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Abstract

A linear model predictive control (LMPC) strategy is developed for large-scale gas pipeline networks. A nonlinear dynamic

model of a representative pipeline is derived from mass balances and the Virial equation of state. Because the full-order model is ill-
conditioned, reduced-order models are constructed using time-scale decomposition arguments. The ®rst reduced-order model is
used to represent the plant in closed-loop simulations. The dimension of this model is reduced further to obtain the linear model

used for LMPC design. The LMPC controller is formulated to regulate certain pipeline pressures by manipulating production set-
points of cryogenic air separation plants. Both input and output variables are subject to operational constraints. Three methods for
handling output constraint infeasibilities are investigated. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The chemical and steel industries consume large
quantities of puri®ed nitrogen and oxygen. In regions
highly concentrated with these industries, puri®ed gases
are produced by cryogenic air separation plants and
supplied via extensive pipeline networks. The oxygen
pipeline network considered in this paper is representa-
tion of those operated by Praxair. The pipeline is over
50 miles long and has approximately 15 customers.
Pipeline pressures must be maintained near their desired
values without violating constraints imposed by safety
concerns and business contracts. The desired pressures
may correspond to a certain economic optimum, such
as the low pressure limits at all customer sites. When the
pipeline pressure drops below the lower limit, vaporized
liquid oxygen must be introduced to the pipeline to
quickly increase the pressure. Emergency vents must be
opened to release gas when the pressure exceeds the
upper limit. Both situations result in economic penalties
and should be prevented.

Heuristic operating guidelines for long distance nat-
ural gas transmission pipeline scan be found in [7]. These
pipelines have much longer pipes and simpler con®g-
urations than the oxygen pipeline studied here. A partial
di�erential equation (PDE) model of a natural gas
pipeline is proposed by Guy [11]. Finite di�erence solu-
tion of this model is investigated by Lappus and
Schmidt [12]. Commercial software packages for
dynamic gas pipeline simulation include WinTran by
Gregg Engineering [4] and PIPESYS by Hyprotech [5].
Based on the dynamic simulator GANESI [19], Mar-
ques and Morari [13] develop an optimization strategy
based on quadratic programming to reduce compressor
costs of natural gas pipelines. The literature on gas
pipeline control is rather sparse. Sanada and Kitagawa
[18] formulate a linear H1 controller for a very simple
gas pipeline described by ordinary di�erential equations
that are obtained by discretizing a PDE model. Several
articles [3,8] suggest that the natural gas industry relies
on simple regulatory control strategies and uses pipeline
models primarily for early fault detection.
Current industial practice for oxygen/nitrogen pipe-

line control involves regulatory control loops along with
manual intervention by pipeline operators. Regulatory
control loops are used to maintain certain pipeline
pressures and ¯ows. However, pipeline pressures are
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determined ultimately by the production rates of the
cryogenic plants supplying the pipeline. Operators
determine the production setpoint of each air separation
plant manually by analyzing the current customer
demands and pipeline pressures. This current practice is
inadequate for achieving optimal operation of the pipe-
line. With the implementation of linear model predictive
control (LMPC) on individual cryogenic plants, it is
now possible to achieve closed-loop control of the
pipeline network by using the plant production rate
setpoints as manipulated inputs. The pipeline LMPC
controller proposed in this paper is designed to drive
critical pressures to setpoints determined by the opera-
tions sta� or a higher level steady-state optimizer.
Important cryogenic plant constraints can be included
explicitly when the pipeline controller computes the
plant production setpoints.
LMPC has been widely accepted by the chemical

industry due to its multivariable formulation and con-
straint handling abilities. The pipeline control problem
is a good candidate for LMPC because it is a highly
interacting and highly constrained process. A related
application of LMPC to a combined sewer system is
studied by Gelormino and Ricker [10]. According to
their paper, implementation of LMPC has achieved
signi®cant reduction of combined sewer over¯ows,
which is a critical case of constraint violation. A com-
prehensive review of industrial LMPC technology can
be found in [16]. The LMPC controller utilized in this
paper is the in®nite horizon formulation proposed by

Muske and Rawlings [15]. This formulation ensures
nominal stability for stable and unstable systems subject
to both input and output constraints [14,17]. Output
constraint infeasibilities are handled by completely
removing the output constraints over a portion of the
prediction horizon. The stability of in®nite horizon
LMPC with a soft output constraint handling method is
examined by Zheng and Morari [24]. Both output con-
straint handling techniques are studied in [20] and in
this paper.
The remainder of the paper is organized as follows. In

Section 2, dynamic modeling of a representative oxygen
pipeline network is discussed and open-loop simulation
results are presented. Formulation of the LMPC pro-
blem for the oxygen pipeline is described in Section 3.
Section 4 contains closed-loop simulation results for the
oxygen pipeline example. Finally, a summary and con-
clusions are given in Section 5.

2. Dynamic modeling of gas pipeline networks

Fig. 1 is a schematic of the oxygen pipeline considered
in this paper. Each number indicates a production site, a
customer site or a pipe junction. They are called ``nodes''
in the sequel. The control valve that divides the high
pressure and low pressure sides of the pipeline is known
as the ``let-down station''. The let-down station o�ers
an additional manipulated variable that is especially
e�ective for controlling the low pressure side of the

Fig. 1. Full-order pipeline network (30 nodes).
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pipeline. The let-down station also is important for
extreme conditions such as a plant shutdown on the
high pressure side of the pipeline. When this occurs, the
let-down station valve can be closed to maintain pres-
sure on the high pressure side.
A ®rst-principles model is derived to describe the

pressure dynamics of the oxygen pipeline. We are pri-
marily interested in pressure changes at each node
rather than a detailed description of the spatial pressure
gradients. While a PDE model o�ers accurate descrip-
tion of the gas transmission dynamics and is suitable for
infrequent on-line optimization, it is unnecessarily
complex for model-based control at the frequency of
minutes. Therefore we construct an ordinary di�erential
equation (ODE) model that only describes the pressure
changes at the nodes. Although not discussed here for
proprietary reasons, the proposed model compares
favorably with Praxair's internal dynamic model
derived from plant tests.
The complete pipeline model is composed of three

groups of equations: (i) node pressure equations; (ii) let-
down station pressure control loop equations; and (iii)
cryogenic plant production and constraint variable
equations. The second set of equations describe the
pressure control loop for the let-down station. The third
set of equations represent the closed-loop cryogenic
plant production dynamics and dynamic relations
between other plant constraint variables and the pro-
duction rates. Approximate closed-loop dynamics of the
LMPC controlled cryogenic plants are included to
eliminate the need for detailed modeling.

2.1. Full-order nonlinear model

Node pressure equations are derived from molar bal-
ances at each node. Energy balances are not needed
because the temperature changes in the pipeline are
negligible. The molar balance for node i is:

N
:
i � �sc

X
k

Fi;k �
X
j

f1 Pi;Pj; �
ÿ �" #

�1�

where Ni is the gas molar holdup at node i, �sc is the
molar density of oxygen at standard conditions (1 atm
and 60�F), Fi,k is the volumetric gas ¯ow rate from a
production plant (positive ¯ow) or to a customer
(negative ¯ow) at node i. A complete set of nomen-
clature is shown in Appendix A. The subscript k denotes
the production plant k at nodes i=10, 24, and 29; k=1
for customer withdraws at all other nodes. The function
f1(Pi,Pj, �) represents the volumetric ¯ow rate between
node i and node j. The ¯ow depends on the associated
pressures (Pi and Pj) and the pipeline leg parameters (�).
A leg connects two nodes and can be a pipe or a valve.

For a pipe f1 takes the form of the Weymouth equation
[1], which can be derived from a momentum balance
and is used extensively in the gas industry for modeling
compressible ¯ows:

f1 Pi;Pj

ÿ � � 114:2

����������������������������������
P2
i ÿ P2

j

� �
d5p

frLTSg

Ef

Zm

vuut �2�

where dp is the pipe diameter, fr is the friction factor, L
is the pipe length, T is the temperature, Sg is the speci®c
gravity of the gas, Ef is the e�ciency factor and Zm is
the mean compressibility of the gas. The friction factor
(fr) is estimated using the formula [1]:

fr � 0:032

d1=3p

The e�ciency factor (Ef) is assumed to be one. For the
let-down station, linear valve dynamics are assumed and
the ¯ow equation is:

f1 Pi;Pj; l
ÿ � � Cv

l

100

���������������
Pi ÿ Pj

Sg

s
�3�

where l is the percentage of valve opening and Cv is the
valve characteristic constant. This equation is appro-
priate because the let-down station pressure does not
change signi®cantly from the nominal value and the
pressure drop across the valve is only around 10% of Pi.
Since the molar holdup at each node cannot be mea-

sured, it is desirable to have the node pressures as
dependent variables in the model equations. This is
achieved by assuming each node has a constant volume.
The node volumes are determined by dividing the pipe
volumes equally among the adjacent nodes. Each node
molar volume is related to its associated node pressure
by an equation of state. Commonly used cubic equa-
tions of state (e.g. [23]) yield very complicated expres-
sions for the pressure derivatives. For the pressure range
of a typical oxygen pipeline, the Virial equation of state
[23] provides good prediction of gas properties and
makes the resulting model much simpler. Using the
truncated Virial equation, the molar holdup at node i
can be expressed as:

Ni � ViPi

ZiRT
� ViPi

RT� BiPi
�4�

where R is the gas constant, Bi is the second Virial
coe�cient for node i and Vi is the node volume. Taking
time derivatives on both sides of (4) yields:

dNi

dt
� ViRT

RT� BiPi� �2
dPi

dt
�5�
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Substituting (5) into the node molar balance Eq. (1)
yields:

dPi

dt
� �scf2 Pi� �

X
j

f1 Pi;Pj

ÿ ��X
k

Fik

" #
�6�

where the function f2 is de®ned as:

f2 Pi� � � RT� BiPi� �2
ViRT

The let-down station pressure control loop is descri-
bed by following equations:

l � lss � Kcef � Kc

�I
�f �7�

�
: � Psp ÿ P �8�

e
:
f � 1

�f
Psp ÿ P
ÿ �ÿ ef

� � �9�

�
:
f � 1

�f
�ÿ �f� � �10�

where l and lss are the valve position and steady-state
valve position, respectively; Kc and �I are tuning para-
meters for the PI regulator; ef is a ®ltered value of the
di�erence between the pressure (P) and its setpoint
(Psp); � is the integrated error; and �f is the ®ltered value
of �. The error signals are ®ltered to reduce large valve
movements which can cause numerical problems when
the full-order model is simulated. The pressure control
loop equations are included explicitly in the model
because the LMPC controller manipulates the let-down
pressure setpoint (Psp).
The production rates (Fi) of the LMPC controlled

cryogenic plants are modeled empirically as ®rst-order-
plus-deadtime (FOPDT) systems:

dFi

dt
� 1

�i
Frqi tÿ td� � ÿ Fi t� �� � �11�

where �i is the closed-loop time constant for the ith
production plant and Frqi is the production request
(setpoint). All the cryogenic plant models have the same
deadtime td. The FOPDT model parameters are
obtained from closed-loop plant data. The dynamics of
the other constraint variables (ÿ�R10) associated with
individual cryogenic plants are described by a set of
ordinary di�erential equations and algebraic equations
derived from the empirical relations (11). These con-
straint variables includes air ¯ow rates, liquid nitrogen
production rates, total compressor ¯ow rates and power
consumptions. These plant constraints must be honored

because of equipment limits and business contracts. The
associated equations are not shown in this paper for
proprietary reasons. While the plant constraints are
included in the subsequent simulations, it should be
noted that the constraints are not active during any of
the simulation tests. Thus, identical results will be
obtained if the plant constraints are omitted. A com-
plete set of model equations excluding the plant con-
straint variables is included in Appendix B.

2.2. Reduced-order nonlinear models

The full-order model of the oxygen pipeline is com-
prised of 43 ordinary di�erential equations and seven
algebraic equations. Thirty di�erential equations
describe the node pressure changes along the pipeline.
The node pressure dynamics are determined primarily
by the physical dimensions of the adjacent legs. Due to
large di�erences in leg lengths (50±161,200 ft), the full-
order model exhibits multiple time scales. As discussed
below, the pipeline network is an integrating system and
therefore the linearized system matrix A has a zero
singular value. The large di�erence in time scales is
exempli®ed by the very wide range of nonzero singular
values (0.1705±3.083�107). As a result, numerical pro-
blems are encountered when the full-order model is used
as the basis for LMPC design.
One approach for improving the conditioning of the

model is to combine adjacent nodes with small pressure
drops. This eliminates short pipes with fast dynamics
and also reduces the total number of model equations.
To construct reduced-order pipeline models, the fol-
lowing guidelines are followed:

1. The new pipe lengths are the sum of the combined
pipe lengths.

2. The new pipe diameters are determined such that
the total volume of the combined legs is preserved.

3. The pipe e�ciency factors are adjusted such that
the di�erence between the steady-state solutions of
the full-order and reduced-order models are mini-
mized in a least-squares sense.

4. The volumes corresponding to eliminated nodes
are distributed between adjacent nodes to achieve
more uniform time scales.

The full-order pipeline model ®rst is reduced from 30
nodes to 19 nodes by eliminating short lateral legs. As
shown later, there is very little di�erence between the
reduced-order and full-order model predictions. But the
reduced-order model is better conditioned as shown by
the range of non-zero singular values (0.1884±
4.168�105). This reduced-order model serves as the
plant in closed-loop simulations. The model is reduced
further to only 10 nodes to generate the model used for
LMPC design. This reduction is performed such that
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the node pressures subsequently de®ned as controlled
outputs remain explicitly in the model. The non-zero
singular value range (0.0987±5.1401�104) shows that
the controller model is slightly better conditioned than
the plant model. Figs. 1±3 show the pipeline layouts
corresponding to the three models. Table 1 show the
de®nition of the reduced-order model nodes in terms of
the full-order model nodes.

2.3. Linear controller design model

The linear model used for LMPC design is obtained
by linearizing the nonlinear controller model at a
steady-state operating point. The pipeline network is an
integrating system because it contains an inventory of
gas. Consequently, for any set of inputs there exists an
equilibrium space rather than isolated equilibrium

Fig. 2. Reduced-order pipeline network for the plant model (19 nodes).

Fig. 3. Reduced-order pipeline network for the controller model (10 nodes).
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points. The steady-state values used for linearization
correspond to the nominal operating condition for the
pipeline. The resulting linear controller design model
has the form:

x k� 1� � � Ax k� � � Bu k� � � Bdd k� �

y k� � � Cx k� �

yc k� � � Ccx k� � �Ddd k� � �12�

where x � R23 is the vector of state variables shown in
Table 1, u � R6 is a vector of manipulated inputs, d � R10

is a vector of measured disturbances, y � R3 is a vector
of controlled outputs, yc � R

14 is a vector of constrained
outputs and k is the discrete time index. The sampling
time is 2 min.
The state vector consists of the node pressures, the

cryogenic plant production rates, the let-down station
control loop variables, and plant constraint variables:

x �
h
P1ÿ4 P5ÿ9 P10 P11;12 P13ÿ17 P18ÿ21 P22;23

P24 P25;26 P27ÿ30 F10;2 F10;3 F24;1

F24;2 F29;1 � ef �f ÿT
x

iT
�13�

where the subscripted P terms denote node pressures for
the controller model based on Fig. 3 and ÿx � R

5 is the
subset of plant constraint variables contained in the
state vector. The input vector is comprised of the pro-

duction requests for the ®ve LMPC controlled cryogenic
plants and the pressure setpoint for the let-down
station:

u � Frq10;2 Frq10;3 Frq24;1 Frq24;2 Frq29;1 Psp

� �T
It is assumed that the production requests are delayed
by one sampling time (td=2 min). Therefore, an aug-
mented state vector is de®ned as:

x~ k� � � x1 k� � . . . x23 k� � u1 kÿ 1� � . . . u5 kÿ 1� �� �T

and the system matrices A, B, Bd, C, Cc and Dd are
modi®ed accordingly [9]. To simplify the notation, the
model form (12) will continue to be used in the sub-
sequent development. The measured disturbance vector
includes the customer withdraw rates at each node and
the production rate of plant 10-1 where LMPC is not
implemented:

d �
"X4

i�1
Fi;1

X9
i�5

Fi;1 F10;1

X12
i�11

Fi;1

X17
i�13

Fi;1

X21
i�18

Fi;1

X23
i�22

Fi;1

X26
i�25

Fi;1

X
i�27;28;30

Fi;1

#T

where the Fi,1 denote gas ¯ow rates for the full-order
model derived from Fig. 1 and each term in the vector
corresponds to the gas ¯ow rate at a node of the

Table 1

Node reduction of the full-order model to generate the plant and controller models

Node Full model

R43

Plant model

R32

Control model

R23

Node Full model

R43

Plant model

R32

Control model

R23

1 P1 P1 P1ÿ4 21 P21

2 P2 P2,4 P5ÿ9 22 P22

3 P3 P3 P10 23 P23

4 P4 P5,6 P11,12 24 P24

5 P5 P7 P13ÿ17 25 P25

6 P6 P8,9 P18ÿ21 26 P26

7 P7 P10 P22,23 27 P27

8 P8 P11 P24 28 P28

9 P9 P12 P25,26 29 P29

10 P10 P13 P27ÿ30 30 P30

11 P11 P14 F10,2 F10,2 F10,2

12 P12 P15ÿ17 F10,3 F10,3 F10,3

13 P13 P18ÿ21 F24,1 F24,1 F24,1

14 P14 P22 F24,2 F24,2 F24,2

15 P15 P23 F29,1 F29,1 F29,1

16 P16 P24 � � �
17 P17 P25,26 ef ef ef
18 P18 P27,28 �f �f �f
19 P19 P29,30 ÿx ÿx ÿx

20 P20
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controller model derived from Fig. 3. The pressures at
nodes 4, 8 and 10 (see Fig. 3) are controlled to setpoints
because these pressures largely determine the entire
pipeline pressure distribution:

y � P11;12 P24 P27ÿ30
� �T

There also are 14 output constraint variables which
include the three controlled outputs de®ned above.
Additional constrained outputs are the let-down station
valve position and the plant constraint variables dis-
cussed earlier.
To further establish the need for multivariable con-

trol, it is useful to obtain the relative gain array (RGA)
for the LMPC design model. The RGA can be used to
determine if interactions between single-loop controllers
will be problematic. The linear model used for this ana-
lysis excludes the let-down station control loop since the
let-down control valve position is used as an input in the
RGA analysis. The outputs are chosen as the pressures
de®ned above (P11,12, P24, P27ÿ30) as well as the pressure
downstream of the let-down station (P18ÿ21). The inputs
are the total production requests at nodes 10, 24 and 29
of the full-order model (see Fig. 1) and the let-down
station valve position. The gain matrix is generated
using a method speci®cally designed for integrating sys-
tems [6]:

K �
0:0378 0:0378 0:0378 0:5879
0:0375 0:0375 0:0375 0:5827
0:0370 0:0370 0:0370 ÿ0:2443
0:0382 0:0382 0:0382 ÿ0:2519

2664
3775

The ®rst three columns contain integrating gains
(slopes) between the node pressures and the production
requests. The last column contains steady-state gains
between the node pressures and the valve position.
The relative gain between controlled variable Yi and

manipulated variable Uj is de®ned as [21]:

li; j �
@Yi=@Uj

ÿ �
U

@Yi=@Uj

ÿ �
Y

�14�

Because the gain matrix is singular, the RGA cannot be
computed. For this system the closed-loop gain (@Yi/
@Uj)Y is always zero because the pressure at a given
node does not change if the other pressures are held
constant. The RGA analysis suggests that single-loop
controllers designed using these inputs and outputs will
be highly interacting. While it has been shown that
LMPC can exhibit robustness problem when applied to
systems with large RGA values [22], we have not
observed any such problems in our simulations. There-
fore, LMPC appears to be an appropriate control
strategy for this problem.

2.4. Open-loop simulation

The dynamic models are solved in MATLAB using
the SIMULINK integration routine ODE15s [2]. Open-
loop responses of the full-order model (Fig. 1) and the
plant model (Fig. 2) are compared in Fig. 4 for a posi-
tive step change of 50 kcfh in the plant 10-1 product
request. All pressures are plotted as deviations from the
let-down station pressure, which is controlled at a con-
stant setpoint. This test con®rms that the dimensionality
reduction used to generate the plant model does not
signi®cantly a�ect the dynamic behavior. The full-order
model simulation requires about 20 min for an 8-h
simulation on a DEC Alpha 433 workstation, while the
plant model simulation takes less than 3 min. The
``spikes'' observed in the full-order model response are
indicative of numerical instability caused by ill-con-
ditioning.
Fig. 5 shows the open-loop responses obtained when

the plant model, nonlinear controller model and linear
controller model are subjected to the following changes:

1. ÿ25 kcfh change in plant 10-1 production request
at t=1 h.

2. +25 kcfh change in plant 10-1 production request
at t=2.5 h.

3. +50 kcfh change in node 26 customer withdraw at
t=5 h.

4. ÿ50 kcfh change in node 26 customer withdraw at
t=7.5 h.

The node pressures on the low pressure side converge to
constant values close to the initial steady state because
the let-down station pressure is controlled at its set-
point. On the high pressure side, the node pressures
increase or decrease with constant slopes after some
initial dynamics. The three models show similar trends,
so the linear controller model appears to adequately
capture the important dynamics of this ``slightly'' non-
linear process.

3. Linear model predictive control strategy

The in®nite horizon LMPC formulation proposed by
Muske and Rawlings [15] is applied to the oxygen pipe-
line. Because this formulation provides nominal stabi-
lity for unstable systems, it is not necessary to pre-
stabilize the pipeline with a conventional controller
prior to applying LMPC. Other advantages of the for-
mulation include ¯exible use of alternative feedback
structures to handle measured and unmeasured dis-
turbances, as well as the explicit incorporation of input
and output constraints. Below the LMPC strategy is
presented with an emphasis on the speci®c formulation
for the pipeline network.
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3.1. LMPC regulator

A necessary condition for LMPC to be applicable is
that the linear model is stabilizable. It is easy to show
that the augmented linear controller model satis®es this
condition. A vector of future inputs, UN=[uT(k kj )
uT(k+1 kj ) . . . uT(k+N-1 kj )]T, is calculated by solving
the following in®nite horizon open-loop optimization
problem:

min
UN

�k �
X1
j�0

�
y k� j kj� � ÿ ys� �TQ y k� j kj� � ÿ ys� �

� u k� j kj� � ÿ us� �TR u k� jjk� � ÿ us� �

��u k� j kj� �TS�u k� j kj� �	 �15�

where the double indexed variables y(k+j kj ) and
u(k+j kj ) represent predictions of the output and input
variables, respectively, at time k+j based on informa-
tion at time k; �u(k+j kj )=u(k+j kj )/u(k+jÿ1 kj ); ys
and us are output and input targets, respectively; Q and
S are positive semide®nite penalty matrices; and R is a
positive de®nite penalty matrix. Note that the prediction
horizon is in®nite, while a ®nite control horizon (N) is

used to yield a ®nite number of decision variables.
Manipulated inputs beyond the control horizon are set
equal to their target values:

u k� j kj� � � us; 8 j5N

The in®nite horizon problem in (15) can be reformu-
lated as a ®nite horizon problem [15]:

min
UN

�k � x k�N kj� � ÿ xs� �TQ� x k�N kj� � ÿ xs� �
��u k�N kj� �TS�u k�N kj� �

�
XNÿ1
j�0

�
x k� j kj� � ÿ xs� �TCTQC x k� j kj� � ÿ xs� �

� u k� j kj� � ÿ us� �TR u k� j kj� � ÿ us� �
��u k� j kj� �TS�u k� j kj� �	 �16�

where xs is the target vector for the state variables, and
Q� is the terminal penalty matrix that is computed by
solving the appropriate Lyapunov equation [15].
The linearized pipeline model has one eigenvalue on

the unit disk. For such unstable systems, the matrix A is
partitioned into stable and unstable parts. This is
necessary because the unstable modes must be driven to

Fig. 4. Open-loop simulation: full-order model and plant model.
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their targets by the end of the control horizon so the
in®nite horizon objective function has a ®nite value.
Partitioning is performed by ®nding the Jordan form of
A [15]:

A � VJVÿ1 � Vu Vs� � Ju 0
0 Js

� �
V~ u

V~ s

� �
�17�

where the diagonal matrices Ju and Js contain the
unstable and stable eigenvalues, respectively, and Vu

and Vs are comprised of the corresponding eigenvectors.
The state vector is transformed into decoupled unstable
(zu) and stable (zs) modes as follows:

zu

zs

� �
� V~ u

V~ s

� �
x �18�

The following terminal equality constraint is appended
to the optimization problem:

zu k�N kj� � � V~ uxs �19�

The terminal penalty matrix Q� is computed by solving
the Lyapunov equation using only the stable modes
[15]:

Q� � V~ Ts �V~ s �20�

� � VT
s C

TQCVs � JTs �Js �21�

With some algebraic manipulation, the optimization
problem (16) can be formulated as a quadratic program
(QP) for uN:

min
UN

�k � uN
ÿ �T

HuN � 2 uN
ÿ �T

Gx k� � ÿ Fu kÿ 1� �� � �22�

The form of the matrices H, G and F can be found in
[15]. It is possible to include measured disturbances in
the state predictions with minor modi®cation of the QP
problem. Because customer withdraw rates cannot be
forecasted accurately, we utilize an alternative feedfor-
ward control strategy in which the measured dis-
turbances are used to shift the target values [15]. This is
discussed below. The following input and output con-
straints also are considered:

umin4u k� j kj� �4umax j � 1:::N

ymin4yc k� j kj� �4ymax j � 1:::1 �23�

Fig. 5. Open-loop simulation: plant model, controller model and LMPC design model.
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Note that the output constraints are to be enforced over
the in®nite prediction horizon. In some situations, it is
necessary to relax the output constraints to achieve fea-
sibility of the QP. The feasibility issue is discussed later
in this section.

3.2. Disturbance estimation and steady-state target
calculation

The output disturbance model is the most common
paradigm for estimating unknown disturbances in
LMPC applications. O�set-free tracking performance
can be achieved only if there are su�cient degrees of
freedom [15]; that is, the number of unconstrained
inputs is greater than or equal to the number of outputs.
When choosing a feedback structure for the gas pipeline
system, the following characteristics need to be con-
sidered: (i) there are only six inputs; (ii) 14 outputs must
be maintained within constraints, but only three outputs
need to be controlled to setpoints; (iii) all the state
variables are measurable because they are node pres-
sures, ¯ow rates and controller signals; (iv) the customer
withdraw rates are measurable; and (v) the pair (C,A) of
the LMPC design model is not observable. A custom
disturbance modeling approach is developed to fully
exploit these system characteristics.
Instead of a more conventional output or input dis-

turbance model, we take advantage of the fact that all the
state variables are measurable and propose a state dis-
turbance model. The di�erence between the estimated
and measured state vectors is assumed to be attributable
to a constant step disturbance vector �. Therefore, the
augmented process model takes the following form:

x k� 1� � � Ax k� � � Bu k� � � Bdd k� � � � k� � �24�

� k� 1� � � � k� � �25�

Estimates of the disturbance vector are generated
using the deadbeat observer:

�̂ kÿ 1 kj� � � x k� � ÿ Ax kÿ 1� � ÿ Bu kÿ 1� �

ÿ Bdd kÿ 1� � �26�

� k kj� � � �̂ kÿ 1 kj� � �27�

Once the disturbance estimates are available, the new
steady-state targets for the state and input variables are
determined by solving the following QP problem [15]:

min
xs k� �;us k� �

us k� � ÿ uref� �TRs us k� � ÿ uref� � �28�

subject to:

Iÿ A ÿB
C 0

� �
xs k� �
us k� �

� �
� Bdd k� � � �̂ k kj� �

yref

" #
umin4us�k�4umax

where Rs is a positive de®nite weighting matrix, and yref
and uref are output and input setpoints, respectively. For
the pipeline system, this problem can become infeasible
when the number of active input constraints exceeds
three. In this case, an alternative QP problem is solved
which minimizes the di�erence between the outputs and
their setpoints:

min
xs k� �;us k� �

yref ÿ Cxs k� �� �TQs yref ÿ Cxs k� �� � �29�

subject to:

Iÿ A ÿB� � xs k� �
us k� �

� �
� Bdd k� � � �̂ k kj� �� �

umin4us k� �4umax

where Qs is a positive de®nite weighting matrix. A
necessary condition for the target calculation to be fea-
sible is that the measured disturbances satisfy:X10
i�1

di k� �4
X5
j�1

umaxj �30�

which mathematically states the obvious condition that
the system does not have a steady-state solution if the
combined customer withdraws exceeds the total capa-
city of the cryogenic plants.

3.3. Output constraint handling

As discussed previously, output constraints of the
following form are considered:

ymin4yc k� j kj� �4ymax j � 1:::1 �31�

The output constraints can be reformulated as [17]:

Ĥx k� j kj� �4h j � 1:::1 �32�

where Ĥ is a constant matrix and the vector h has all
positive elements. A key feature of any LMPC strategy
is the method used to relax the output constraints to
achieve feasibility of the QP. While other techniques are
available [20], only the three output handling methods
discussed below are considered in this paper.
Rawlings and Muske [17] propose the relaxation of

output constraints during the initial portion of the pre-
diction horizon when an infeasibility is encountered.
They show the existence of a ®nite number k1 such that the
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output constraints are guaranteed to be feasible for all k
> k1. For unstable systems, k1 can be computed as [17]:

k1 � N�max ln
hmin

k Ĥ kk Vs kk zs k�N kj� � k

 !
=ln lmax� �; 1

( )
�33�

where lmax is the largest eigenvalue of Js and hmin is the
smallest element of vector h. Rawlings and Muske [17]
also show the existence of a ®nite k2 such that the out-
put constraints are enforced over the rest of the in®nite
horizon if they are satis®ed between k1 and k2. This is
called the hard constraint handling method. For the
pipeline system, the values of k1 and k2 calculated from
these formulas can be very large (> 1000) because the
largest stable eigenvalue (0.995) is very close to unity.
This makes the constraint handling method rather di�-
cult to implement.
To address this limitation, we propose an alternative

hard constraint handling method. When an infeasibility
occurs, the output constraints are removed at the ®rst
time step in the horizon and the QP is resolved. If the
QP remains infeasible, then the output constraints at the
second time step also are removed and the QP is
resolved. This procedure is continued until the QP pro-
blem is feasible. The advantage of this approach is that
the output constraints are relaxed the minimum number
of times required to obtain feasibility. A shortcoming is
that a potentially large number of QP problems must be
solved at a single time step. For the pipeline system, we
have found that the constraints must be removed only
at the ®rst one or two steps in the horizon. The problem
of large k2 values is circumvented by enforcing the out-
put constraints only up to the control horizon N.
Clearly, this approach does not guarantee that the con-
straints are satis®ed over the entire horizon.
Zheng and Morari [24] propose an output constraint

handling method in which slack variables are intro-
duced to soften the output constraints. The slack vari-
ables are penalized by a positive de®nite weighting
matrix Ps in the objective function. The following
LMPC problem is obtained:

min
UN;s k� �

�k � x k�N kj� � ÿ xs� �TQ� x k�N kj� � ÿ xs� �

��u k�N kj� �TS�u k�N kj� �

�
XNÿ1
j�0

�
x k� j kj� � ÿ xs� �TCTQC x k� j kj� �ÿxs� �

� u k� j kj� � ÿ us� �TR u k� j kj� � ÿ us� �
��u k� j kj� �TS�u k� j kj� � � s k� �TPss k� �

	
ymin ÿ s k� �4yc k� j kj� �4ymax � s k� �j � 1; :::;N �34�

where s(k) is a vector of slack variables. Again the out-
put constraints are only enforced over the control
horizon N. To formulate the QP, the output constraints
are written as inequality constraints in terms of uN and
s(k):

D
ÿD

� �
uN

s k� �
� �

4
d1
d2

� �
�35�

The formulation of D, d1 and d2 can be found in [15].

4. Simulation results and discussion

We now apply the LMPC controller to the simulated
oxygen pipeline network. The reduced-order nonlinear
plant model (see Fig. 2) is used to represent the pipeline
network. The control horizon is N=15, and the quad-
ratic weighting matrices in the objective function are
chosen as: Q=I3�3, R=0.1I6�6, S=100I6�6. When the
soft output constraint handling method is used, the
penalty matrix Ps on the slack variables is chosen as
50I14�14. These tuning parameters were determined by
trial and error. Except for the let-down station valve
position, the input and output constraints in deviations
from the nominal steady states are:

ÿ200 kcfh
ÿ150 kcfh
ÿ200 kcfh
ÿ200 kcfh
ÿ210 kcfh
ÿ14:9 psig

26666664

377777754u k� �4

150 kcfh
150 kcfh
100 kcfh
100 kcfh
190 kcfh
25:1 psig

26666664

37777775
ÿ5:2 psig
ÿ23 psig
ÿ35:1 psig
0%
ÿmin

266664
3777754yc k� �4

29:8 psig
17 psig
24:9 psig
90%
ÿmax

266664
377775

The limits ÿmax and ÿmin for the plant constraint vari-
ables are not reported for proprietary reasons. How-
ever, it is important to emphasize that none of these
constraints are active during any of the following simu-
lation tests. All simulations are performed in MATLAB
on a DEC Alpha 433 workstation. A typical closed-loop
simulation of 8 hours requires approximately 5 min of
CPU time.
Fig. 6 shows stabilization of the pipeline network at

the nominal steady state. The ®gure includes the ®rst
four constrained outputs (including the three pressures
controlled to setpoints) and the six manipulated inputs.
The dotted lines represent the setpoints for the outputs
and the actual ¯ow rates corresponding to the ®rst ®ve
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inputs. For the last input, the dotted line represents the
actual let-down station pressure. Because the controller
design model is a reduced-order linear approximation of
the plant model, there is plant/model mismatch even at
steady state. This test shows that the LMPC controller
is capable of handling the mismatch as the pressures are
maintained within one psig of the desired steady-state
values.
Fig. 7 shows the closed-loop response for +10 psig

setpoint changes in the node 24 and 29 pressures (see

Fig. 1) at t=3 h. Setpoint changes of the same magni-
tude are introduced since these two pressures should
have a relatively constant pressure di�erence. This test
simulates a desired pressure build-up on the high pres-
sure side of the network to take advantage of low utility
costs at o�-peak hours. The initial transient is due to
plant/model mismatch as discussed above. The new set-
points are achieved about 2 h after the requests are
issued, and the pressure at node 12 is kept very close to
its setpoint. The let-down valve is closed about 10%

Fig. 6. Nominal stabilization.

140 G.-Y. Zhu et al. / Journal of Process Control 11 (2001) 129±148



because the pressure drop across the valve is increased.
For the ®rst ®ve inputs, the production requests (solid
lines) increase rapidly when the setpoint changes are
implemented. The production requests for two plants
reach their upper limits for a brief period of time. The
actual production rates follow the ¯ow requests
according to the ®rst-order-plus-deadtime models used
to model the closed-loop cryogenic plant dynamics.
The results obtained for two measured customer

withdraw rate changes are shown in Fig. 8. At t=3 h

the customer withdraw rate at node 24 is increased by
100 kcfh, then at t=8 h the customer withdraw rate at
node 1 is increased by 150 kcfh. This test models a
combination of smaller customer withdraw rate changes
near these nodes. Both disturbances are rejected with only
small deviations of the outputs from their setpoints. The
same test has been performed with the withdraw rates
considered as unmeasured disturbances. Since a dead-
beat observer is used to generate the disturbance estimates,
and the entire state vector is measured, the controller

Fig. 7. Setpoint changes.
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responds very quickly to the demand changes. As a
result, the closed-loop response is virtually identical to
Fig. 8 and is not shown here.
First-order-plus-dead-time (FOPDT) models obtained

from plant tests are used to model the dynamics of the
LMPC controlled cryogenic plants. In practice, the actual
closed-loop plant behavior will deviate from the FOPDT
model predictions. To examine the ability of the LMPC
controller to handle this uncertainty, the time constant
of each FOPDT model in the simulated plant is

increased by 15 min (60±100% increase) while the
controller design model is unchanged. The closed-loop
response for the same disturbance sequence as in Fig. 8
is shown in Fig. 9. The controller rejects the measured
disturbances quite e�ectively despite the modeling error.
Although slightly larger production request changes are
observed, the output responses are very similar to those
obtained for a perfect model (Fig. 8).
The complete shut-down of plant 10-1 represents a

very large measured disturbance that is simulated to test

Fig. 8. Disturbance rejection for known changes in customer withdraw.
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the constraint handling abilities of the LMPC con-
troller. The upper constraint for the let-down valve
position is reduced to 85% to allow output constraint
violations to be examined more easily. Fig. 10 shows the
results obtained with the soft output constraint hand-
ling method [24]. When the plant shut-down occurs at
t=3 h, the pipeline pressures on the low pressure side
drop rapidly. Production requests are driven to their
upper limits to compensate for the pressure loss. Note
that the node 29 pressure exhibits a large overshoot

immediately after the initial pressure drop. This can be
explained by noting that node 29 is on the high pressure
side of the let-down valve while plant 10-1 is on the low
pressure side. The plant 29-1 production rate responds
quickly to the disturbance and causes the node pressures
on the high pressure side to increase. Two di�erent slack
variable penalty matrices have been evaluated. When
Ps=50I, the valve position (solid line) barely violates its
upper limit. When Ps=I, the valve position (dashed line)
exhibits a signi®cant violation of the upper constraint.

Fig. 9. Disturbance rejection for known changes in customer withdraws with modeling errors in the cryogenic plant responses.
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The responses of the other variables are nearly identical.
Clearly the tuning of Ps plays a critical role in the con-
straint handling behavior of the LMPC controller.
The hard output constraint method is not evaluated

because the large k1 values calculated from (33) e�ec-
tively eliminates the output constraints over the entire
horizon. In Fig. 11, the alternative hard output con-
straint method described earlier is evaluated for the
same disturbance and output constraints as in Fig. 10.
The output and input responses are very similar to those

obtained with the soft constraint handling method
(Fig. 10). The QP remains feasible except at a few time
steps where the upper valve position constraint is vio-
lated. At those time steps, feasibility is established by
removing the output constraints only at the ®rst time
step and enforcing the constraints over the rest of the
horizon j � [k+1, N]. This procedure allows the valve
position constraint to be violated only very slightly.
Because this output constraint handling method may
require the solution of a large number of QP problems

Fig. 10. Disturbance rejection for known plant shutdown using the soft constraint handling method: Ps=50I (solid line), Ps=I (dashed line).
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when an infeasibility is encountered, careful tuning of
the soft output constraint handling method appears to
be preferred for this problem.

5. Summary and conclusions

E�ective control of large-scale gas pipeline networks
is required to ensure safe and pro®table operation.
While pipelines are critical in the air separation and
natural gas industries, the application of advanced con-

trol to such systems is not currently practiced. We have
developed and evaluated a linear model predictive con-
trol (LMPC) strategy for a simulated industrial-scale
oxygen pipeline network. A ®rst-principles nonlinear
model for the node pressures is derived from mass bal-
ances and the Virial equation of state. The LMPC
design is based on a linearized model derived from a
reduced-order nonlinear pipeline model. Both measured
and unmeasured disturbances are systematically incor-
porated in the LMPC target calculations. The LMPC
controller provides excellent closed-loop performance

Fig. 11. Disturbance rejection for known plant shutdown using the alternative hard constraint handling method.
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for a wide variety of setpoint changes and disturbances.
Three output constraint handling techniques to resolve
infeasibilities in the LMPC quadratic program have
been examined. We believe that the proposed LMPC
strategy can signi®cantly improve the operability of
large-scale gas pipeline networks and can enable gas
suppliers to take full advantage of the deregulation of
the utility industry.
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Appendix A. Nomenclature

Bi second Virial coe�cient at node i (ft3)
Cv valve characteristic constant
dp pipe diameter (in)
Ef pipe e�ciency factor
ef pressure control loop ®ltered error
Fi;1 withdraw rate (kcfh) at node i, i=1, 4, 6, 9, 11,

12, 14, 16, 17, 19, 22, 25, 26, 28, 30
F10;j production rate (kcfh) of plant 10-j, j=1, 2, 3
F24;j production rate (kcfh) of plant 24-j, j=1, 2
F29;j production rate (kcfh) of plant 29-1
fr friction factor
Frq10;j production setpoint (kcfh) of plant 10-j, j=2, 3
Frq24;j production setpoint (kcfh) of plant 24-j, j=1, 2
Frq29;j production setpoint (kcfh) of plant 29-1
Kc let down station controller gain (%/psig)
L pipe length (mile)
l percent valve opening
Ni molar holdup (lb-mol) at node i
Pi pressure (psig) at node i
Psp setpoint (psig) for let-down pressure controller
R gas constant (psia-ft3/lbmol-R)
Sg oxygen speci®c gravity
T pipeline temperature (R)
td dead time of closed-loop plants (min)
Vi node volume i (ft3)
Zm mean compressibility

Greek Letters
ÿ plant constraint vector
ÿx subset of plant constraint variables used as

state variables
� pressure control loop accumulated error
�f ®ltered accumulated error

�sc molar density (lbmol/ft3) of O2 at 1 atm and
60�F

�10;j time constant of closed-loop cryogenic plant
10-j, j=2, 3

�24;j time constant of closed-loop cryogenic plant
24-j, j=1, 2

�29;1 time constant of closed-loop cryogenic plant
29-1

�f PI controller error ®lter time constant
�I PI controller integral time
� pipe leg parameters

Superscripts
ss steady-state value

Appendix B. Full-order model

P
:
1 t� � � �scf2 P1� � f1 P1;P2� � � F1;1

� �
P
:
2 t� � � �scf2 P2� � f1 P2;P1� � � f1 P2;P3� � � f1 P2;P4� �� �

P
:
3 t� � � �scf2 P3� � f1 P3;P2� � � f1 P3;P5� �� �

P
:
4 t� � � �scf2 P4� � f1 P4;P2� � � F4;1

� �
P
:
5 t� � � �scf2 P5� � f1 P5;P3� � � f1 P5;P6� � � f1 P5;P7� �� �

P
:
6 t� � � �scf2 P6� � f1 P6;P5� � � F6;1

� �
P
:
7 t� � � �scf2 P7� � f1 P7;P5� � � f1 P7;P8� �� �

P
:
8 t� � � �scf2 P8� � f1 P8;P7� � � f1 P8;P9� � � f1 P8;P10� �� �

P
:
9 t� � � �scf2 P9� � f1 P9;P8� � � F9;1

� �
P
:
10 t� � � �scf2 P10� ��f1 P10;P8� � � f1 P10;P11� �

� f1 P10;P13� � � F10;1 � F10;2 � F10;3�

P
:
11 t� � � �scf2 P11� � f1 P11;P10� � � f1 P11;P12� � � F11;1

��
P
:
12 t� � � �scf2 P12� � f1 P12;P11� � � F12;1

� �
P
:
13 t� � � �scf2 P13� ��f1 P13;P10� � � f1 P13;P14� �

� f1 P13;P15� ��
P
:
14 t� � � �scf2 P14� � f1 P14;P13� � � F14;1

� �
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P
:
15 t� � � �scf2 P15� ��f1 P15;P13� � � f1 P15;P16� �

� f1 P15;P17� � � f1 P15;P18� ��
P
:
16 t� � � �scf2 P16� � f1 P16;P15� � � F16;1

� �
P
:
17 t� � � �scf2 P17� � f1 P17;P15� � � F17;1

� �
P
:
18 t� � � �scf2 P18� ��f1 P18;P15� � � f1 P18;P19� �

� f1 P18;P20� ��
P
:
19 t� � � �scf2 P19� � f1 P19;P18� � � F19;1

� �
P
:
20 t� � � �scf2 P20� ��f1 P20;P18� � � f1 P20;P21� �

� f1 P20;P22; l� ��
P
:
21 t� � � �scf2 P21� � f1 P21;P20� � � F21;1

� �
P
:
22 t� � � �scf2 P22� � f1 P22;P23� � � f1 P22;P20; l� �� �

P
:
23 t� � � �scf2 P23� ��f1 P23;P22� � � f1 P23;P24� �

� f1 P23;P25� ��
P
:
24 t� � � �scf2 P24� � f1 P24;P23� � � F24;1 � F24;2

� �
P
:
25 t� � � �scf2 P25� ��f1 P25;P23� � � f1 P25;P26� �

� f1 P25;P27� � � F25;1

�
P
:
26 t� � � �scf2 P26� � f1 P26;P25� � � F26;1

� �
P
:
27 t� � � �scf2 P27� ��f1 P27;P25� � � f1 P27;P28� �

� f1 P27;P29� ��
P
:
28 t� � � �scf2 P28� � f1 P28;P27� � � F28;1

� �
P
:
29 t� � � �scf2 P29� � f1 P29;P27� � � f1 P29;P30� � � F29;1

� �
P
:
30 t� � � �scf2 P30� � f1 P30;P29� � � F30;1

� �
F
:
10;2 t� � � 1

�10;2
Frq10;2 tÿ td� � ÿ F10;2 t� �� �

F
:
10;3 t� � � 1

�10;3
Frq10;3 tÿ td� � ÿ F10;3 t� �� �

F
:
24;1 t� � � 1

�24;1
Frq24;1 tÿ td� � ÿ F24;1 t� �� �

F
:
24;2 t� � � 1

�24;2
Frq24;2 tÿ td� � ÿ F24;2 t� �� �

F
:
29;1 t� � � 1

�29;1
Frq29;1 tÿ td� � ÿ F29;1 t� �� �

l � lss � Kcef � Kc

�I
�f

�
:
t� � � Psp ÿ P20

e
:
f t� � � 1

�f
Psp ÿ P20 ÿ ef

ÿ �
�
:
f � 1

�f
�ÿ �f� �
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