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Abstract

Manufacturing processes in which the desired product
takes the form of individual particles are ubiquitous in
the chemical, pharmaceutical and agricultural indus-
tries. Particulate processes often are modeled using a
form of the population balance equation (PBE) which
describes the evolution of the particle distribution. In
many applications, control of the particle distribution
is necessary to achieve the desired product proper-
ties. In this paper, a model predictive control strategy
based on a discretized representation of a general one-
dimensional PBE is proposed for particle distribution
control. The controller is formulated to minimize the
least squares difference between the predicted and tar-
get distributions assuming the availability of particle
distribution measurements. The proposed method is
applied to the problem of cell mass distribution control
in a continuous yeast fermentor.

1 Introduction

A particulate system is characterized by a large number
of interacting particles which differ with respect to cer-
tain physical and/or chemical properties [13, 15]. The
dynamics of these complex systems can be captured
with population balance equation (PBE) models which
describe the evolution of an appropriate distribution
function [13]. The distribution function evolves in a
p-dimensional space where p represents the number of
internal coordinates used to differentiate the particles.
When a single internal coordinate is used to parameter-
ize the particle distribution, the PBE is written as [15]:

∂W (ξ, t)
∂t

+
∂[k(ξ, t)W (ξ, t)]

∂ξ
= h(ξ, t) (1)

where: t is time; ξ is the internal coordinate; W (ξ, t)
is the number density of particles; k(ξ, t) is the parti-
cle growth rate; and h(ξ, t) represents the net creation
of particles. The PBE typically is coupled to integro-
differential equations that represent the driving force
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for particle growth [13]. The internal coordinate can
be discretized using well known solution techniques for
partial differential equations such as finite differences,
finite elements, orthogonal collocation and spectral de-
composition [7]. The discretized PBE model consists
of a potentially large number of nonlinear ordinary dif-
ferential equations in time which can be solved using
standard numerical integration codes.

Control of the particle distribution often is required to
achieve satisfactory process performance. The follow-
ing examples illustrate some of the control objectives
associated with these complex systems:

• Crystallizers – Control of the particle size dis-
tribution is necessary to ensure pharmaceuti-
cal products have the desired physiological ef-
fects [16, 20].

• Emulsion Polymerization Reactors – Control of
the particle size distribution allows the manufac-
ture of coatings, adhesives, pigments and latex
paints with the desired physiochemical proper-
ties [3, 5].

• Biochemical Reactors – Control of the cell mass
distribution has the potential to increase the pro-
duction of key metabolites produced by microbial
and mammalian cells [4].

The development of increasingly sophisticated PBE
models and the availability of cheap computing power
makes particle distribution control a realistic goal.
While distribution control strategies have been pro-
posed for selected particulate systems [2, 3, 22], the
development of a more general approach is needed.

In this paper, a distribution control strategy based on
model predictive control (MPC) is proposed for con-
tinuous particulate processes in which the single vari-
able distribution of interest can be measured or re-
constructed from on-line measurements. The control
problem is formulated as the least-squares minimiza-
tion of the predicted distribution and a target distri-
bution over a moving time horizon. The discretized
PBE model used for controller design is characterized
by a large number of state variables (most of which
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represent the density of particles at the discretization
points) and a small number of manipulated inputs (the
feed conditions and possibly the process temperature).
Consequently, the available degrees of freedom usually
are insufficient to achieve the target distribution in the
presence of modeling error. Methods for selecting an
appropriate subset of the state variables for inclusion in
the least squares objective function are discussed. The
proposed methodology is applied to the problem of cell
distribution control in continuous yeast fermentors.

2 Particle Distribution Control Strategy

2.1 PBE Model Discretization
Consider a continuous particulate process described by
the following coupled set of nonlinear partial and ordi-
nary differential equations:

∂W (ξ, t)
∂t

+
∂[k(ξ, z)W (ξ, t)]

∂ξ
= h[ξ,W (ξ, t), z(t), u(t)]

dz(t)
dt

= g[ξ, W (ξ, t), z(t), u(t)] (2)

The first equation represents the PBE (1) where the
the particle growth rate k(ξ, t) is assumed to depend
implicitly on time through the differential variables
z(t) ∈ Rl and the dependence of the net creation of
particles h(ξ, t) on the particle distribution function
W (ξ, t), the differential variables z(t) and the input
variables u(t) ∈ Rm is shown explicitly. The second
equation represents the integro-differential equations
associated with the driving force for particle growth.
The model structure (2) is sufficiently general to rep-
resent a wide variety of particulate system models.

The proposed controller design strategy is based on dis-
cretization of the PBE model (2) with respect to the
internal coordinate ξ. In addition to specialized tech-
niques developed for particular classes of PBE mod-
els [14], discretization can be performed using general
purpose methods such as finite differences and orthog-
onal collocation [7]. Integral terms involving W (ξ, t)
which are often contained in the functions h(·) and g(·)
can be approximated using techniques such as Gaus-
sian quadrature [7]. The discretized model consists of
nonlinear ordinary differential equations in time:

dWj(t)
dt

= H[Wj(t), z(t), u(t)], j ∈ [1, n]

dz(t)
dt

= G[Wj(t), z(t), u(t)] (3)

where: Wj(t) is the value of the particle distribution
W (ξ, t) at the discretization point ξj ; and H(·) and G(·)
are nonlinear algebraic functions. By defining xT =
[W1 W2 · · · Wn zT ] ∈ Rn+l, the discretized model
can be represented in nonlinear state-space form:

dx(t)
dt

= F [x(t), u(t)]

y(t) = E[x(t)] (4)

where the output map E(·) is to be determined. Jaco-
bian linearization of this model at a steady-state oper-
ating point leads to a linear state-space model:

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) (5)

Discretization of the state-space model (4) or (5) with
respect to time leads to a set of nonlinear or linear
algebraic equations, respectively, which can be posed
as equality constraints in the MPC problem.

2.2 MPC Controller Formulation
The MPC controller is designed to drive the particle
distribution W (ξ, t) to a (possibly) time varying refer-
ence distribution Wr(ξ, t). The reference distribution
is assumed to be specified a priori based on knowl-
edge of the relationship between the particle distribu-
tion and the target process/product properties. For ex-
ample, certain particle size distributions of latex paints
are known to correlate to desirable processing behav-
ior [3]. The reference distribution is discretized in the
internal coordinate ξ to yield Wr,j(t) where the points
ξj , j ∈ [1, n], are identical to those used for model dis-
cretization. The MPC formulation also requires that
setpoints zr be specified for the differential variables z.
A second assumption is that the particle distribution
W (ξ, t) and the differential variables z(t) associated
with particle growth are measured or reconstructed
from available on-line measurements. Analyzers which
provide measurements of the particle size distribution
and various differential variables are available for crys-
tallization [1, 16], emulsion polymerization [5] and fer-
mentation [17] processes. This assumption eliminates
the need to develop a state estimation strategy such
that basic controller design issues can be addressed.

The controlled outputs (y) are selected such that the
MPC controller is capable of driving the particle distri-
bution “close” to the reference distribution. The selec-
tion of an appropriate set of controlled outputs is non-
trivial because the available manipulated inputs (u) do
not provide sufficient degrees of freedom to achieve an
arbitrary reference distribution. Because offset elimi-
nation generally is not possible, a disturbance model
is not included in the MPC design. For the moment,
the output vector (y) is assumed to be known and the
MPC controller is formulated as follows [10, 11]:

min
UM (k)

P∑

j=0

{[y(k + j|k)− ys(k)]T Q[y(k + j|k)− ys(k)]

+[u(k + j|k)− us]T R[u(k + j|k)− us]

+∆uT (k + j|k)S∆u(k + j|k)} (6)

where: y(k + j|k) and u(k + j|k) are predicted val-
ues of the output and input variables, respectively; ys
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and us are target values for the outputs and inputs;
∆u(k) = u(k)− u(k− 1); and P is the prediction hori-
zon. The decision variables are current and future val-
ues of the inputs UM (k) = [u(k|k) . . . u(k + M − 1|k)],
where M is the control horizon. Only the first calcu-
lated input actually is implemented, u(k) = u(k|k), and
the problem is resolved at the next time step with new
measurements. The input and output variables may be
subject to constraints chosen such that the controlled
process remains in the desired operating regime [10]. A
temporally discretized version of the nonlinear model
(4) or the linear model (5) is posed as a set of equal-
ity constraints. If the linear model is used, the op-
timization problem (6) can be solved using standard
quadratic programming software [11]. A considerably
more complex nonlinear programming problem [10] is
obtained when the nonlinear model is used.

2.3 Selection of Controlled Outputs
The MPC design is completed by specifying the ma-
nipulated inputs u and the controlled outputs y. The
flow rate and/or concentration of components in the
continuous feed stream typically are employed as in-
put variables. Such inputs include: feed solute concen-
tration for crystallizers [16]; feed surfactant, initiator
and inhibitor concentrations for emulsion polymeriza-
tion reactors [5]; and dilution rate and feed substrate
concentration for fermentors [4]. Other inputs such as
process temperature and fines removal flow rate in crys-
tallization processes also may be available.

The MPC problem (6) is formulated to allow tracking
of a reference particle distribution. An obvious ap-
proach is to choose the particle number density Wj at
each discretization point as a controlled output:

yT =
[

W1 W2 · · · WN

]
(7)

The resulting control problem will be highly non-square
with many more outputs than inputs. Given the lim-
ited number and non-distributed nature of the inputs,
the state-space models (4) and (5) are expected to be
unreachable in the sense that an arbitrary reference
distribution is not achievable. Furthermore, the regu-
lation of some differential variables z associated with
particle growth may be desirable. While the reachabil-
ity problem associated with particle distribution con-
trol has received some attention [9, 18], a general theory
is lacking. Therefore, we pursue practical methods for
determining a reduced-order output vector such that
the reference distribution can be achieved in an ap-
proximate sense.

A simple approach to choose a subset of the discretized
cell number densities Wj and a subset of the differential
variables z as output variables:

y =
[

Wj1 · · · Wjp zi1 · · · ziq

]T (8)

where the indices {i1, . . . , iq} and {j1, . . . , jp} denote,
respectively, the differential variables employed and the
discretization points where the associated particle num-
ber densities are used. The reduced-order output vec-
tor (8) can yield a MPC problem which is much less
non-square than the full-order vector (7). The selec-
tion of the differential variables is problem specific. For
the fermentation example presented in the next section,
inclusion of the substrate concentration is desirable to
avoid washout. Given the output vector defined in (8),
the MPC controller (6) is formulated to drive the parti-
cle distribution “close” to the reference particle distri-
bution at the discretization points {ξj1 , . . . , ξjp}. These
discretization points are chosen such that satisfaction
of the tracking objective implies that the full parti-
cle distribution W (ξ, t) is driven sufficiently “close” to
the full reference distribution Wr(ξ, t). If the PBE
model is solved using orthogonal collocation on finite
elements [3, 22], a reasonable approach is to select the
controlled outputs as the boundary points of the finite
elements. This method is explored in the next section.

A more systematic approach is to use multivariate
statistics to derive a reduced-order output vector which
captures most of the “energy” present in the full-order
state vector x. This approach is motivated by the ob-
servation that there are strong collinearities between
the discretized cell number densities Wj and (possibly)
between the differential variables zi. This approach
should yield a reduced-order output vector whose di-
mension is more commensurate with the degrees of free-
dom provided by the available inputs. Moreover, track-
ing of the reference distribution should not sacrificed
because only “unimportant” dynamics are neglected.

Principal component analysis (PCA) [6] can be used to
systematically derive the reduced-order output vector
for the linear model (5). Application of singular value
decomposition to the A matrix yields the mapping:

y = Px, P ∈ Rs×(n+l) (9)

which transforms the (n + l)-dimensional state vector
x into a s-dimensional output vector y. The dimension
s is chosen such that at least 95% of the “energy” is
preserved. Given measurements of the state variables
x, the output vector (9) can be incorporated directly
in the MPC problem (6). The mapping (9) also allows
the MPC target vector yr = Pxr is to be computed
from the reference distribution Wr and the differential
variable setpoints zr. A similar order reduction strat-
egy can be developed for the nonlinear model (5) using
proper orthogonal decomposition [21].
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3 Yeast Cell Distribution Control

Saccharomyces cerevisiae (baker’s yeast) is an impor-
tant microorganism in a number of industries including
brewing, baking, food manufacturing and genetic engi-
neering. Many investigators have shown that contin-
uous cultures of Saccharomyces cerevisiae exhibit sus-
tained oscillations in glucose limited environments un-
der aerobic growth conditions [12, 19]. In most situa-
tions, oscillations adversely affect fermentor operabil-
ity and the control objective is to eliminate limit cy-
cle behavior by stabilizing a chosen steady state. On
the other hand, induction of oscillatory dynamics may
be desirable to increase the production of metabolites
which are produced during a certain phase of the cell
cycle [8]. Below we show that both these objectives
can be achieved with a MPC controller that provides
direct control of the cell number distribution.

3.1 PBE Model
Zhu et al. [22] have developed a yeast cell popula-
tion model which yields qualitative predictions of sus-
tained oscillations. The PBE for the cell mass distri-
bution is coupled to the substrate (glucose) mass bal-
ance through a phenomenological model of the budding
yeast cell cycle. Cell growth and division are captured
with two cell cycle model parameters: the transient
mass (m∗

t ) where a growing cell begins to form a new
bud; and the division mass (m∗

d) where the bud divides
from the mother cell producing two newborn cells of
different masses. The PBE model is briefly reviewed
below to facilitate the subsequent development.

The cell PBE has the general form (2) where the in-
ternal coordinate ξ is the cell mass m, the differential
variables zT = [S S′] are discussed below and the net
creation of cells is represented as:

h[ξ, W, z, u] =
∫ ∞

0

2p(m,m′)Γ(m′, S′)W (m′, t)dm′

−[D + Γ(m,S′)]W (m, t) (10)

The dilution rate D is a manipulated input. The new-
born cell probability function p(m,m′) and the division
intensity function Γ(m,S′) depend on the cell cycle pa-
rameters (m∗

t , m∗
d), which in turn are increasing func-

tions of the effective substrate concentration S′ [22].
The initial cell distribution is denoted W (m, 0) and
the boundary condition is W (0, t) = 0. The zeroth
moment of the cell number density represents the to-
tal number of cells per unit volume and is defined as:
m0(t) =

∫∞
0

W (m, t)dm.

The substrate mass balance is:

dS

dt
= D(Sf − S)− k(m,S′)

Y
m0 (11)

where S is the substrate concentration, Y is the cell
mass yield and the feed substrate concentration Sf

is a second manipulated input. The cell growth rate
k(m,S′) is assumed to follow Monod kinetics [22]. The
filtered substrate concentration is generated as:

dS′

dt
= α(S − S′) (12)

where the parameter α reflects how fast cells respond to
environmental changes. Equations (11) and (12) repre-
sent the integro-differential equations associated with
the driving force for cell growth in the general form
(2). A more complete description of the model and
parameter values are given elsewhere [22].

3.2 MPC Controller
A nonlinear state-space model of the form (4) is ob-
tained by discretizing the PBE model using orthogo-
nal collocation on finite elements and Gaussian quadra-
ture [7]. Discretization is performed over a finite cell
mass domain, 0 ≤ m ≤ mmax, such that the number
of cells with m > mmax is negligible. In the following
simulations, we use 12 equally spaced finite elements,
each with 8 internal collocation points. A state-space
model suitable for linear MPC design is obtained from
(4) by Jacobian linearization and temporal discretiza-
tion with a sampling interval ∆t = 0.1 hr. The linear
design model has the form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (13)

where: x ∈ R111 is the state vector comprised of the
cell number density at each collocation point (Wj) and
the substrate and filtered substrate concentrations (S,
S′); and u ∈ R2 is the input vector consisting of D and
Sf . The output vector y ∈ R14 includes the cell mass
densities at the boundary points of the finite elements
as well as the substrate concentration:

y =
[

W1 W10 · · · W100 W109 S
]T (14)

The quadratic program resulting from the MPC prob-
lem (6) with M = 5 and P = ∞ [11] is solved using
the Optimization Toolbox in Matlab.

3.3 Simulation Results
Figure 1 shows the ability of the MPC controller to
stabilize an oscillating cell culture at a desired steady-
state operating point. The initial cell number distri-
bution W (m, 0) is obtained from a stable periodic so-
lution, while the discretized cell distribution setpoints
represent the desired steady-state solution. The MPC
weighting matrices are chosen as:

Q =
[

0.1I13×13 0
0 8

]
(15)
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Figure 1: MPC stabilization of a desired steady-state dis-
tribution.
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Figure 2: Cell number distribution corresponding to Fig-
ure 1.

R =
[

2×105 0
0 500

]
, S = 4R (16)

The zeroth-order moment of the cell number distri-
bution and the substrate concentration are shown as
representative output variables. The solid line is the
MPC response and the dashed line is the open-loop
response. The MPC controller is able to stabilize the
reactor under initial conditions that lead to open-loop
oscillations. Figure 2 shows the time evolution of the
cell number distribution. The initial distribution is
synchronized with distinct subpopulations that lead to
sustained oscillations. The controller attentuates the
oscillations via dispersion of the subpopulations. The
distribution approaches the desired steady-state distri-
bution by the end of the 12 hour simulation.

Figure 3 shows the ability of the MPC controller to
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Figure 3: MPC stabilization of a desired oscillatory dis-
tribution.

stabilize a desired periodic solution. The initial cell
number distribution corresponds to a steady-state so-
lution, while distributions corresponding to the desired
periodic solution are defined as a time-varying setpoint
trajectory. The weighting matrices are chosen as:

Q =
[

0.01I13×13 0
0 10

]
(17)

R =
[

105 0
0 100

]
, S = 2R (18)

The controller stabilizes the desired periodic solution
by generating oscillatory input moves. Although not
shown, the oscillations are sustained with same period
when the controller is switched off and the system runs
under open-loop conditions. The evolution of the cell
number distribution is shown in Figure 4. The oscil-
lating dynamics are accompanied by marked synchro-
nization of the cell population. Two distinct subpopu-
lations can be identified after 24 hours of operation.

4 Conclusions

A distribution control strategy for continuous partic-
ulate processes described by one-dimensional popula-
tion balance equation (PBE) models has been devel-
oped and evaluated. The single variable distribution
of interest is assumed to be measured or reconstructed
from on-line measurements. A model predictive control
(MPC) problem is formulated to minimize the least-
squares difference between the predicted distribution
and a target distribution over a moving time horizon. A
state-space model suitable for MPC design is obtained
by discretizing the PBE model in the internal coor-
dinate chosen to characterize the particle distribution.
Two methods for selecting an appropriate subset of the
state variables for inclusion in the least squares objec-
tive function were discussed. The proposed method
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ure 3.

was applied to the problem of tracking stationary and
periodic cell mass distributions in a simulated contin-
uous yeast fermentor. Our future work on the particle
distribution control problem will focus on reachability
analysis of PBE models, estimation of particle distribu-
tions from available on-line measurements and further
development of the reduced-order MPC formulation.
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