer (Figure 3) provide
these concentration measurements every few minutes,
while the time constant of a typical continuous bioreactor
is several hours. The rapid analyzer sampling rate allows
the controller design problem to be treated in continuous
time. Both nonadaptive and adaptive nonlinear control
strategies have received attention due to the presence of
highly nonlinear and uncertain process dynamics [18]. The
continuous bioreactor model is well suited for applying
nonlinear control-design methods based on differential
geometry [19], and both state-space linearization [20] and
input-output linearization [21] techniques have been inves-
tigated. Because offset-free regulation of the controlled
output at a specified setpoint is required, input-output lin-
earization is usually the preferred method [12]. 

Feedback linearizing control strategies suffer from prac-
tical limitations such as the need for accurate dynamic
models of cellular growth and product yields as well as the
availability of online measurements of the cellular bio-
mass, substrate, and product concentrations. While reason-
ably accurate values of the yield coefficients can often be
obtained, the determination of a growth rate function that
captures cellular metabolism over a wide range of bioreac-
tor operating conditions is notoriously difficult. Adaptive
versions of input-output linearization in which the growth
rate µ is treated as an unknown, time-varying parameter
are experimentally evaluated in [11] and [22]. Although
model-based controller implementation is facilitated by
recent advances in biochemical measurement technology,
industrial manufacturing processes often lack online con-
centration measurements of the cellular biomass X, the
rate-limiting substrate S, or the desired product P. Simple
nonlinear state estimators [23], [24] can be combined with
adaptive input-output linearizing controllers to yield satis-
factory closed-loop performance [22].
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Fed-Batch Biochemical Reactors
Because they are operated dynamically over a finite
batch time, fed-batch bioreactors offer a unique set of
challenges for control system design and analysis.
Rather than stabilize a fixed operating point, the control
objective is to maximize the amount of product at the
final batch time. The productivity depends on the initial
batch conditions, the nutrient feeding policy, and the
batch duration. Computational methods are required to
determine optimal fed-batch control policies because the
effects of these variables on cellular metabolism and
product formation are complex. The open-loop optimal
policy can be determined by solving an optimal control
problem [10], [18].

An objective function representing the total mass of the
desired product at the final batch time is maximized sub-
ject to constraints imposed by the dynamic model and
operational limitations. Various computational algorithms
are used for dynamic optimization. Sequential solution
methods involve iteration between a dynamic simulation
code, which integrates the model equations given a candi-
date feeding policy, and a nonlinear programming code,
which processes the dynamic simulation results to deter-
mine an improved feeding policy. While they are relative-
ly straightforward to develop, sequential solution
methods exhibit slow convergence and occasional failure
for large optimization problems. 

Simultaneous solution methods, in which model inte-
gration and operating policy optimization are embedded
within a single computational algorithm, provide a more
efficient and robust problem solution [25]. The primary
difficulty is that most nonlinear programming codes can-
not accommodate differential equation constraints.
Simultaneous solution methods based on temporal dis-
cretization of the dynamic model equations are effective
due to their ability to explicitly account for state-depen-
dent constraints and their applicability to large optimal
control problems. The dynamic optimization
approach is applied to simulated fed-batch
bioreactors in [17] and [26] as well as experi-
mental systems in [27]. A representative prob-
lem is the maximization of protein production
by manipulating substrate-feed flow rates [28].

Numerical solution of the fed-batch opti-
mization problem yields an open-loop control
policy that maximizes productivity. In practice,
direct implementation of the open-loop policy
yields suboptimal performance due to the pres-
ence of structural modeling errors and unantici-
pated disturbances during the batch. A common
approach to handle unmodeled bioreactor
dynamics is to combine a feedback controller
with an online state estimator to correct the
dynamic model predictions when measurement
information becomes available [22]. A unique

feature of fed-batch operation is the presence of a final
batch time such that the time horizon for estimation and
control becomes shorter as the batch proceeds. Extensions
of model predictive control based on the concept of a
shrinking horizon address this class of problems, assuming
predetermined initial batch conditions and a fixed final
batch time [29]. 

The shrinking horizon control problem is solved from
the current time instant to the final batch time by using
the most current state estimate to reset the initial condi-
tions of the bioreactor model. To compensate for model-
ing errors and disturbances, only the first set of
calculated nutrient feed changes is implemented. Then
the optimization problem is re-solved at the next time
instant over a shorter horizon using the new state esti-
mate. Applications of shrinking horizon control to fed-
batch bioreactors include [29], [30].

An alternative class of fed-batch bioreactor control
strategies based on regulating a substrate or product con-
centration at a predetermined setpoint that maximizes the
predicted cellular growth rate is investigated in [24], [31].
Figure 5 shows that a simple PID controller can achieve
tight glucose regulation in a fed-batch yeast bioreactor
despite large variations in the glucose consumption rate.

FUTURE DIRECTIONS
Process control is expected to play an increasingly impor-
tant role in the biotechnology industry. The development
of feedback control systems that exploit advances in
online measurement technology to achieve optimal pro-
ductivity of continuous and fed-batch bioreactors is one of
the most important challenges in biochemical manufactur-
ing. This article provides an overview of current and
emerging bioreactor control strategies based on unstruc-
tured dynamic models of cell growth and product forma-
tion. Despite their widespread acceptance, these models
suffer from several fundamental limitations, including

FIGURE 5  PID control of glucose concentration in a fed-batch yeast bioreactor
using online measurements from a biochemical analyzer. The glucose concen-
tration is tightly regulated at its setpoint value (2 g/l) despite large variations in
the glucose consumption rate. (Courtesy of YSI Incorporated.)
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lumped descriptions of cellular metabolism and the
assumption of cellular homogeneity. In addition to
extending the applicability of existing methods, future
research and development efforts are expected to focus on
the utilization of more detailed dynamic models for biore-
actor optimization and control.

As an alternative to kinetic models that require individ-
ual enzyme kinetics, steady-state mass balance equations
can be used to describe intracellular reaction pathways
under the realistic assumption that intracellular dynamics
are much faster than the environmental dynamics. The
steady-state intracellular model can be combined with
dynamic mass balance equations for key substrates and
products to construct a dynamic flux balance model that
generates accurate predictions of the growth rate and
product yields [32]. These models are currently being uti-
lized to develop optimization and control strategies for
fed-batch bioreactors [33]. The recent development of
online flow cytometry allows heterogeneities across a cell
population to be quantified in real time [34]. Dynamic
measurements of DNA and protein content distributions
can be used as feedback signals for nonlinear controllers
that regulate cell population properties [9].
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