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ixed culture fermentations are more versatile than pure culture
M fermentations because they can use more complex substrates

and generate a wider range of products. The competition
between two cell populations for a common limiting substrate is the case
of greatest practical interest. In a continuous bioreactor, the steady state
corresponding to the coexistence of the two populations is unstable if
the two cell types have different growth rates (Roos and Hjortso, 1989).
Under normal operation, the population with the larger growth rate
eventually dominates the reactor.

If the two populations can be separated, a recycle stream enriched in
the slower growing cells can be used to alter the population balance.
Specific cell adhesion can provide a very selective method for separating
even closely related cell populations (Hertz et al., 1985). By stabilizing
the coexistence steady state in this manner, environmental parameters
such as the dilution rate and the inlet substrate concentration are avail-
able for optimization of reactor productivity. Experimental results have
shown that open-loop control strategies based on specific cell adhesion
can temporarily increase the fraction of slower growing cells in the
reactor (Roos and Hjortso, 1991). However, an open-loop controller
cannot stabilize the unstable coexistence steady state in the presence of
external disturbances.

In this paper, a nonlinear control strategy for mixed-culture bioreactors
containing two cell populations that differ in their adhesion properties is
developed. The technique allows direct control of the fraction of each
cell type in the reactor. Nonlinear controller and observer design are
based on a continuous dynamic model that neglects periodic operation
of the recycle loop. A particularly novel feature of the control scheme is
the use of the sampling interval during which material is removed from
the reactor as the manipulated input. ’

The remainder of the paper is organized as follows. First, a brief
introduction to competitive mixed-culture bioreactors and specific cell
adhesion is given. Then, the dynamic models used to design and evalu-
ate the nonlinear control scheme are presented. The design and imple-
mentation of the control strategy are discussed next. Then, a simulation
study that demonstrates the performance and robustness of the

proposed technique is presented. Finally, a summary and some conclu-
sions are provided.

Competitive Mixed-Culture Bioreactors

The most common type of competitive mixed-culture fermentation
involves the production of two cell populations from a common growth-
limiting substrate. When grown in a continuous stirred tank reactor
(CSTR), such mixed cultures exhibit four steady states corresponding to:
() the presence of the first population only; (ii) the presence of the
second population only; (iii) the coexistence of both populations; and
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A nonlinear control strategy is developed for
competitive mixed-culture bioreactors in which two
cell populations compete for a common growth limit-
ing substrate. A stream is periodically removed from
the reactor, and the two cell populations are
separated using specific cell adhesion. The steady
state corresponding to the desired population fraction
is stabilized by discarding faster growing cells and
recycling slower growing cells to the reactor. The
recycle loop must be operated periodically to allow
regeneration of the adhesion column after each
separation. As a result, the manipulated input is
chosen as the sampling interval during which material
is removed from the reactor. The nonlinear controller
is designed using a simplified dynamic model that
assumes continuous separation of the cell populations.
The controller is implemented by calculating the
sampling interval that leads to the same amount of
material being removed from the reactor as that
computed from the continuous control law. A nonlinear,
closed-loop observer is used to generate one-time-
delay-ahead predictions of the measured cell concentra-
tions and the unmeasured substrate concentration.
The efficacy of the proposed control strategy is evaluated
via simulation.

On a mis au point une stratégie de contréle non
linéaire pour des bioréacteurs de cultures mixtes en
concurrence dans lesquels deux populations de
cellules sont en compétition pour un substrat & limita-
tion de croissance commun. Un courant est extrait
périodiquement du réacteur et les deux populations
de cellules sont séparées en utilisant I'adhésion spéci-
fique des cellules. Le régime stationnaire correspon-
dant 2 la fraction de population désirée est stabilisé en
éliminant du réacteur les cellules a croissance rapide et
les cellules & croissance lente en recirculation. La
boucle de recirculation doit étre actionnée périodique-
ment pour permettre la régénération de la colonne
d’adhésion aprés chaque séparation. En conséquence,
Ientrée manipulée est choisie comme [intervalle
d'échantillonnage pendant lequel le matériau est
retiré du réacteur. Le régulateur non linéaire est congu
a l'aide d’'un modéle dynamique simplifié qui suppose
la séparation continue des populations de cellules. Le
contréleur est implanté en calculant l'intervalle
d'échantillonnage qui conduit 3 la méme quantité de
matériau retirée du réacteur que celle calculée a partir
de la loi de contrdle continu. Un observateur a boucle
fermée non linéaire sert & produire des prédictions
anticipées d'une durée d'un intervalle des concentra-
tions de cellules mesurées et de la concentration de
substrat non mesurée. L'efficacité de la stratégie de
contrdle proposée est évaluée par simulation.

Keywords: mixed-culture bioreactors, nonlinear
control, nonlinear state estimation, specific cell
adhesion.
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(iv) the presence of neither population (i.e., washout). The
desired operating point in many applications is the coexistence
steady state. However, this steady state is unstable under most
conditions due to the populations having different growth rates
(Aris and Humphrey, 1977).

Various ways for stabilizing the coexistence steady state have
been proposed. One approach (Aris and Humphrey, 1977;
Davison and Stephanopoulos, 1986) involves the manipulation
of environmental parameters such as dilution rate and pH to
establish operating conditions where the growth rates are
equal. This method has several disadvantages, including: (i) the
growth rates must be equal at some reactor conditions; (ii) a
particular ratio of the two populations may be impossible to
obtain; and (jii) the input variable is not available to optimize
reactor productivity. An alternate approach is to indirectly
manipulate the residence times of the cell populations. This can
be achieved by removing a stream from the reactor, separating
the two populations, and recycling slower growing cells back to
the reactor (Ollis, 1982). This method has been used to develop
open-loop control strategies in which cell populations that
differ substantially in cell size or cell aggregate size are
separated due to differences in size (Davison et al., 1985) or
flocculation (Davis and Parnham, 1989) properties.

As compared to other techniques, specific cell adhesion
provides a very selective means to separate closely related or
very similar cell populations (Hertz et al., 1985; Roos and
Hjortso, 1989). Adhesion is mediated by interactions between
an immobilized ligand on the adhesion surface and a receptor
on the outer surface of the adhering cell (Hertz et al., 1985).
The formation of ligand-receptor bonds usually is highly
specific; therefore, only the cell population that expresses a
complimentary receptor for the immobilized ligand adheres to
the surface. Cells that are otherwise very similar can be
separated as long as they differ in the expression or functioning
of an outer surface receptor. Specific cell adhesion can be used
to increase the effective residence time of slower growing cells
in competitive mixed-culture bioreactors. A stream is periodi-
cally removed from the reactor and separated in an adhesion
column. The slower growing population is returned to the
reactor, while faster growing cells are discarded. The appropri-
ate amount of material to be removed during each separation
cycle depends on the difference between the two growth rates,
which in turn depends on the current state of the reactor.

The use of specific cell adhesion to control a mixed-culture
bioreactor containing two strains of Escherichia coli (E. coli) has
been investigated by Roos and Hjortso (1991).The two strains
of E. coli used differ in the expression of an outer surface trans-
port protein lam8 that displays a binding specificity for starch.
This property is used to selectively remove faster growing cells
from the reactor by adhesion to a starch/Sepharose support.
Slower growing cells, which do not adhere to the support, are
recycled to the reactor. A stream is removed from the reactor
and sent to the adhesion column every 30 ‘minutes to allow
sufficient time to regenerate the column,

The experimental work of Roos and Hjortso (1991) shows
that near perfect separation of the two cell populations can be
achieved if the stream is removed from the reactor at a particu-
lar flow rate. Moreover, separation efficiency is unaffected by
the period of time the stream is passed through the adhesion
column provided that saturation is not reached. This is demon-
strated in Figure 1 (Roos and Hjortso, 1991), which shows the
fraction of faster growing cells (23716A) adhering to the
column as a function of the stream removal time (i.e., pulse
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Figure 1. Effect of the pulse time on adhesion column separation
efficiency for the optimal column feed flow rate (Roos and Hjortso,
1991). The expected fraction of faster growing cells (23716A)
adhering is 0.31.

time) for the optimal stream removal flow rate. Note that the
measured values are within experimental error of the value
expected for perfect separation (0.31) for all values of the
removal time. Figure 2 (Roos and Hjortso, 1991) shows the
transient result obtained when pure cultures of slower growing
cells (MRC106) and faster growing cells (23716A) are
combined to generate a mixed culture with an initial fraction of
the slower growing population of approximately 0.99. When
the reactor is operated without the recycle loop (w/o recycle),
the population of slower growing cells rapidly decreases and
the faster growing cells completely dominate the reactor after
23 hours of operation. The introduction of the recycle loop (w/
recycle) substantially increases the fraction of slower growing
cells as compared to the case without recycle. The fraction of
slower growing cells decreases rapidly when recycle is stopped
after 18 hours of operation.

These results demonstrate the plausibility of using specific
cell adhesion to control cell populations in competitive mixed-
culture bioreactors. However, the proposed open-loop control
strategy cannot stabilize a desired coexistence steady state in
the presence of external disturbances. In this paper, we propose
a nonlinear feedback control strategy based on specific cell

MCR106 23716A
O—O0 w/o recycte @ ~—@ w/o recycle
1 .OOI!lﬂﬂ_AA\‘—A w/ recycle A—aA w/ recyqle
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Figure 2. Effect of recycle loop operation on the population balance
(Roos and Hjortso, 1991). The initial mixed cultures are obtained by
mixing pure cultures of slower growing cells (MRC106) and faster
growing cells (23716A). Recycle is stopped after 18 hours of operation.
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Figure 3. Operation of the reactor and adhesion column during recycle operation.

adhesion for a general class of mixed-culture bioreactors.
Controller design is challenging not only due to the unstable
process dynamics, but also because the recycle loop must be
operated periodically with stream removal at a particular flow
rate that yields optimal separation. As a result, the standard
approach of changing the manipulated input at predetermined,
fixed intervals of time is not feasible. Instead, we use the time
interval during which material is removed from the reactor as
the manipulated input.

Dynamic Modelling

We derive dynamic models of a competitive mixed-culture
bioreactor in which specific cell adhesion is utilized to separate
and selectively recycle the slower growing cell population.
Modelling is complicated by the periodic operation of the
recycle loop which is required to regenerate the adhesion
column after each sample is processed. The two dynamic
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models derived differ according to their complexity and
ultimate use. The first model includes a detailed description of
the periodic operation of the recycle loop and serves as the
“process” in closed-loop simulations. This model is referred to
as the detailed model. The second model assumes continuous
operation of the recycle loop and is used for nonlinear controller
and estimator design. This model is referred to as the simplified
model.

Detailed Mode!

The development of the detailed model is based on the exper-
imental system of Roos and Hjortso (1991). This model explic-
itly accounts for periodic operation of the recycle loop. For the
case where the faster growing cells preferentially adhere, a
complete separation cycle involves the following steps (along
with the approximate time required for each) (Roos and
Hjortso, 1991): (i) continuous removal of cells from the reactor

239




(variable time At); (i) washing non-adhering cells through the
column (5 min); (jii) recycling non-adhering cells to the reactor
(10 min); and (iv) elution of adhering cells from the column
(12 min). A schematic depicting the recycle operation is given
in Figure 3. Because the last three steps require a fixed time 1 to
complete, the first step must be completed within the time Ar- 1t
to maintain a constant separation cycle time A¢. In addition, a
minimum amount of material must be extracted from the
reactor during each separation cycle to allow on-line measure-
ments of the cell concentrations. Therefore, the period of time
that cells can be removed from the reactor (At,) is constrained.
As discussed below, Ar, serves as the manipulated input for
reactor control. For the experimental system used by Roos and
Hjortso (1991), steps (ii)-(iv) require 27 minutes to complete
and a minimum removal time of three minutes is necessary to
acquire enough material to obtain accurate cell measurements.
Therefore, to maintain a 45 minute separation cycle the input
must be constrained as: 3 min < A¢, < 18 min.

The differential equations comprising the detailed model are
presented in the Appendix. It is assumed that cell growth within
the column is negligible as this greatly simplifies model devel-
opment. This assumption is justified because the average
residence time of cells in the adhesion column is significantly
less than that in the reactor. A simple method that essentially
counts the number of cells drawn into the column during each
separation cycle is used to determine the magnitude of the
pulse of slower growing cells introduced into the reactor in step
@iii) of the recycle operation. Included in the modet are separa-
tion efficiencies o and P that represent the fraction of slower
growing cells entering the column that are recycled to the
reactor and the fraction of faster growing cells entering the
column that are discarded as waste, respectively. Perfect separa-
tion corresponds to o = 8 = 1. Substrate concentration varia-
tions within the column are described by modelling the column
as a simple stirred tank.

Simplified Model

The simplified model is derived from Figure 4 which depicts a
competitive mixed-culture bioreactor combined with an
adhesion column that allows continuous separation of the cell

populations. A nonlinear state-space model is derived from
mass balances:

ng—f=—[ﬁ+Fw+(1-a)ﬂ]X+V|.1]X

dy

V-Jt"'—‘-[ﬁ*FFw‘fBﬁ]Y“'VHzY m
ds B 1)

V2 RS =)+ F (5. - S)-Elyx-E2yy

2= (5= 9+ RSy - 9= AV - B2

where X, Y, and S are the reactor concentrations of slower
growing cells, faster growing cells, and substrate, respectively;
S; and §,, are the substrate concentrations of the feed stream
and the stream used to wash non-adhering cells through the
column, respectively; V is the reactor volume; and ¥, and Y, are
yield parameters. The remaining parameters are defined in the
Nomenclature. The specific growth rates are modelled using
simple Monod kinetics:

max
7S

_B7¥S
2 K2+S (2)

.
H K|+S
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Figure 4. Mixed-culture bioreactor for simplified model development.

where n* and K; are kinetic parameters. The continuous flow
rates (F, F,, F,) are determined by averaging the actual flow
rates over the separation cycle. The flow rate of the stream
removed from the reactor (Fy) is utilized as a ™fictitious” manip-
ulated input in the subsequent controller design. As discussed
below, the F, value calculated at each time step is used to
determine the actual implemented input At,.

Nonlinear Control Strategy

The simplified dynamic model, Equations (1) to (2), is used to
design a nonlinear controller that stabilizes the desired coexis-
tence steady state. Initially, controller design is based on two
assumptions: (i) online measurements of the state variables (X,
Y, §) are available; and (ii) the measurements are undelayed.
These assumptions usually are not satisfied in practice.
Expensive analytical instruments are required to obtain online
measurements of the substrate concentration (5). Consequently,
we assume that this variable must be estimated from available
measurements. Online measurements of the cell concentrations
(X, Y) can be obtained with a spectrometer after the cell popula-
tions are separated (Roos and Hjortso, 1991). Because this infor-
mation cannot be utilized by the controller until the start of the
next separation cycle, the cell concentration measurements
have an effective delay of one sampling period (45 min). Below,
a nonlinear observer that generates one-time-delay-ahead
estimates of the three concentrations from delayed measurements
of the cell concentrations is derived.

Traditionally, linear techniques such as the Smith predictor
(Ogunnaike and Ray, 1994) are used to provide compensation
for time delays such as those in the cell concentration measure-
ments. Linearizing the simplified model at the nominal operat-
ing point shown in Table 1 yields the following discrete-time
transfer function model:

- 771(0.189222-0.2583 2+0.0938)

G(2)
23-2.408122+1.90212-0.4940

3)
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| Table T, Nominal operating conditions for the simplified

pioreactar model,

\ariable Value Variable Yalue
T 0.75 b1 §, 0.5 g/l
Thong 0.525 h! E. 40 mL/h

o 6,40 % 1D'f gL Su 0 g/l

K 7.76 x 103 g/l v 350 ml
Y, 0.44 F, 42.9 mUh
¥ 0.44 Al 0.75h

u 1 X 0.0430 g/L
1] | ¥ 0.0430 g/L
F 56,8 mL/h 5 0.0450 g/L

The linear model is unstable due to a pole on the unit circle.
jt can be shown that this unstable pole is present at any steady-
state operating point. Therefore, time delay compensation
techniques based on the IMC framework (e.g., Smith Predictor)
cannot be applied to this class of mixed-culture bioreactors.
Additionally, the simplified model contains nonlinearities that
can be handled directly using feedback linearization techniques.
For these reasons, the proposed method is based on combining
a feedback linearizing controller with a nonlinear closed-loop
observer that generates estimates of the state variables.

Controller Design

The controlled output (y) is chosen as the fraction of slower
growing cells in the reactor. This allows any desired ratio of the
two cell populations to be specified in terms of a setpoint. The
manipulated input (u) is more difficult to choose because the
recycle loop must be operated periodically to allow regenera-
tion of the adhesion column. The underlying objective is to
manipulate the number of faster growing cells removed from
the reactor. The continuous flow rate of the stream removed
from the reactor (£,) can be employed as the manipulated input
for controller design. However, periodic operation of the recycle
loop must be addressed to actually implement the resulting
control moves. By defining the manipulated input as u = F; and
the state vector as x = [X Y S]7, the simplified model can be
written as:

x=f(x) + g()u 4
y = h(x)
where
{ ity X +Hx “
f(x) = -M?‘z +U2X;
v
[3 F,
S0+ (S x-S - {L
1-a
X
v
(0= B h(x) = —
g = X3 X1+ X2 (S)
Vv
o |
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Nonlinear controlier design is based on input-output
linearization (Henson and Seborg, 1991; Isidori, 1989). The
simplified model has relative degree one. Therefore, the
linearizing control law is:

v-Lh(x)

= —t 6
u E) ©
where the Lie derivatives are:
Lh(x) =—Ds [-(F+ F )+ V(x4 x) - Vigxgl ()

V(xi+X3)
Loh(x) =———=1(-a)(x+x2)x+Bx 2]
Xy +X3)

V(

The design of the input v is discussed below.

The periodic nature of the recycle loop is handled by
approximating the continuous control moves F(t) with imple-
mentable flow rate pulses. This is accomplished by determining
the removal period At, that results in the same amount of
material being extracted from the reactor as that obtained from
the discretized version of the continuous control law. This
approach is consistent with the requirement that material be
extracted from the reactor at a constant, optimal flow rate (as
discussed earlier). The resulting control law is:

At (kAt) = %fi)-At ®

where At is the time required to complete an entire separation
cycle (45 minutes); At, (kAt) is the time interval during which
material is removed from the reactor during the k-th controller
iteration; and F; is the constant flow rate of this stream. The signal
u(kAt) is computed from the discretized version of the continuous
control law (6) which involves state variables that are delayed
(%, Xy) and unmeasured (x;). Therefore, the actual state
variables x(kAt) are replaced by one-time-delay-ahead predic-
tions %(kAt) produced by the nonlinear observer derived below.
This procedure yields a discretized version of the linearizing
control law (6):

v(kAt) - Lih[X(kAD)]

kAt) = - 9
uCkat) Lgh x(kab)] ©)
The continuous input w(t) is designed as:
t-at
V=kl()’xp_)')+kojo (ysp—-¥)dt (10)

where y., is the setpoint and the k; are controller tuning
parameters chosen such that the polynomial 2+ ks + ky is
Hurwitz. The integral term is included to remove offset in the
presence of plant/model mismatch. Note that the upper limit of
the integral is t - At rather than the usual value t. This modifi-
cation allows actual measurements, rather than predicted
values, to be used in the integral. The signal v(kAt) is obtained
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by discretizing the continuous input W(t) using the one-time-
delay-ahead prediction of the output as necessary. The result is:

v(kat) = vif(k = At] + ky{e(kAt) - e[(k — )At]} + k Ate[(k — )AL
amn

where v,[(k - 1)At] is the value of v used to calculate the input
u[(k - 1)At] that is actually implemented and:

e(kat) =y, (kAL) - y(kAt) 2)
é(kAt) = y(kat) - (kat)

The signal v[(k — 1)Af] is used to include anti-windup
compensation (Ogunnaike and Ray, 1994) in the nonlinear
controller. Recall that the implemented input must be
constrained as 3 min < At, < 18 min to ensure accurate cell
concentration measurements and to allow sufficient time for
regeneration of the adhesion column. Although not shown here,
input constraints seriously degrade closed-loop performance if
anti-windup compensation is not included in the controller.

The signal v,[(k- 1)Al] is calculated from Equations (8) and (9) as:

v;[(k=1)At) = Lh(X[(k - 1)AL])

+L9h<&[(k—1)Ar1>[ﬂ(";%“]i] (13)

where At ;[(k - 1)At] is the implemented removal time that
necessarily satisfies the constraints.

Observer Design
Design of the nonlinear observer that provides one-time-delay-
ahead predictions of the measured cell concentrations and the
unmeasured substrate concentration is now presented. The
proposed observer design technique is applicable to nonlinear
systems that are affine in the unmeasured state variables (Kurtz
and Henson, 1998). While more general techniques such as the
Extended Kalman Filter (Muske and Edgar, 1997) may be
employed, we utilize the proposed method because the nonlin-
ear oberver is particularly simple to design and implement.
Applying nonlinear observability tests (Isidori, 1989) to the
simplified model, Equations (1) to (2), it is easy to show that the
substrate concentration is observable from measurements of
the cell concentrations. Note that the unmeasured substrate
concentration (x;) appears nonlinearly in the simplified model
due to the form of the specific growth rates (u,, p,). A state-
affine model is obtained by linearizing the growth rates about
the most recent estimate of the substrate concentration:

o i(x3) -z
dx3 1x=f;(x3 x3) a4

Hi(x3)=p(x)+

where X; = &;[(k - 1)At]. This yields a bilinear model that can be
represented as a state-affine nonlinear system of the form:

x= a(u/ Yme ;3)X+ ﬁ(ul Yme ;3) (.| 5)
100
= x=Cx
Ym=lo10
242

where y, represents the measured cell concentrations. The
nonlinear functions a and B are shown in the Appendix. Below
we discuss two methods for constructing a discrete-time
observer from the continuous-time state affine model (15). The
first method is based on discretization of a continuous-time
observer, while the second method is based on explicit
discretization of the continuous-time model followed by
discrete-time observer design.

Method 1 — Observer Discretization

In this method, a continuous-time nonlinear observer is
constructed and then discretized by assuming the measured
outputs and state estimates are constant over the separation
cycle. The continuous-time observer based on Equation (15) is
(Kurtz and Henson, 1998):

j‘: a(u, Yme ;3); + ﬁ(u/ Yms ;3) + L(U, Yme }3)[ym - C;‘] (1 6)

where L(u,y,,, X3) is an observer gain matrix that depends only
on available signals. If the estimation error is defined as e, = x - %,
the observer yields the following error dynamics:

ey = [0(U, Y, X3) = L(U, Y m, X3) Cle, a7)

The objective is to choose the observer gain L such that the
matrix (o - LC) has specified eigenvalues that are invariant with
respect to u, y,,,, and X;. This can be achieved if the state-affine
system is observable (Kurtz and Henson, 1998).

Note that the observer requires continuous measurement of
the cell concentrations (y,,) while only sampled measurements
from the previous time step are available. This problem is
addressed by assuming the cell concentrations are constant
between sampling times. Another approximation is introduced
by assuming the state estimates are approximately constant
over the separation cycle. For the bioreactor parameters consid-
ered in the next section, these assumptions are reasonable
because the dominant time constant of the reactor (5.6 h) is
much greater than the sampling time (45 min). Nevertheless,
the assumption that the cell concentrations and state estimates
are constant over the separation cycle is a potential shortcom-
ing of this approach.

The continuous-time observer (16) can be integrated from
t = (k- 1)At to t = kAt to yield the discrete-time observer:

x(kAt) = (I + Aty x{(k - T)At] + Atp (18)
+AtL{y (kAt) — Cx[(k - T)At]}

where y, (kAt) = Cx[(k - 1)At] and the dependence of a, B, and
Lon uf(k - 1)At], y,(kAt), and &5[(k - 1)At] has been omitted
for simplicity. The discrete-time observer produces one-time-
delay-ahead predictions of the cell and substrate concentrations
from delayed measurements of the cell concentrations. The
predictions are used in the nonlinear controller, Equations (9)
and (11), to compensate for measurement delays. This observer
has been evaluated by the authors in a previous work (Kurtz
et al,, 1996). It is easy to show that a necessary condition for
stability of the discrete-time observer (18) is:

2
—Z—t-<ki[a—LC]<0 (19)
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Additional conditions are required to ensure stability even in the
continuous-time case (Kurtz and Henson, 1998).

Method 2 — Model Discretization
while the observer discretization method is easy to implement,
it suffers from several potential disadvantages, including: (i) the
assumption of constant state estimates between sample times
may degrade observer performance; and (i) tuning may be
problematic due to the restriction (19) on the eigenvalues of
(o = LC). Below we propose an alternative observer design
method based on explicit discretization of the nonlinear model
that does not suffer from these problems. The assumption that
the measured cell concentrations are constant over the separa-
tion cycle is still required.

Because the input is held constant between sample times,
the continuous-time model (15) can be represented as:

x = oul(k = DAL, ym(kAD), X3[(k - 1AL]) x
+B(ul(k = DAL, ym(kAD), X3[(k=Tat])

(20)

The matrices in Equation (20) are constant between sample
times. Therefore, the continuous-time model can be discretized
using standard methods for linear systems (Astrom and
wittenmark, 1990):

x(kat) = ag(ul(k - DAL, ym(kat), x3[(k- DA x{(k-DAL] (21)
+Ba(ul(k - At], y m(kat), x3[(k-1)At])

The observer is designed directly from the discrete-time
model (21):

x(kat) = agx{(k-DAt]+Bg + Ly m(kat) - Cx{(k- DAL} (22)

where the dependence of oy, B, and L on uf(k - 1)At], y,(kAD),
and %;[(k - 1)At] has been omitted for simplicity. The observer
gain matrix L is used to place the eigenvalues of (o, - LC) at the
desired locations within the unit disc in the complex plane. This
makes tuning more transparent than in the observer discretiza-
tion method. The disadvantage of the model discretization
approach is the slight increase in computational effort required
to perform the discretization. This method is used in the simula-
tion study below.

Simulation Study

The proposed control strategy is evaluated using the detailed
bioreactor model derived in the Appendix as the actual process.

Table 2. Nominal operating conditions for the detailed bioreactor
model.

Variable Value Variable Value
Ft, 180 mL/h X 0.0430 g/L
F; 180 mL/h Y 0.0430 g/L
A 61.44 mL S 0.0373 g/L

T 0.1667 h
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Model parameters and nominal operating conditions associated
with the simplified model are shown in Table 1. Additional
parameters associated with the detailed model are shown in
Table 2. The parameters are derived from Roos and Hjortso
(1991) with the exception of the flow rates F,, £, F_, and F;
and the adhesion column volume V, whose values have been
modified to accommodate a larger column required to achieve
sufficient recycle of the slower growing cell population. As
shown in Figure 2, experimental data support the assumption
of perfect cell separation (¢ = B = 1) at the optimal stream
removal rate. The initial conditions of the cell concentrations (X, Y)
are assumed to be known since the reactor is initially at steady
state and cell concentration measurements are available. Note
that the initial condition corresponds to a 50/50 mixture of the
two populations. By contrast, the initial condition for the
unmeasured substrate concentration (S) is approximately 20%
larger than the true value (0.0373 g/L). The nominal value of £,
is determined from steady-state relations derived from the
simplified model, and therefore it depends on the nominal
substrate concentration. As a result, the value reported in
Table 1 is approximately 25% lower than the value obtained
with the actual substrate concentration (55.4 mL/h).

Figure 5 shows the steady-state growth rates of the two cell
populations. Note that the first population (corresponding to
concentration X) is slower growing for low substrate concentra-
tions, while the second population (corresponding to concen-
tration Y) is slower growing for high substrate concentrations.
The growth rates are equal at § = 0.12 g/L, but they differ
significantly for substrate concentrations slightly removed from
this point. The initial condition in Table 1 corresponds to a
steady state to the left of this value. For the control scheme to
be successful, the substrate concentration cannot remain in the
region where the first population is faster growing for
prolonged periods of time. Otherwise, the second population
must be recycled to stabilize the coexistence steady state.

The nonlinear controller is designed as described above,
while the nonlinear observer is designed using the model
discretization method. The controller tuning parameters are
chosen as k; = 2 and kq = 1, which correspond to a closed-loop
time constant of approximately 1 h. The eigenvalues of the
matrix a~LC are placed at [0.45 0.5 0.55], which makes the
dominant time constant of the observer error dynamics approx-
imately equal to 1.4 h. The controller and observer both utilize
the initial conditions in Table 1.

pih'y

L 1 1 i
“oo ol a2 o3 a4 %]

S(gL)

Figure 5. Steady-state cell growth rates.
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Figure 6. Setpoint responses with no modelling error.

The setpoint tracking performance of the nonlinear controller
is shown in Figure 6. The setpoint for the fraction of slower
growing cells is changed from the nominal value to 0.35 or
0.65 at t =1 h. Both setpoint changes are tracked effectively. A
more sluggish response is obtained for the positive change
because the manipulated input remains at the upper constraint
for an extended period of time. The observer provides accurate
predictions of the substrate concentration for both tests. Note
that the variables do not asymptotically converge to constant
values due to the periodic nature of the recycle loop.

In Figure 7, the same setpoint changes as shown in Figure 6
are performed with an error in the maximum growth rate
parameters (1"%). A +25% error in uT"%* and a -25% error in
ug'ex are considered. These errors make the intersection of the
two steady-state growth curves shown in Figure 5 move to a
higher substrate value. As a result, it is more difficult to maintain
the desired fraction of slower growing cells due to the increased
difference between the growth rates. This causes an initial
decrease in the fraction of slower growing cells for both
setpoint tests. The fraction of slower growing cells reaches the
desired setpoints in a time comparable to that observed in
Figure 6 where no modelling error is present. Note that the
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substrate estimates are biased due to the modelling error. The
asymmetrical output trajectories for the two setpoint changes
are caused by the input constraints.

In Figure 8, the same setpoint changes as shown in Figure 6
are performed with errors in the separation factors o and B.
Both parameters are changed in the detailed model! from unity
to 0.9 to mimic imperfect separation. The modelling error
reduces the effectiveness of the nonlinear controller because
less slower growing cells are recycled to the reactor than that
predicted by the model. The effect of the error is apparent in
the time required for the fraction of slower growing cells to
reach the target value for the +0.15 setpoint change. The
slower response is a direct result of the input being constrained
at the upper constraint for a longer period of time than in
Figure 6.

The disturbance rejection performance of the controller to a
change in the inlet substrate concentration is shown in Figure 9.
The inlet substrate concentration is change from its nominal
value of 0.5 g/L to 0.75 g/L at t = 0 h. The disturbance is
rejected very effectively as the output deviates from the setpoint
only during the initial phase of the test. As expected, the
substrate concentration estimate is biased in this case. Figures 7
to 9 demonstrate the ability of the proposed controller to

provide acceptable performance in the presence of significant
modelling errors.
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Figure 7. Setpoint responses with errors in the cel! growth rates.
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Summary and Conclusions

A nonlinear control strategy for mixed-culture bioreactors in
which two cell populations compete for a single growth limiting
substrate has been developed. Effective control of these
processes is challenging because the steady state corresponding
to the coexistence of the two populations is unstable. Specific
cell adhesion is proposed as a means to separate the two
populations such that slower growing cells can be recycled back
to the reactor to stabilize the desired coexistence steady state.
Nonlinear control system design is complicated by the require-
ment that the recycle loop must be operated periodically to
allow regeneration of the adhesion column. An approximate
dynamic model based on the assumption of continuous separa-
tion is used to calculate changes in a “fictitious” manipulated
input which is chosen as the flow rate of the stream being
removed from the reactor. The continuous control moves are
approximated by implementable flow rate pulses. The
controller utilizes one-time-delay-ahead predictions of the
measured cell concentrations and the unmeasured substrate
concentration generated by a nonlinear closed-loop observer.
The nonlinear control scheme provides excellent performance
when applied to a detailed bioreactor model that accounts for
periodic operation of the recycle loop. Future work will focus on
experimental evaluation of the proposed control strategy.

Appendix

Detailed Bioreactor Model

During Step 1 of the recycle operation, material is extracted
from the reactor and sent to the column. Cells are held in the
column, but substrate is allowed to flow through the column
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Figure 9. Regulatory response for an unmeasured disturbance in the
feed substrate concentration.

and back into the reactor. Cell dynamics are modelled using the
mass of cells accumulated within the column rather than the
concentration of the cells. Initial conditions correspond to the
final conditions from the last recycle operation. During this step
the system is modelled as:

VX = ~(F+E)X+ V()X
VY = —(R+F)Y+Vpa(S)Y

: . v v -
VS = F(Si= )+ E(Sc= =T mDX= kY
Ve = F(5-50)
My
My

where M, and M, are the mass of slower growing cells and
faster growing cells, respectively, accumulated in the separation
column; S is the substrate concentration in the separation column;
and V, is the volume of the separation column. The “*” is used
to denote actual flow rate values rather than the average values
used for the simplified model. The other variables and parameters
are defined in the Nomenclature.
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During Step 2 of the recycle operation, there is no exchange
of material between the reactor and the column. However,
substrate does flow out of the system as waste. The equations
for the system during this step are:

VX = —FX+V(S)X
. v v
Vs = 5(5;“5)"?H1(S)X—Y—112(5)Y (24)
1 2
Ve = FalSw=50)
Mx = 0
My = 0

Cells are recycled to the reactor in a pulsatile fashion during
Step 3. The pulse input of cells into the reactor is used to simulate
the plug flow behaviour of the cells within the separation column.
Other modelling approaches may result in a large number of non-
adhering cells remaining in the column. This would contradict the
experimental results of Roos and Hjortso (1991) which show
that virtually all the non-adhering cells are eluted and recycled
to the reactor. Note that substrate from the column is recycled
along with the cells. The equations describing this step are:

VE = = (it F) X+ Ving(s) X+ 22K
—(F+R)Y+Vi(syy+ L=B My
. . v v
Vs = F;-(S;-—S)+Fw(3c*5)—71u1(S}X—;;uz(S)Y 25)
chc = F;/(S"Sc)
MX = 0
MY = O

where o and B are the separation efficiencies, and Tis the inter-
val of time during which Step 3 occurs.

Step 4 is required to regenerate the adhesion column. A wash
stream is introduced into the column to elute adhering cells and

remove any remaining non-adhering cells. The corresponding
equations are:

VX = -—FiX+ V]J.](S)X

VY = =FY+Vu (S)Y

: Vv v
Vs = FJ(SJ-S)—EM(S)X-EM(S)Y

(26)
VeSe = FulSw =350
F'
My = —%Mm
X < X
£
My = —?WMY

—m

where € is a constant chosen sufficiently small such that essen-
tially no cells remain in the column by the end of Step 4. A
detailed description of the decrease in cell mass as the result of
Step 3 is not necessary because Step 4 is used only to regener-
ate the column. Therefore, the initial condition used for M; at
the start of Step 4 is inconsequential as long as € is chosen suffi-
ciently small to bring the cell mass very close to zero by the
completion of the recycle operation. The special modelling
technique used for the cells is not required for the substrate
concentration.

System Matrices
Working from the continuous-time Equation (1) of the simplified

model, partial linearization with respect to § around the point §
yields,

= (U, Ym X)X+ B(U, Y, X3) 7)
Ym = Cx
where
x =[xvs] (28)
[ all1|
00 LN
as |5 ‘
< L)
alu,Ym., =100 Yy
U,ym x3) 3 13 |
00 -fith _iﬁl__i.aull_
v ¥ osIS v, as |5
[ Fi+F, +(1-a)u < aml =
A X+ ()X - X=L[_F
v () 3 |5
Fi +F, +Bu < | <
w7y Sy -v=2[_5s
v +H2($) 3 |5
% T om| ¢
U'i¥miX3) = -X=L_3
Bu.ym.x3) Fisi+Fwa_p1(S)X 5 |5
4 "
- auz -
Sy -v=2|_53
_Hz( ) s |5
/]
(100
C =
0 10
wy ™,
as |§ K; +3)?
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Nomenclature

C measured output matrix

e output tracking error involving measured output
é output tracking error involving estimated output
e, state estimation error

flx)  drift vector field

F flow rate, (m3/h)

g(x)  input vector field
G(2) discrete-time transfer function
h(x)  nonlinear output map

I identity matrix

k discrete time index

ko. k; controller tuning parameters

K growth rate parameter, (kg/m3)
L nonlinear observer gain matrix

Lh(x) Lie derivative

L_h(x) Lie derivative

My mass of slower growing cells, (kg)

M,  mass of faster growing cells, (kq)

S substrate concentration, (kg/m3),

T time interval during cells are recycled to the reactor, (s)

u manipulated input

v calculated manipulated input for feedback linearized system

v; implemented manipulated input for feedback linearized
system

v volume, (m3)

X state vector

X3 steady-state substrate concentration, (kg/m3)
estimated state vector

X
X concentration of slower growing cells, (kg/m3)
1% controlled output

Ym measured output vector

Ysp setpoint

Y concentration of faster growing cells, (kg/m3)
Y, cell-mass yield for slower growing cells

Y, cell-mass yield for faster growing cells

Greek Letters

o, B nonlinear model functions, separation efficiencies
At sampling period, (s)

At, calculated stream removal period, (s)

At,;  implemented stream removal period, (s)
€ constant in detailed bioreactor model
A eigenvalue

M specific growth rate, (s~')

Hmoe Maximum specific growth rate, (s~')

Subscripts

4 adhesion column

d discrete time

i inlet stream

s reactor removal stream

w adhesion column wash stream
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0 product stream

slower growing cell population
2 faster growing cell population
Superscripts
*

detailed model
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