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Abstract

Continuous cultures of budding yeast are known to exhibit autonomous oscillations that adversely a!ect bioreactor stability and
productivity. We demonstrate that this phenomenon can be modeled by coupling the population balance equation (PBE) for the cell
mass distribution to the mass balance of the rate limiting substrate. An e$cient and robust numerical solution procedure using
orthogonal collocation on "nite elements is developed to approximate the PBE model by a coupled set of nonlinear ordinary
di!erential equations (ODEs). A controller design model is obtained by linearizing and temporally discretizing the ODEs derived
from spatial discretization of the PBE model. The resulting linear state-space model is used to develop model predictive control
(MPC) strategies that regulate the discretized cell number distribution by manipulating the dilution rate and the feed substrate
concentration. Two choices of the controlled output vector are considered: (i) the entire discretized distribution; and (ii) a subset of the
discretized distribution. The ability of the MPC controllers to stabilize steady-state and periodic solutions is evaluated via simulation.
We show that superior closed-loop performance is obtained when a subset of the distribution is employed as controlled out-
puts. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Saccharomyces cerevisiae (Baker's yeast) is an impor-
tant microorganism in a number of industries including
brewing, baking, food manufacturing and genetic engin-
eering. Under routine operating conditions, continuous
bioreactors producing Saccharomyces cerevisiae can ex-
hibit autonomous and sustained oscillations (StraK ssle,
Sonnleitner & Feichter, 1989b). The oscillations event-
ually disappear, presumably due to external disturbances
or de"ciencies in the medium. Similar oscillations have
been observed in other continuous microbial cultures
(McLellan, Daugulis & Li, 1999). In most situations,
oscillations adversely a!ect bioreactor operability and
the objective is to eliminate the limit cycle behavior by
stabilizing a chosen steady state. On the other hand, it
may be desirable to induce and stabilize oscillations to
increase the production of metabolites that are produced
during a certain phase of the cell cycle (Hjorts+ & Bailey,

1983). To achieve these objectives, it is necessary to
derive a dynamic model that describes the oscillatory
behavior and to develop a control strategy that allows
modi"cation of the intrinsic reactor dynamics.

The mechanisms responsible for sustained oscillations
in Saccharomyces cerevisiae cultures are controversial
and a subject of current research. The oscillatory behav-
ior has been modeled by segregated structured models
(Cazzador, Mariani, Martegani & Alberghina, 1990;
StraK ssle, Sonnleitner & Feichter, 1989a), segregated
unstructured models (Hjorts+ & Nielsen, 1994) and
metabolic (cybernetic) models (Jones & Kompala, 1999).
Unsegregated (also known as distributed) models are
based on the assumption of a continuous and well-mixed
biophase, while segretated models treat the biophase as
a population of cells with di!erent properties. Unstruc-
tured models have no chemical structure imposed on the
biophase, while structured models are based on an as-
sumed chemical structure. Segregated structured models
are capable of representing a broad range of cell mecha-
nisms. However, parameter identi"cation and numerical
solution of such models are very di$cult due to the large
number of variables involved. Moreover, Beuse, Bartling,
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Fig. 1. Cell cycle for budding yeast used in deriving cell age distribution
models.

Kopmann, Diekmann and Thoma (1998), show that the
assumption of certain cell classes may lead to a struc-
tured segregated model (StraK ssle et al., 1989a) that cannot
model experimentally observed changes of cell sub-
populations over a range of dilution rates. In this
paper, a segregated unstructured model is proposed be-
cause this is perhaps the simplest model form that is able
to predict periodic behavior of the cell population and its
relation to cell cycle synchrony (Hjorts+ & Nielsen,
1994,1995).

Cybernetic models explain oscillations via metabolic
events such as the competition between glucose oxidative
and fermentative pathways (Jones & Kompala, 1999).
Due to their unsegregated nature, this class of models
cannot directly explain cell synchronization (i.e. the
formation of distinct cell subpopulations) that accom-
panies the oscillations (Chen & McDonald, 1990).
Instead, cell cycle synchrony is assumed to be a conse-
quence of the metabolic oscillations. Our previous work
(Hjorts+, 1987) shows that induction synchrony can oc-
cur only when the period of the metabolic forcing is equal
to the period of the cell cycle. Consequently, metabolic
models resort to a coincidental match of the metabolic
and cell cycle periods to explain the observed cell cycle
synchrony. As discussed in Section 2, we believe that
segregated unstructured models based on population
balance equations provide a more realistic description of
the cell cycle events that lead to sustained oscillation in
budding yeast cultures.

Although there exists a large number of papers on
modeling of particulate systems, the literature on partic-
ulate system control is much more sparse. Controllability
issues for population balance equation (PBE) models are
studied by Semino and Ray (1995a). The analysis results
are used to design single-input}single-output control
strategies that eliminates oscillatory behavior in an emul-
sion polymerization reactor (Semino & Ray, 1995b).
Rawlings and co-workers design model-based controllers
that allow regulation of the crystal size distribution in
continuous crystalizers (Eaton & Rawlings, 1990; Rawl-
ings, Witkowski & Eaton, 1989). Feedback linearizing
control strategies based on moment models of continu-
ous crystallizers are proposed by Chiu and Christo"des
(1999).

In this paper, a linear model predictive control
(LMPC) strategy based on a spatially discretized PBE
model is proposed for the stabilization of oscillating
yeast cultures. Cell mass is used as the internal cell
coordinate to facilitate real-time measurement of the cell
number distribution. The linear state-space model used
for LMPC design is obtained by linearizing and tem-
porally discretizing the nonlinear ordinary di!erential
equations resulting from spatial discretization of the PBE
model. The LMPC strategy is designed to allow stabiliz-
ation of steady-state and periodic solutions via direct
control of the cell mass distribution.

The rest of the paper is organized in four sections. In
Section 2, previous work on PBE modeling and control
of oscillating microbial culture is reviewed and compared
with the present contribution. The PBE model is present-
ed in Section 3 along with the numerical solution proced-
ure for the resulting set of partial di!erential/integral
equations. In Section 4, the LMPC strategy is presented
with special emphasis on the use of the discretized cell
mass distribution as controlled outputs. Closed-loop
simulation results for the attenuation and induction of
oscillations also are shown in Section 4. Finally, a sum-
mary is given in Section 5.

2. Previous work on oscillating microbial cultures

Our previous models for oscillating microbial cultures
(Hjorts+ & Nielsen, 1994, 1995) involve coupling the
population balance equation (PBE) for the cell age distri-
bution to the substrate mass balance. The simpli"ed cell
cycle used in the derivation of the PBE model for bud-
ding yeast cultures is shown in Fig. 1. The cell cycle has
two control points: (i) the transition age (a

t
) when

a daughter cell becomes a mother cell capable of under-
going budding; and (ii) the division age (a

d
) when the

budding mother cell produces a daughter cell. The as-
sumption of discrete control points is a simpli"cation of
the probabilistic division properties of real yeast cells.
The control points are in#uenced by medium composi-
tion, especially the concentration of the rate limiting
substrate. The coupling of the PBE and the substrate
balance equation establishes an internal feedback loop
that can induce sustained oscillations. The basic mecha-
nism can be explained as follows. A partially synchro-
nized cell culture produces periodic changes in the
medium, which in turn induces periodic changes in a

t
and

a
d
. This leads to further synchronization of the culture

and ultimately results in sustained oscillations. A detailed
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description and analysis of this PBE model can be found
in Hjorts+ and Nielsen (1994, 1995).

In our previous work on binary "ssion organisms
(Kurtz, Zhu, Zamamiri, Henson & Hjorts+, 1998), the
PBE model has been enhanced by replacing the discrete
division control point with a division intensity function
C(a,S@), where a is the cell age and S@ is the `e!ectivea
substrate concentration. The function C(a,S@) represents
the speci"c rate of cell division at age a and approaches
in"nity as the cell age approaches some critical value
a
c
(S@). The e!ective substrate concentration (S@) is intro-

duced to describe the delayed response of cell metabolism
to changes in environmental conditions and is modeled
as a "ltered value of actual substrate concentration.
These enhancements provide a more realistic description
of cell cycle behavior than the conceptual models in
Hjorts+ and Nielsen (1994, 1995). The resulting PBE
model has been used as the basis for the development of
a feedback linearizing control strategy. Rather than con-
trol the cell number distribution as in the present work,
the nonlinear controller design is based on a simpli"ed
moment representation of the PBE model. Additional
details can be found in Kurtz et al. (1998).

Although it is natural to use cell age as the internal
coordinate for PBE modeling of microbial cultures, there
are complications associated with age domain models
with respect to model-based controller design. In particu-
lar, the cell age distribution cannot be measured directly
and it is di$cult to develop an useful mapping between
the age distribution and the cell size distribution. With
recent developments in particle measurement technology
(He!els et al., 1998; Rawlings, Miller & Witkowski, 1993;
Yamashit, Kuwashim, Nonaka & Suzuki, 1993), the par-
ticle size distribution now can be measured on-line. How-
ever, cell size is not a convenient internal coordinate for
microbial cultures due to the di$culties associated with
deriving cell size models. It is possible to establish a map-
ping between the cell mass distribution and the cell size
distribution. Such mappings can be developed for certain
microbial cultures with the knowledge of the cell density,
dry-matter content and cell geometry (Bakken & Olsen,
1983). By using #ow cytometry to analyze forward light
scatter intensity that varies with bacteria dry mass,
a method for determining biomass distribution in mixed
bacterial population is reported in Robertson, Button
and Koch (1998). In this paper, we use cell mass as the
internal coordinate for deriving the PBE model and
assume the cell mass distribution is measured.

3. PBE model development and numerical solution of the
PBE model

3.1. Model development

The PBE model employed in this paper contains sev-
eral enhancements of the models used in our previous

works (Hjorts+ & Nielsen, 1994; Kurtz et al., 1998). First,
the binary "ssion culture studied in Kurtz et al. (1998) is
replaced by a budding yeast culture with the more com-
plex cell cycle that depicted in Fig. 1. Second, cell mass is
used as the internal coordinate rather than cell age as in
Hjorts+ and Nielsen (1994) and Kurtz et al. (1998). Third,
the generation of newborn cells is modeled by a
Gaussian-like probability function rather than by dis-
crete control points as in Hjorts+ and Nielsen (1994).
Fourth, cell division and transition are a!ected by a
"ltered substrate concentration rather than a purely
delayed substrate concentration as in Hjorts+ and
Nielsen (1994).

The PBE is written as

L=(m, t)

Lt
#

L[k(S@)=(m, t)]

Lm

"P
m{

0

2p(m,m@)C(m@,S@)=(m@, t) dm@

![D#C(m)]=(m, t), (1)

where =(m, t) is the number density of cells with mass
m at time t, k(S@) is the single cell growth rate, S@ is the
e!ective substrate concentration, p(m,m@) is the probabil-
ity that a newborn cell of mass m is produced from
a mother cell dividing at mass m@, C(m, S@) is the division
intensity function, and D is the dilution rate. The initial
condition of the cell mass distribution is denoted as
=(m,0).

The division intensity function C(m,S@) models the
tendency of budding cells to divide as they approach
a certain critical mass. The function is assumed to have
the form

C(m,S@)"G
0, m)mH

t
#m

0
,

c exp[!e(m!mH
d
)2], mH

t
#m

0
(m(mH

d
,

c, m*mH
d
,

(2)

where mH
t

is the transition mass, m
0
is the additional mass

that mother cells must gain before division is possible,
e and c are constant parameters and mH

d
is the mass at

which the division intensity reaches its maximum value c.
The transition and division masses are functions of S@ as
discussed later in this section. The parameter e deter-
mines how rapidly the division rate increases as the cell
mass approaches mH

d
. The division intensity function is

plotted in Fig. 2a for the parameter values listed in
Table 1. It is important to note that the parameter values
have been chosen to provide reasonable reactor operat-
ing conditions. As part of our future work, we intend to
investigate the estimation of model parameters from ex-
perimental data generated in our laboratory.
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Fig. 2. (a) The division intensity function C(m); and (b) the newborn cell
probability p (m,m@) (m@"11]10~13 g, mH

t
"7]10~13 g).

p(m,m@)"G
A exp[!b(m!mH

t
)2]#A exp[!b(m!m@#mH

t
)2], m@'m and m@'mH

t
#m

0
,

0, m@)m or m@)mH
t
#m

0
,

(3)

Table 1
Nominal operating conditions

Variable Value Variable Value

c 200 e 5
A J25/p b 100
S
l

0.1 g/1 S
h

2 g/l
K

t
0.01 K

d
2

m
t0

6]10~13 g m
d0

11]10~13 g
m

.!9
12]10~13 g m

0
1]10~13 g

> 0.4 k
m

5]10~12 g/h
K

m
25 g/l a 20

D 0.4 h~1 S
f

25 g/l

The newborn cell probability function p (m,m@) de-
scribes the mass distribution of newborn cells resulting
from cell division. This function is modeled as

where m is the mass of the newborn cell, m@ is the mass of
the budding mother cell, and A and b are constant
parameters. The function p (m,m@) is set to zero for
m@)mH

t
#m

0
(when no division can occur) or m@)m

(which is not physically meaningful). The probability
function p(m,m@) obviously must satisfy

P
m{

0

p (m,m@) dm"1. (4)

Function (3) yields two identical Gaussian-like peaks in
the mass domain, one centered at the substrate-depen-

dent transition mass mH
t

(corresponding to newborn
mother cells) and one centered at m@!mH

t
(correspond-

ing to newborn daughter cells). The function p(m,m@) is
plotted in Fig. 2b for the parameter values in the Table 1.

By incorporating the division intensity function (2) and
the newborn cell probability function (3), the PBE model
becomes more biologically plausible than conceptual
models based on discrete control points (Hjorts+ & Niel-
sen, 1994). However, sustained oscillations are more di$-
cult to generate with the proposed PBE model because
C(m,S@) and p(m,m@) introduce dispersive e!ects that tend
to counteract the e!ects of cell synchrony. We have found
that the functions used to model the substrate depend-
ence of the transition mass (mH

t
) and the division mass

(mH
d
) play important roles in the ability of the model to

exhibit stable periodic solutions.
The following saturation functions are proposed for

the transition and division masses:

mH
t
(S@)"G

m
t0
#K

t
(S

l
!S

h
), S@(S

l
,

m
t0
#K

t
(S@!S

h
), S@3[S

l
,S

h
],

m
t0

, S@'S
h
,

(5)

mH
d
(S@)"G

m
d0
#K

d
(S

l
!S

h
), S@(S

l
,

m
d0
#K

d
(S@!S

h
), S@3[S

l
, S

h
],

m
d0

, S@'S
h
,

(6)

where S
l
, S

h
, m

t0
, m

d0
, K

t
and K

d
are constant para-

meters. Note that both mH
t

and mH
d

are increasing func-
tions of the e!ective substrate concentration S@. Fig. 3
shows mH

t
(S@) and mH

d
(S@) for the parameter values in Table

1. These functionalities are in general agreement with
experimental data (Alberghina, Ranzi, Porro & Mar-
tegani, 1991; Martegani, Porro, Ranzi & Alberghina,
1990) that the transition mass (m

t
) and the division mass

(m
d
) are positive functions of nutritional conditions and

that m
d

is much more strongly a!ected than is m
t
. The

ratio of the division and transition masses is reported to

be 1.6}1.7 at good nutritional conditions and 1.15}1.2 at
poor nutritional conditions (Alberghina et al., 1991; Mar-
tegani et al., 1990). For the parameters in Table 1, the
ratio of mH

d
and mH

t
is 1.8 for S@*2 g/l and 1.5 for

S@)0.01 g/l. Since the division mass (m
d
) is less than the

critical division mass mH
d
, these ratios appear to be in

reasonable agreement with published data.
The substrate balance is written as

dS

dt
"D(S

f
!S)!P

=

0

k(S@)
>
=(m, t) dm, (7)
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Fig. 3. The division mass mH
d
(S@) (*) and the transition mass mH

t
(S@) (} }).

where S is the actual substrate concentration, S@ is the
e!ective substrate concentrations, S

f
is the feed substrate

concentration and > is a constant yield coe$cient. The
single cell growth rate is assumed to follow simple
Monod kinetics:

k(S@)"
k
m
S@

K
m
#S@

, (8)

where k
m

and K
m

are constant parameters. The "ltered
substrate concentration is calculated as

dS@
dt

"a(S!S@), (9)

where the constant parameter a determines how rapidly
cells respond to environmental changes (Stephens
& Lyberatos, 1987).

As compared to conceptual models with discrete con-
trol points (Hjorts+& Nielsen, 1994), the dynamic behav-
ior of the proposed PBE model is more complex due to
the incorporation of the "ltered substrate concentration
S@ and the functions C(m,S@) and p(m,m@). These functions
tend to create dispersive e!ects that counteract cell syn-
chronization that leads to sustained oscillations. As
shown below, the proposed model is capable of generat-
ing stable periodic solutions via the internal feedback
mechanism described in Hjorts+ and Nielsen (1994).
A partially synchronized cell population induces periodic
changes in the substrate concentration, which then leads
to periodic changes in the transition and division masses.
These two variables determine the mass of dividing
mother cells and newborn daughter cells and therefore
impose upper and lower bounds on the cell state space.
Periodic changes in these boundaries create a stable
attractor that overcomes the dispersive e!ects.

3.2. Numerical solution

The PBE model is comprised of a coupled set of
nonlinear algebraic, ordinary di!erential and integro-
partial di!erential equations. Analytical solution of such
models is possible only under very restrictive assump-
tions (Hjorts+ & Nielsen, 1994, 1995). Consequently, nu-
merical solution is required when the PBE model is used
in open- and closed-loop simulations. In our previous
work on binary "ssion organisms (Kurtz et al., 1998), the
PBE model is solved using a "nite di!erence method.
This method is simple to implement, but it is computa-
tionally ine$cient and less accurate than alternative
techniques based on weighted residuals (Finlayson,
1980).

We have found that orthogonal collocation on "nite
elements (Finlayson, 1980) provides e$cient and robust
solution of the PBE model. A "nite cell mass domain,
0)m)m

.!9
, is chosen such that the number of cells

with mass m'm
.!9

is negligible. The PBE is approxi-
mated by a coupled set of nonlinear ordinary di!erential
equations (ODEs) that are obtained by discretizing the
mass domain. Integral expressions in the population and
substrate balance equations are approximated using
Gaussian quadrature (Finlayson, 1980). The resulting set
of nonlinear ODEs has the form

d=
j

dt
"!

1

h
k(S@)

n
+
i/1

A
j,i
=

i
#h

n
+
i/1

2w
i
P
j,i

C
i
=

i

!(D#C
j
)=

j
, j"1,2,2, n, (10)

dS

dt
"D(S

f
!S)!

k(S@)
>

h
n
+
i/1

w
i
=

i
, (11)

dS@
dt

"a(S!S@), (12)

where=
j
denotes the cell number density at collocation

point j, n is the total number of collocation points, A is
the collocation matrix (Finlayson, 1980), h scales the size
of each "nite element to unity; w is a vector of quadrature
weights (Finlayson, 1980), P

j,i
"p (m

j
,m

i
) is the (i, j) ele-

ment of the matrix P3RnCn, and C
i
"C(m

i
) is ith element

of the vector C3Rn. Both P and C are time varying
because they are dependent on S@. Unless stated other-
wise we use 12 equally spaced "nite elements, each with
eight internal collocation points that are determined as
the roots of the appropriate Jacobi polynomial (Rice
& Do, 1995). The total number of collocation points
n"109. The state vector of the resulting ODE model
consists of the cell number density at each collocation
point (=

j
), as well as the substrate and "ltered substrate

concentrations (S,S@).
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Fig. 4. Analytical and numerical solutions of the simpli"ed PBE model.

The accuracy of the proposed numerical solution pro-
cedure is evaluated by: (i) using a simpli"ed model to
compare the numerical solution to an analytical solution;
(ii) and testing convergence of the numerical solution
using di!erent number of collocation points. An analyti-
cal solution of the PBE model can be obtained via the
method of characteristics (Hjorts+ & Bailey, 1983) under
the following assumptions:

1. Constant single cell growth rate.
2. Constant division and transition masses.
3. In"nite division intensity at the division mass.

The assumption of constant cell growth decouples the
PBE from the substrate balance equation. The assump-
tion of discrete division and transition masses leads to
distinct mother (M) and daughter (D) cell populations.
The PBE model is written for the two subpopulations as
follows:

L=
M

(m, t)

Lt
#k

L=
M

(m, t)

Lm
"!D=

M
(m, t), (13)

L=
D
(m, t)

Lt
#k

L=
D
(m, t)

Lm
"!D=

D
(m, t), (14)

where=
M

and=
D

are the cell number concentrations of
mother and daughter cells, respectively, and k is the
constant single cell growth rate. Due to the in"nite divis-
ion intensity assumption, cell division is incorporated
into the boundary conditions:

=
M

(m
t
, t)"=

M
(m

d
, t)#=

D
(m

t
, t), (15)

=
D
(m

o
, t)"=

M
(m

d
, t), (16)

where m
d
is the constant division mass, m

t
is the constant

transition mass and m
o

is the constant minimum cell
mass.

Using the method of characteristics, the PBEs for the
mother and daughter cell populations are solved in sub-
domains de"ned by characteristic curves with slopes of
the growth rate k. Fig. 4 shows a comparison of the
numerical and analytical solutions for the cell number
distributions. The dilution rate is 0.25 h~1, and the single
cell growth rate is k"4]10~13 g/h. The minimum cell
mass, transition mass and division mass are
m

o
"4]10~13 g, m

t
"8]10~13 g, m

d
"12]10~13 g,

respectively. The following initial distributions are used:

=
M

(m,0)"0, (17)

=
D
(m,0)"1013 e~5(m~6C10~13)2. (18)

For this simple model, eight "nite elements and "ve
internal collocation points are found to be su$cient for
numerical solution. The di!erence between the analytical
and numerical solutions is obtained by interpolating the
analytical solution to match the mass-time grid used for
numerical solution. The results in Fig. 4 demonstrate that
the numerical solution provides a very close approxima-

tion of the analytical solution. Note that only the "rst
three subdomains for the daughter and mother cells are
solved analytically due to the increasingly complex ex-
pressions obtained for higher subdomain solutions
(Hjorts+ & Bailey, 1983).

From a conceptual standpoint, an advantage of the
simpli"ed model is that the cell cycle can be easily visual-
ized. Fig. 5 shows the numerical solution of the simpli"ed
model for the same test as in Fig. 4 but with a longer time
duration of 8 h. Note that discontinuities are observed
due to the assumption of discrete control points. Budding
mother cells divide into daughter cells and new mother
cells when the mass m"m

d
"12]10~13 g. At the cell

transition mass m
t
"8]10~13 g, the new mother cell

density=
M

(m
t
, t) is the sum of the daughter cell density

=
D
(m

t
, t), and the density of dividing mother cells

=
M

(m
d
, t) as in (15). Similarly, the density of daughter

cells with mass m
o
equals the density of cells divided as in

(16). Because discrete control points are used and cell
growth is independent of the medium, the shape of the
cell distribution is invariant with respect to time within
the same cell cycle and the total number of cells
decreases.

Analytical solution of the detailed PBE model in
(1)}(9) is not possible. In the remainder of the paper, the
model is solved numerically using 12 "nite elements and
eight internal collocation points. An appropriate number
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Fig. 5. Numerical solution of the simpli"ed PBE model.
Fig. 6. Open-loop simulation: steady-state solution with n

c
"8 (*)

and oscillatory solutions with n
c
"6 (2), n

c
"8 (} }), and n

c
"9 (} ) }).

of internal collocation points (n
c
) is chosen by performing

a series of open-loop simulation tests with n
c
"6, 8 and

9 to check convergence of the numerical solution. The
results for the initial cell number distribution (17) and
(18) and two sets of operating conditions are shown
in Fig. 6. An oscillatory response is obtained for
D"0.25 h~1 and S

f
"20 g/l. This result indicates that

n
c
"8 is su$cient to obtain an accurate solution.

A steady-state solution is obtained with a larger dilution
rate D"0.4 h~1 and a larger feed substrate concentra-
tion S

f
"25 g/l. The corresponding substrate concentra-

tion dynamics also are shown in Fig. 6. These results are
consistent with experimental data (Zamamiri, 1998).

4. Model predictive controller design

The budding yeast PBE model is di$cult to use dir-
ectly for model-based controller design. A reasonable
alternative is to use the PBE model to derive simpler
ODE models that are more amenable to existing control-
ler design techniques. Moment models have been de-
veloped for particulate systems such as continuous
crystallizers (Chiu & Christo"des, 1999) and aerosol re-
actors (Kalani & Christo"des, 1999). The moments of the
distribution can be used as controlled outputs. For such
particulate processes, closed-form representation of the
moment equations is possible because new particle gen-
eration depends only on lumped variables (e.g. initiator
and monomer concentrations in emulsion polymeriz-
ation). In Kurtz et al. (1998) it is shown that binary "ssion
organisms do not allow closure of the "rst- and higher-
order moments because the birth rate of new cells always
depends on the cell distribution. A similar problem oc-
curs for the budding yeast PBE model.

In our previous work on binary "ssion organisms
(Kurtz et al., 1998), a zeroth-order moment model is used

to derive a feedback linearizing controller. A shortcom-
ing of this approach is that the controller design model
does not account for the segregated nature of the culture
despite the fact that sustained oscillations are intimately
connected to cell synchrony. Below we propose a model
predictive control strategy for the budding yeast cultures
based on a linear design model that preserves the seg-
regated description of the PBE model.

4.1. Controller formulation

The controller design model is generated directly from
the spatially discretized PBE model (10)}(12). The model
equations are linearized about the steady-state operating
point in Table 1 and then temporally discretized with
sampling time *t"0.1 h. The sampling time is chosen to
be an order of magnitude less than the period of the
oscillating culture (2 h). The resulting state-space model
has the form

x(k#1)"Ax(k)#Bu(k),

y(k)"Cx(k),
(19)

where x3R111 is the state vector comprised of the cell
number density at each collocation point (=

j
) and the

substrate and "ltered substrate concentrations
(S,S@); u3R2 is the input vector comprised of D and S

f
;

and y3Rm is the output vector de"ned below. As dis-
cussed in Section 2, we assume that the cell mass distribu-
tion can be measured or reconstructed from on-line
measurements of the particle size distribution.

The controllability matrix for the pair (A,B) in (19) has
rank four. This is not a surprising result given the large
state dimension and the strong colinear behavior of the
state variables. This indicates that the cell distribution
cannot be modi"ed arbitrarily with the two inputs
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available. Semino and Ray (1995a) propose an approxim-
ate controllability test for PBE models that can be placed
in hereditary form via semi-analytical solution. Control-
lability is de"ned as the property that the state vector can
be driven from a subspace C

1
to a subspace C

2
in a "nite

amount of time by appropriate choice of the inputs. The
controllability test is successfully applied to emulsion
polymerization reactors and continuous crystallizers.
Unfortunately, the test does not appear to be applicable
to microbial PBE models because they do not allow the
required hereditary system representation. In this paper,
we investigate the ability of the MPC controller to stabil-
ize steady-state and periodic solutions. While we
consider partial control of the cell distribution, it is
unnecessary to precisely establish a given cell distribu-
tion to achieve the control objectives (see below).

The controller design model is completed by de"ning
the controlled output vector. The most straightforward
approach is to choose the cell number density=

j
at each

collocation point as a controlled output. This may be
problematic because: (i) the resulting control problem is
highly non-square (2 inputs, 109 outputs); (ii) cell number
densities at nearby collocation points are strongly
colinear because the basic shape of the distribution can-
not be changed signi"cantly by manipulating D and S

f
;

and (iii) the substrate concentration also needs to be
controlled to avoid washout. The third problem can be
handled by de"ning the output vector as

y"[=
1
=

2
2 =

N
S]T. (20)

We have found that good closed-loop performance can
be obtained by controlling a subset of the cell number
densities and the substrate concentration:

y"[=
j1
=

j2
2 =

jp
S]T, (21)

where the indices M j
1
,2, j

p
N de"ne the collocation points

where the associated cell number density is used as a con-
trolled output. In the subsequent simulation study,
M j

1
,2, j

p
N are chosen as boundary points of the "nite

elements. While this approach is admittedly heuristic,
problems may be encountered if the number of output
variables is reduced further. Fewer output variables may
not be able to represent the time-varying cell distribution
which shifts position as the substrate concentration cha-
nges. While it may be possible to systematically deter-
mine the controlled outputs using multivariate statistical
methods (Clarke-Pringle & MacGregor, 1998), this was
deemed to be beyond the scope of the current study.
Below we compare the performance of MPC controllers
which use the output vectors (20) and (21).

4.2. Controller design

The major control objectives are: (i) stabilization of
steady-state solutions to eliminate oscillations that ad-
versely a!ect bioreactor stability and productivity; and

(ii) stabilization of periodic attractors that may lead to
increased production of metabolites synthesized only
during part of the cell cycle (Hjorts+, 1996). Both objec-
tives can be achieved by controlling the discretized cell
number distribution because oscillatory behavior is
closely linked to synchronization of the cell population.

The MPC controller is formulated as an in"nite-
horizon open-loop optimal control problem (Muske
& Rawlings, 1993)

min
UN (k)

=
+
j/0

M[y(k#jDk)!y
s
]TQ[y(k#jDk)!y

s
]

#[u(k#jDk)!u
s
]TR[u(k#jDk)!u

s
]

#*uT(k#jDk)S*u(k#jDk)N, (22)

where y(k#jDk) and u(k#jDk) are predicted values of the
outputs and inputs, respectively, y

s
and u

s
are target

values for the outputs and inputs, respectively, and
*u(k)"u(k)!u(k!1). The decision variables are cur-
rent and future values of the inputs: ;

N
(k)"

[u(kDk)2u(k#N!1Dk)], where N is the control hor-
izon. The inputs are subject to constraints of the form:
u
.*/

)u)u
.!9

. The in"nite horizon problem (22) can be
reformulated as a "nite horizon problem and solved
using standard quadratic programming software (Muske
& Rawlings, 1993). Using the standard receding horizon
approach, only the "rst calculated input actually is im-
plemented, u(k)"u(kDk), and the problem is resolved at
the next time step with new measurements.

The target vectors u
s

and y
s

can be constant or ad-
justed on-line using a disturbance model. The distur-
bance model is formulated as follows (Muske
& Rawlings, 1993):

x(k#1)"Ax(k)#Bu(k),

d(k#1)"d(k), (23)

y(k)"Cx(k)#d(k),

where d is a vector of output disturbance variables. The
output disturbance estimate dK is generated by a Kalman
"lter (Muske & Rawlings, 1993). As discussed above,
there are insu$cient degrees of freedom to drive the
entire cell distribution to a speci"ed target distribution.
Therefore, target vectors x

s
and u

s
that minimize the

steady-state o!set are found by solving the following
quadratic programming problem (Muske & Rawlings,
1993):

min
*xs ,us +T

(y
3%&

!Cx
s
!dK )TR

s
(y

ref
!Cx

s
!dK ) (24)

subject to

[I!A!B]C
x
s

u
s
D"0, (25)

u
.*/

)u
s
)u

.!9
. (26)
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Fig. 7. Oscillation attenuation: full-order output vector with (} }) and without (*) disturbance model and open-loop response (2).

Below we investigate MPC controller designs with and
without the disturbance model.

4.3. Simulation study

The proposed MPC strategy is evaluated using the
discretized PBE model (10)}(12) as a surrogate for the
continuous yeast bioreactor. Two controller formula-
tions are investigated using the alternative output vectors
discussed above. The "rst controller uses the full-order
output vector (20). This leads to a highly non-square
control problem (2 inputs, 110 outputs) due to the large
number of collocation points employed. The quadratic
weighting matrices in the objective function (22) are
chosen by trial-and-error as

Q"C
0.01I

109C109
0

0 10D, R"C
105 0

0 100D,
S"2R. (27)

A control horizon N"5 provides a reasonable compro-
mise between closed-loop performance and computation
time. The second controller uses the reduced-order out-
put vector (21). This yields a lower dimensional problem
with 14 output variables. The control horizon is chosen
as N"5 and the weighting matrices are chosen by trial-
and-error as

Q"C
0.1I

13C13
0

0 8D, R"C
2]105 0

0 500D,
S"4R. (28)

Each controller is evaluated with and without distur-
bance models.

Fig. 7 shows the ability of the MPC controller based
on the full-order output vector to stabilize an initially
oscillating culture at a desired steady-state operating
point. The initial cell number distribution =(m, 0) is
a highly synchronized distribution corresponding to the
stable periodic solution in Fig. 6, while the discretized cell
distribution setpoint vector represents the steady-state
solution in Fig. 6. The zeroth-order moment of the cell
number distribution, w

0
":=

0
=(m, t) dm, and the sub-

strate concentration are shown as representative output
variables. The MPC response with disturbance model is
shown by the dashed line, while the solid line represents
the response without disturbance model. The MPC con-
troller is able to stabilize the reactor under initial condi-
tions that lead to open-loop oscillations shown by the
dotted line. The input and output responses of the MPC
controller with disturbance model are more oscillatory
than those obtained without the disturbance model. Al-
though the performance may be improved by further "ne
tuning, the behavior is directly attributable to the addi-
tional dynamics introduced by the linear observer used
to estimate the disturbances.

Fig. 8 shows the results obtained for the MPC control-
ler with reduced-order output vector for the same test as
in Fig. 7. The solid line is the MPC response, while the
dashed line is the open-loop response obtained with the
synchronized initial cell distribution. While the output
responses are only slightly better than those in Fig. 7,
the MPC controller with reduced-order output vector
provides much smoother input moves. We believe this
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Fig. 8. Oscillation attenuation: reduced-order output vector without disturbance model (*) and open-loop response (} }).

Fig. 9. Oscillation attenuation: cell number distribution corresponding
to Fig. 8 at four time instances.

behavior is a direct result of reducing the controlled
output vector dimension and making the control prob-
lem less nonsquare. The associated time evolution of the
cell number distribution is shown in Fig. 9. The initial
distribution is a highly synchronized with distinct sub-
populations that lead to sustained oscillations. The con-
troller attenuates the oscillations by counteracting cell
synchrony via dispersion of the subpopulations. The dis-
tribution approaches the desired steady-state distribu-
tion by the end of the 12 h simulation.

We further evaluate the e!ect of the disturbance model
on closed-loop performance when a modeling error is
present. The modeling error is introduced by changing
the cell growth rate parameter K

m
from 25 to 20 g/l in the

simulated plant, while the linear controller design model
remains unchanged. Fig. 10 shows the results obtained
for the same oscillation attenuation test as in Figs. 7 and
8. The response of the MPC controller with reduced-
order output vector and disturbance model is shown by
the solid line, while the dashed line is the response of the
same MPC controller without disturbance model. Both
controllers are able to attenuate the oscillations and
drive the cell distribution to steady state. A notable
di!erence is that input responses for the controller with-
out disturbance model are much smoother. Another dif-
ference is that the controllers achieve two very di!erent
steady states. The distributions at t"24 h shown in
Fig. 11 show a potential advantage of the disturbance
model. While the steady-state distribution obtained with-
out the disturbance model (dashed line) is shifted from
the setpoints (#), the distribution obtained with the
disturbance model (solid line) matches the setpoints
almost exactly. The disturbance model is useful only
if precise control of the cell number distribution is re-
quired. This may be bene"cial, for example, if desired
metabolites are preferentially produced by cells of a
certain mass.

Fig. 12 shows the ability of the MPC controller with
reduced-order output vector to stabilize a desired peri-
odic solution. A disturbance model is not used for this
test. The initial cell number distribution corresponds to
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Fig. 10. Oscillation attenuation with modeling error: reduced-order output vector with (*) and without (} }) disturbance model.

Fig. 11. Oscillation attenuation with modeling error: distribution set-
point (#), reduced-order output vector with (*) and without (} })
disturbance model corresponding to Fig. 10.

a steady-state solution, while distributions correspond-
ing to the periodic solution in Fig. 6 are de"ned as
a time-varying setpoint trajectory. For this test, the
weighting matrices are chosen by trial-and-error as

Q"C
0.01I

13C13
0

0 10D, R"C
105 0

0 100D, S"2R.

(29)

Note that the controller stabilizes the desired periodic
solution by generating oscillatory input moves. Although
not shown, it is interesting to note that the observed
oscillations are maintained with the same period when
the controller is switched o! and the system runs under
open-loop conditions. The evolution of the cell number
distribution is shown in Fig. 13. Clearly the oscillating
dynamics of the cell culture is accompanied by marked
synchronization of the cell population. Two distinct sub-
populations can be identi"ed after 24 h of operation.

5. Summary

The dynamic model for the continuous yeast bioreac-
tor is formulated by coupling the population balance
equations (PBE) for the cell mass distribution to the
substrate mass balance. We have shown that empirical
functions used to describe the dependence of cell
transition and division on the medium can be chosen
such that the PBE model exhibits stable periodic solu-
tions under reasonable operating conditions. The model
is solved numerically by spatially discretizing the PBE
using orthogonal collocation on "nite elements. The re-
sulting nonlinear ordinary di!erential equation model is
linearized and discretized in time to yield a linear state-
space model suitable for MPC synthesis. The MPC
controller is designed to stabilize steady-state and peri-
odic solutions by regulating the discretized cell number
distribution and the substrate concentration. Several
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Fig. 12. Oscillation induction.

Fig. 13. Oscillation induction: synchronization of the cell distribution
corresponding to Fig. 12.

MPC formulations have been evaluated via simulation.
The best results are obtained when a subset of the dis-
cretized cell number distribution is used as the controlled
outputs. The proposed methodology is the initial step in
the development of an implementable control strategy
for oscillating yeast cultures.

Acknowledgements

Financial support from the National Science Founda-
tion (Grants CTS-9501368 and BES-9522274) is grate-
fully acknowledged.

References

Alberghina, L., Ranzi, B. M., Porro, D., & Martegani, E. (1991). Flow
cytometry and cell cycle kinetics in continuous and fed-batch fer-
mentations of budding yeast. Biotechnology Progress, 7, 299}304.

Bakken, L. R., & Olsen, R. A. (1983). Buoyant densities and dry-matter
contents of microorganisms: Conversion of a measured biovolume
into biomass. Applied Environmental Microbiology, 45, 1188}1195.

Beuse, M., Bartling, R., Kopmann, A., Diekmann, H., & Thoma, M.
(1998). E!ect of the dilution rate on the mode of oscillation in
continuous cultures of Saccharomyces cerevisiae. Journal of Biotech-
nology, 61, 15}31.

Cazzador, L., Mariani, L., Martegani, E., & Alberghina, L. (1990).
Structured segregated models and analysis of self-oscillating yeast
continuous cultures. Bioprocess Engineering, 5, 175}180.

Chen, C.-I., & McDonald, K. A. (1990). Oscillatory behavior of Sac-
charomyces cerevisiae in continuous culture: II. Analysis of cell
synchronization and metabolism. Biotechnology and Bioengineering,
36, 28}38.

Chiu, T., & Christo"des, P. D. (1999). Nonlinear control of particlate
processes. A.I.Ch.E. Journal, 45, 1279}1297.

Clarke-Pringle, T., & MacGregor, J. F. (1998). Product quality control
in reduced dimensional spaces. Industrial and Engineering Chemistry
Research, 37, 3992}4002.

Eaton, J. W., & Rawlings, J. B. (1990). Feedback control of chemical
processes using on-line optimization techniques. Computers
& Chemical Engineering, 14, 469}479.

Finlayson, B. A. (1980). Nonlinear analysis in chemical engineering. New
York, NY: McGraw-Hill.

He!els, C., Polke, R., Radle, M., Sachweb, B., Scha!er, M., & Scholz, N.
(1998). Control of particulate processes by optical measurement
techniques. Particle and Particle Systems Character, 15, 211}218.

Hjorts+, M. (1987). Periodic forcing of microbial cultures. A model for
induction synchrony. Biotechnology and Bioengineering, 30,
825}835.

Hjorts+, M. (1996). Population balance models of autonomous periodic
dynamics in microbial cultures. Their use in process optimization.
Canadian Journal of Chemical Engineering, 74, 612}620.

6166 G.-Y. Zhu et al. / Chemical Engineering Science 55 (2000) 6155}6167



Hjorts+, M., & Bailey, J. (1983). Transient responses of budding yeast
populations. Mathematical Biosciences, 63, 121}148.

Hjorts+, M., & Nielsen, J. (1994). A conceptual model of autonomous
oscillations in microbial cultures. Chemical Engineering Science, 49,
1083}1095.

Hjorts+, M., & Nielsen, J. (1995). Population balance models of auton-
omous microbial oscillations. Journal of Biotechnology, 42, 255}269.

Jones, K. D., & Kompala, D. S. (1999). Cybernetic model of the growth
dynamics of Saccharomyces cerevisiae in batch and continuous cul-
tures. Journal of Biotechnology, 71, 105}131.

Kalani, A., & Christo"des, P. D. (1999). Nonlinear control of spatially
inhomogeneous aerosel processes. Chemical Engineering Science, 54,
2669}2678.

Kurtz, M. J., Zhu, G. Y., Zamamiri, A. M., Henson, M. A., & Hjorts+,
M. A. (1998). Control of oscillating microbial cultures described by
population balance models. Industrial and Engineering Chemistry
Research, 37, 4059}4070.

Martegani, E., Porro, D., Ranzi, B. M., & Alberghina, L. (1990).
Involvement of a cell size control mechanism in the induction and
maintenance of oscillations in continuous cultures of budding yeast.
Biotechnology and Bioengineering, 36, 453}459.

McLellan, P. J., Daugulis, A. J., & Li, J. (1999). The incidence of
oscillatory behavior in the continuous fermentation of
Zymomonas mobilis. Biotechnology Progress, 15, 667}680.

Muske, K. R., & Rawlings, J. B. (1993). Linear model predictive control
of unstable processes. Journal of Process and Control, 3, 85}96.

Rawlings, J. B., Miller, S. M., & Witkowski, W. R. (1993). Model
identi"cation and control of solution crystallization processes: A re-
view. Industrial and Engineering Chemistry Research, 32, 1275}1296.

Rawlings, J. B., Witkowski, W. R., & Eaton, J. W. (1989). Control issues
arising in population balance models. Proceedings of American con-
trol conference (pp. 677}682).

Rice, R. G., & Do, D. D. (1995). Applied mathematics and modeling for
chemical engineers. New York, NY: Wiley.

Robertson, B. R., Button, D. K., & Koch, A. L. (1998). Determination of
the biomasses of small bacteria at low concentration in a mixture of
species with forward light scatter measurements by #ow cytometry.
Applied Environmental Microbiology, 64, 3900}3909.

Semino, D., & Ray, W. H. (1995a). Control of systems described
by population balance equations * I. Controllability analysis.
Chemical Engineering Science, 50, 1805}1824.

Semino, D., & Ray, W. H. (1995b). Control of systems described by
population balance equations* II. Emulsion polymerization with
constrained control action. Chemical Engineering Science, 50,
1825}1839.

Stephens, M. L., & Lyberatos, G. (1987). E!ect of cycling on "nal mixed
culture fate. Biotechnology and Bioengineering, 29, 672}678.

StraK ssle, C., Sonnleitner, B., & Feichter, A. (1989a). A predictive model
for the spontaneous synchronization of Saccharomyces cerevisiae
grown in a continuous culture. I. Concept. Journal of Biotechnology,
7, 299}318.

StraK ssle, C., Sonnleitner, B., & Feichter, A. (1989b). A predictive model
for the spontaneous synchronization of Saccharomyces cerevisiae
grown in a continuous culture. II. Experimental veri"cation. Journal
of Biotechnology, 9, 191}208.

Yamashit, Y., Kuwashim, M., Nonaka, T., & Suzuki, M. (1993). Online
measurement of cell-size distribution and concentration of yeast by
image-processing. Journal of the Chemical Engineering of Japan, 26,
615}619.

Zamamiri, A. M. (1998). Analysis of oscillating yeast cultures. Master
thesis, Louisiana State University, Baton Rouge, LA.

G.-Y. Zhu et al. / Chemical Engineering Science 55 (2000) 6155}6167 6167


