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Abstract: Several investigators recently have explored the use of cell population
balance equation (PBE) models for the design of biochemical reactor control
strategies. A major disadvantage of the PBE modeling approach is that the
incorporation of intracellular reactions needed to accurately describe cellular pro-
cesses leads to substantial computational difficulties. We investigate an alternative
modeling technique in which the cell population is constructed from an ensemble
of individual cell models. The average value or the number distribution of any
intracellular property captured by the cell model can be computed from ensemble
simulation data. To illustrate the basic procedure, a single cell model of yeast
glycolytic oscillations is used to construct large cell ensembles for the investigation
of cell population synchronization. The potential use of cell ensemble models for
bioreactor controller design are discussed.
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1. INTRODUCTION

The cell population balance equation (PBE) has
been developed to describe heterogeneities in large
cell populations (Eakman et al., 1966). Most PBE
models are based on a single internal state such
as cell age (Hjortso and Nielsen, 1995) or cell
mass (Zhu et al., 2000). Cell PBE models with a
vector of internal states corresponding to intracel-
lular concentrations also can be constructed. The
incorporation of intracellular reactions within the
PBE framework is facilitated by utilizing a distri-
bution function that represents the mass fraction
of cells with a particular internal state (Nielsen
and Villadsen, 1994). In addition to difficulties
associated with modeling cell cycle events, an in-
herent limitation of the mass fraction PBE formu-
lation is that a detailed intracellular description

leads to a computationally intractable model due
to the high dimension of the internal cell state.

Shuler and co-workers (Ataai and Shuler, 1985;
Kim and Shuler, 1990; Schuler and Domach, 1983)
have developed an alternative modeling approach
for heterogeneous cell populations. Rather than
formulate the governing PBE, the cell population
is described by an ensemble of single cell models
which differ according to key properties such as
the division size. The number distribution func-
tion with respect to any property captured by
the single cell model can be calculated from en-
semble simulation data. Ensembles with approx-
imately 250 individual cells have been used to
predict steady-state and transient size distribu-
tions for aerobic (Schuler and Domach, 1983) and
anaerobic (Ataai and Shuler, 1985) continuous



cultures of E. coli as well as plasmid instabil-
ity in a genetically modified E. coli strain (Kim
and Shuler, 1990). We have not found any recent
developments or applications of this promising
modeling approach. In this paper, we outline the
construction of a cell ensemble model for predict-
ing population synchronization associated with
yeast glycolytic oscillations (Henson et al., 2002).
The results are used to access the utility of cell
ensemble models for bioreactor controller design.

2. YEAST GLYCOLYTIC OSCILLATIONS
Glycolysis is the cellular process by which glucose
is metabolized to generate stored energy in the
form of ATP. Under certain laboratory conditions
oscillations have been observed in glycolytic inter-
mediates and extracellular species. Experimental
studies (Ghosh and Chance, 1964) suggest that an
autocatalytic reaction in the glycolytic chain is re-
sponsible for single cell oscillations. Additional ex-
perimental work has focused on characterizing the
cellular mechanisms which cause synchronization
of individual cells such that they oscillate in phase,
thereby producing oscillations at the cell popu-
lation level. These studies suggest that excreted
acetaldehyde is the extracellular species which
mediates synchronization (Richard et al., 1996).

2.1 Single Cell Model
A single cell model derived from the glycolytic
reaction pathway shown in Figure 1 is used for
the computational studies presented in this paper.
The following model equations (Wolf and Hein-
rich, 2000) are obtained for an arbitrary cell i:

dS1,i

dt
= J0 − v1,i (1)

dS2,i

dt
= 2v1,i − v2,i − v6,i (2)

dS3,i

dt
= v2,i − v3,i (3)

dS4,i

dt
= v3,i − v4,i − Ji (4)

dN2,i

dt
= v2,i − v4,i − v6,i (5)

dA3,i

dt
=−2v1,i + 2v3,i − v5,i (6)

where: S1, S2, S3, S4, N2 and A3 denote the
intracellular concentrations of the species shown
in Figure 1; J0 is the flux of glucose into the cell;
and Ji is the net flux of acetaldehyde/pyruvate out
of the i-th cell. The intracellular reaction rates v2–
v6 depend linearly on the species involved in each
reaction (Wolf and Heinrich, 2000). The reaction
rate v1 includes an additional nonlinear factor
that accounts for autocatalytic behavior:

v1 = k1S1,iA3,i

[
1 +

(
A3,i

KI

)q]−1

(7)
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Fig. 1. Yeast glycolysis reaction pathway.

where: k1, KI and q are kinetic parameters. The
flux of acetaldehyde/pyruvate from the i-th cell
into the extracellular environment is modeled as:

Ji = κ(S4,i − S4,ex) (8)

where: S4,ex is the extracellular acetaldehyde/pyruvate
concentration; and κ is a coupling parameter re-
lated to the cell permeability.

2.2 Cell Population Balance Equation Model

A population balance equation (PBE) model
based on the glycolytic reaction network in Fig-
ure 1 is formulated to demonstrate the associated
computational difficulties. The PBE model is de-
rived using a distribution function that represents
the mass fraction rather than the number fraction
of cells with a particular internal state because
this formalism allows intracellular reactions to be
incorporated in a straightforward manner (Nielsen
and Villadsen, 1994). The PBE is written as:

∂Ψ(x, t)
∂t

+
J∑

j=1

∂

∂xj
[Rj(x, t)Ψ(x, t)] =

[µ(x, t)− µ(t)]Ψ(x, t) (9)

where: x is the internal state vector; Ψ(x, t)dx
represents the mass fraction of cells with internal
state in the range [x, x + dx] at time t; J is the
number of intracellular species; xj is the intracel-
lular concentration of species j; and Rj(x, t) is the
net rate of formation of species j. The function
µ(x, t) represents the specific growth rate of cells
with internal state x, while µ(t) is the average
specific growth rate. Both quantities can be calcu-
lated directly from the intracellular reaction rates
given the associated stoichiometry (Nielsen and
Villadsen, 1994). For the yeast glycolytic pathway



depicted in Figure 1, the number of intracellular
species J = 6 where xT = [S1 S2 S3 S4 N2 A3].

From a computational perspective, the key point
is that the internal state x which characterizes
the intracellular concentrations of each cell is of
dimension six. Assume the model is to be solved
numerically by discretization in each of the six
internal coordinates (Zhu et al., 2000). This pro-
cedure will yield a set of nonlinear ordinary dif-
ferential equations (ODEs) with time as the only
independent variable. If the same number of dis-
cretization points m is used for each coordinate,
then the total number of ODEs is n = m6. Even
with a coarse discretization where m = 10, this
procedure results in one million ODEs. The di-
mension of the internal state vector clearly places
severe limitations on the complexity of the intra-
cellular reaction network that can be utilized. Fur-
thermore, the mass fraction PBE formalism is not
useful for modeling cell cycle events such as bud-
ding and mitosis (Nielsen and Villadsen, 1994).

3. CELL ENSEMBLE MODEL

The ensemble modeling technique allows single
cell behavior to be described with an appropriate
level of detail and circumvents the computational
problems inherent in the PBE modeling approach.
Furthermore, the number distribution with re-
spect to any property captured by the single cell
model can be calculated from ensemble simulation
data. Below we construct a cell ensemble model
to investigate the synchronization phenomenon
associated with yeast glycolytic oscillations.

3.1 Model Formulation and Solution

The dynamics of the i-th cell in the population
are represented by (1)–(8). A mass balance on
extracellular acetaldehyde/pyruvate is derived un-
der the assumption that the cell volume density
(ϕ) remains constant as the number of cells M is
varied (Wolf and Heinrich, 2000):

dS4,ex

dt
=

ϕ

M

M∑
1

Ji − v7 =
ϕ

M

M∑
1

Ji − kS4,ex (10)

where k is the kinetic constant of the acetalde-
hyde/pyruvate degradation reaction. The total
number of ODEs (n) in the cell ensemble model
increases linearly with the number of intracellular
species (6) and the number of individual cells (M):
n = 6M+1. This is to be contrasted with the PBE
model (9) where the number of ODEs obtained
from discretization increases as the power of the
number of intracellular species.

The model parameter values used in the sub-
sequent simulations are identical to those listed
in our original paper (Henson et al., 2002). For

these values, the cell ensemble model possesses a
single stable periodic solution in which all the cells
oscillate in phase and with the same amplitude
regardless of the cell number. Substantially more
complex oscillatory solutions are obtained when
each cell is subject to random perturbations in
the intracellular kinetic parameters. The dynamic
simulation code was developed in FORTRAN us-
ing the variable step ODE solver DVODE (Brown et
al., 1989). Efficient solution of large cell ensembles
was achieved by approximating the full Jacobian
matrix with a banded Jacobian matrix. The actual
Jacobian matrix is not banded due to the presence
of the acetaldehyde/pyruvate flux Ji in (4) and
(10). When these flux terms are neglected in the
Jacobian calculation, the problem becomes highly
banded. We found that this simplification reduced
computation time by at least an order of magni-
tude. A typical one hour dynamic simulation with
1000 cells required less than 10 minutes of CPU
time on a Pentium III 700 MHz processor.

3.2 Calculation of Distribution Properties

Numerical integration of the cell ensemble model
produces a data matrix which contains the intra-
cellular concentrations of each cell and the extra-
cellular acetaldehyde/pyruvate concentration at
each sampling point in time. This problem of com-
puting cell size distributions from ensemble data
was investigated previously for E. coli (Schuler
and Domach, 1983). Below we present a simple
algorithm for computing the cell number distri-
bution with respect to any intracellular variable.

Let z(t) represent the intracellular variable for
which the cell number distribution function N(z, t)
is to be calculated. Consider discretization of the
internal coordinate z into L intervals of width
∆zl = zl − zl−1 where z0 = zmin and zL = zmax.
By definition of the distribution function:

∞∫

0

N(z, t)dz ∼=
L∑

l=1

Nl(t)∆zl = 1 (11)

where Nl(t) represents the average value of N(z, t)
over the interval ∆zl. Denote z̃i(tk) as the value
of the intracellular variable z produced by the i-
th cell at the discrete time tk. For an ensemble
consisting of M individual cells, the mean value
of the intracellular variable z at time tk is:

z̄(tk) =
1
M

M∑

i=1

z̃i(tk) (12)

The distribution function is computed by parti-
tioning the ensemble into the discrete intervals:

ñl(tk) =
M∑

i=1

{S[z̃i(tk)− zl−1]− S[z̃i(tk)− zl]}(13)



where: ñl(tk) represents the number of cells with
intracellular state z in the range [zl−1, zl); l ∈
[1, L]; and S(x) is the unit step function. The dis-
cretized approximate number distribution func-
tion is calculated as:

Ñl(tk) =
ñl(tk)
M∆zl

, l ∈ [1, L] (14)

If the discretization interval is sufficiently small,
then a smooth continuous number distribution
Ñ(z, tk) can be computed from the discrete distri-
bution values Ñl(tk) by polynomial interpolation.

Resolution of the population behavior is deter-
mined primarily by the number of cells M in
the ensemble. As M is increased, the number of
intervals L also can be increased such that each
interval is populated with a sufficient number of
cells to produce a smooth distribution function.
If L is chosen too small relative to M , resolution
is unnecessarily lost. Conversely, the distribution
function will be noticeably non-smooth if L is
chosen too large relative to M .

4. SIMULATION STUDY

The cell ensemble modeling approach is applied
to the problem of yeast glycolytic oscillations. We
focus on NADH concentration dynamics to allow
comparisons to experimental data where the aver-
age NADH concentration was continuously mea-
sured by fluorometry (Ghosh and Chance, 1964;
Richard et al., 1996). The ensemble model pro-
duces non-trivial number distributions (i.e., cells
with different NADH concentrations) only if there
is some source of randomness in the individual cell
models. Two possible sources of randomness are
investigated in the following simulations.

The first test involves an ensemble of 1000 cells in
which the initial conditions of each individual cell
are perturbed according to a Gaussian distribu-
tion with zero mean and a variance of 2.25. Fig-
ure 2 shows the NADH concentration evolution of
each cell. Due to the large variance used, initially
the cell population is disorganized and exhibits
no temporal structure indicative of a synchro-
nized culture. A highly synchronized population
in which the cells oscillate in phase and with a
period of approximately one minute is observed
after 60 minutes. Figure 3 shows the ensemble
average NADH concentration dynamics and the
NADH number distributions computed with z0 =
0 mM, zL = 0.3 mM and ∆z = 0.005 mM at
three times during the simulation. The computed
distributions show the presence of two distinct
cell subpopulations which eventually become syn-
chronized and converge into a single population
that produces fully developed oscillations. Slower
synchronization is observed when less cell models
are included in the ensemble (Henson et al., 2002).
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Fig. 2. Cell population synchronization for ran-
domized initial cell state.
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Fig. 3. Ensemble average NADH concentration
dynamics and NADH number distributions
corresponding to Figure 2.

The next test involves a 1000 cell ensemble in
which the intracellular reaction rate parameters
of each cell are randomly perturbed with zero
mean and variance of 6.25×10−4. Figure 4 shows
the evolution of the NADH concentration of each
individual cell at the end of a 150 minute dynamic
simulation. While the dynamic behavior is not
easily characterized, the random variations appear
to produce three distinct subpopulations. This
behavior is more clearly evident in Figure 5 where
the dynamics of the average NADH concentration
and the NADH concentration of three individual
cells near the end of the 150 minute simulation
are shown. The individual cells have been chosen
to show the oscillatory dynamics of representative
cells from the three subpopulations observed in
Figure 4. Each subpopulation must contain a suffi-
cient number of cells to yield accurate predictions
of average and distribution properties. This is pos-
sible only if the cell ensemble is sufficiently large.
The top plot in Figure 6 shows the complete evolu-
tion of the average NADH concentration. The bot-
tom plot shows the NADH number distributions
computed at at 0 (—), 10 (· · ·) and 150 (− − −)
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Fig. 4. Cell population dynamics for randomized
intracellular kinetic parameters.
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Fig. 5. NADH concentration dynamics for the
total ensemble and three representative cells
corresponding to Figure 4.
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Fig. 6. Ensemble average NADH concentration
dynamics and NADH number distributions
corresponding to Figure 4.

minutes. The sharp initial distribution is indica-
tive of a highly synchronized cell population. As
random cell variations lead to desynchronization,
the NADH distribution becomes increasingly dis-
persed. The final distribution clearly shows the
existence of the three distinct cell subpopulations.

5. BIOREACTOR CONTROLLER DESIGN

The cell ensemble modeling approach allows a de-
tailed single cell model to be incorporated within
a cell population description. As a result, cell
ensemble models are well suited for predicting
complex population dynamics observed in bio-
chemical reactors. The development of cell pop-
ulation control strategies based on such detailed
models offers the potential to enhance bioreactor
productivity, especially with respect to extracellu-
lar metabolites that are excreted during a specific
phase of the cell cycle as a result of complex
interactions between cellular metabolism and cell
cycle events (Alberghina et al., 1991).

As compared to simpler modeling techniques com-
monly used for bioreactor simulation and con-
trol (Daoutidis and Henson, 2002), an obvious
shortcoming of the cell ensemble approach is
model complexity. We have shown that the total
number of model equations increases linearly both
with the number of equations in the single cell
model and the number of cells included the ensem-
ble. However, the simple cell model used in this
paper yields an ensemble model of 6000 differen-
tial equations. More complex cell models (Domach
and Shuler, 1984; Ataai and Shuler, 1985) and/or
larger ensembles will yield population models that
are difficult to solve efficiently. This raises serious
questions about the possible utility of these mod-
els for bioreactor control.

Clearly the development of control strategies
based on high dimensional cell ensemble models
will be facilitated by continuing improvements
in computing technology. Parallel advances in
single cell modeling and cell ensemble solution
algorithms also will be required. For example,
judicious simplification of intracellular reaction
networks can reduce the computational burden
associated with the individual cell model. Only
the reaction pathways most relevant to the cellu-
lar behavior being studied need be incorporated.
Furthermore, linear reaction pathways often can
be lumped into a single reaction without loss of
model fidelity to reduce the number of dependent
variables (Nielsen and Villadsen, 1994). The cell
model studied in this paper only contains lumped
reactions in the upper part of the glycolytic path-
way because this level of detail is sufficient to
describe the oscillatory dynamics.

Model complexity also may be reduced by us-
ing a relatively small number of single cells to
construct the ensemble model. In this paper, we
used large ensembles of 1000 cells to achieve fine
resolution of the computed cell number distri-
butions. Previous work on E. coli suggests that
smaller ensembles comprised of a few hundred cell
models can be sufficient to resolve the popula-
tion behavior (Domach and Shuler, 1984; Ataai



and Shuler, 1985). Furthermore, the ensemble
size required to achieve satisfactory prediction of
cell population dynamics within a feedback con-
trol strategy may be considerably less than that
needed to generate high fidelity simulation results.

The development of control strategies based on
cell ensemble models will require the formulation
and solution of large-scale state estimation prob-
lems. The first step in this direction is analysis of
cell ensemble model observability for given sets
of intracellular and extracellular measurements.
Extensive distribution measurements of intracel-
lular concentrations that are required to achieve
observability typically will not be available. In this
case, estimation of unobservable state variables
via an open-loop observer should be possible. Re-
gardless of the problem formulation, the nonlin-
ear state estimator will require the development
of customized numerical solution techniques. The
computation time required to solve the cell ensem-
ble model studied in this paper was reduced by
an order of magnitude by exploiting the approxi-
mately banded structure of the model equations.
The same simplification should be applicable to
other ensemble models in which the individual
cells interact via a limited number of species in
the extracellular environment. For example, cell
cycle dependent oscillations observed in continu-
ous yeast bioreactors are believed to be mediated
by ethanol excreted into the extracellular environ-
ment (Nielsen and Villadsen, 1994).

Despite these possible improvements, cell ensem-
ble models will remain complex and difficult to
utilize for model-based control. The incorpora-
tion of such models within nonlinear optimization-
based control strategies appears to infeasible. We
intend to pursue linear model predictive control
and simple nonlinear control techniques such as
feedback linearization. More specifically, popula-
tion control strategies will be developed for con-
tinuous yeast bioreactors to determine the pro-
ductivity improvements which result from using
an ensemble model based on a detailed single
cell model instead of population balance equation
model in which the intracellular state is charac-
terized only by cell mass (Zhu et al., 2000).
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