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Nonlinear Model Predictive Control of High Purity
Distillation Columns for Cryogenic Air Separation

Zhongzhou Chen, Michael A. Henson, Senior Member, IEEE, Paul Belanger, and Lawrence Megan

Abstract—High purity distillation columns are critical unit oper-
ations in cryogenic air separation plants that supply purified gases
to a number of industries. We have developed a nonlinear model
predictive control (NMPC) strategy based on the assumption of
full-state feedback for a prototypical cryogenic distillation column
to allow effective operation over a wide range of plant production
rates. The controller design was based on a reduced-order com-
partmental model derived from detailed mass and energy balances
by exploiting time-scale separations. Temporal discretization of the
compartmental model produced a very large set of nonlinear dif-
ferential and algebraic equations with advantageous sparsity prop-
erties, enabling online solution of the NMPC problem. The syner-
gistic combination of several real-time implementation techniques
were found to be essential for further reducing computation time
and allowing reliable solution within the 2-min controller sampling
interval. Closed-loop simulation studies demonstrated the perfor-
mance advantages of NMPC compared to linear model predictive
control technology currently used in the air separation industry.

Index Terms—Nonlinear model predictive control (NMPC),
process control, real-time optimization, reduced-order modeling.

I. INTRODUCTION

C RYOGENIC distillation is used to produce large quanti-
ties of purified nitrogen, oxygen, argon, and rare gases for

the steel, chemical, food processing, semiconductor, and health
care industries [1], [2]. Cryogenic distillation columns are oper-
ated at extremely low temperatures ( 170 to ) to sepa-
rate air components according to their different boiling temper-
atures. Purified streams are produced in liquid and/or gaseous
states for transportation to end-users. The major operating cost
associated with cryogenic air separation plants is electricity. Be-
cause the domestic consumption of electricity by industrial gas
producers is over $1 billion per year, small improvements in
process control have the potential to result in substantial eco-
nomic benefits.

Current state-of-the-art control technology in the air sepa-
ration industry is based on linear dynamic models and linear
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model predictive control [3], [4]. Despite the very high product
purities required, linear control technology has proven to be suc-
cessful because cryogenic distillation columns traditionally op-
erate over a small range of production rates. Deregulation of the
electric utility industry is expected to lead to frequent and unpre-
dictable changes in the cost of electricity, which will mandate
fundamental changes in the operating philosophy of air sepa-
ration plants. Large changes in production rate and more fre-
quent startups/shutdowns will be required to take full advantage
of time-varying utility rates. One possible strategy is to maxi-
mize production when electricity is relatively inexpensive and
to minimize production when electricity costs are high. Column
nonlinearities will become much more pronounced under these
operating conditions, and some type of nonlinear control will be
necessary to achieve satisfactory performance.

Nonlinear model predictive control (NMPC) is an extension
of linear model predictive control, where a nonlinear model is
used to describe the process dynamics [5]–[8]. A variety of nu-
merical algorithms are available to solve the NMPC optimiza-
tion problem. The simultaneous solution approach involves tem-
poral discretization of the dynamic model equations to produce
a set of nonlinear algebraic equations (AEs) that are posed as
equality constraints in the NMPC optimization problem [9],
[10]. The decision variables are current and future values of the
manipulated inputs and state variables. Because control moves
are generated by real-time solution of the resulting nonlinear
program at each sampling time, computational effort is inextri-
cably linked to the complexity of the controller design model.

Fundamental models of distillation columns are comprised
of stage-by-stage mass and energy balances combined with
vapor-liquid equilibrium relations expressed for each stage
[4], [11]. A distillation column with equilibrium separation
stages and chemical species can be modeled with
nonlinear ordinary differential equations (ODEs) describing the
species compositions, liquid and vapor flow rates, and tempera-
ture on each stage. The vapor phase and temperature dynamics
usually are assumed to be fast, such that the corresponding
ODEs are reduced to AEs. We have modeled the 59-stage
cyrogenic distillation column in this paper with 180 ODEs and
137 AEs. Such nonlinear dynamic models generally are viewed
as being too complex to be effectively utilized for real-time
control due to their high dimensionality. While advanced so-
lution techniques have been shown to allow the application of
NMPC to distillation column models of moderate complexity
[12], [13], there remains considerable motivation to develop
reduced-order dynamic models that provide a more favorable
tradeoff between prediction accuracy and optimization effort.
The derivation of reduced-order column distillation models
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Fig. 1. Schematic diagram of a typical double column air separation plant.

from more detailed stage-by-stage models has received consid-
erable attention [14]–[19].

In this paper, a NMPC strategy based on a reduced-order
model of a cryogenic distillation column is developed and
evaluated through simulation studies. The column has multiple
feed and product withdrawal streams, further complicating the
design of an effective control system. Our main contribution
is to present the combination of reduced-order modeling,
temporal discretization, nonlinear programming, and real-time
implementation techniques required to develop an industrially
realizable NMPC controller. We have previously derived a
detailed stage-by-stage balance model to serve as a surrogate
plant in our simulation studies and to provide a rigorous basis
for reduced-order model development [20]. As part of this
work, a nonlinear compartmental model [21] was derived by
exploiting time-scale separations in the full-order model. Here
we show that the temporally discretized compartmental model
has increased sparsity as compared to the full-order model,
which facilitates efficient solution of the NMPC problem. A
number of real-time implementation strategies are employed to
achieve converged NMPC solutions within the 2-min controller
sampling interval. Closed-loop simulations are conducted under
the assumption of full-state feedback and noise-free measure-
ments to compare the performance of the NMPC controller to
a conventional linear model predictive controller and to assess
the potential utility of NMPC technology for cryogenic and
other high-purity distillation columns.

II. DISTILLATION COLUMN MODELING

The scope of this work was limited to the upper distillation
column of a double column air separation plant (Fig. 1). The
upper column has 59 separation stages including the reboiler,
and seven liquid distributors are placed throughout the column
to improve the flow characteristics of the descending liquid.
The column directly receives two air feed streams (liquid air
on stage 18 and turbine and kettle air on stage 35) following gas
compression and expansion that achieves the cryogenic temper-
atures necessary for separation. The upper column is coupled
to the lower nitrogen purification column through the integrated
condenser/reboiler and the reflux stream (entering stage 1) ob-
tained from the overhead of the lower column. The nitrogen
product is withdrawn from stage 1, and a gaseous nitrogen waste
stream is withdrawn from stage 10. The oxygen product is with-
drawn from the integrated condenser/reboiler (stage 59).

A. Full-Order Model

We previously derived a stage-by-stage mass and energy bal-
ance model of the upper column to provide the basis for com-
partmental model development and to serve as the plant in our
simulation studies [20]. This full-order model was based on the
following assumptions: 1) ternary gas mixture consisting of ni-
trogen, oxygen, and argon; 2) negligible vapor phase holdups;
3) ideal vapor phase behavior; 4) fast temperature dynamics;
5) linear pressure profile across the column; 6) complete mixing
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of the vapor and liquid streams entering the feed stages; and
7) constant reboiler medium temperature. The model was com-
prised of dynamic mass balances and a steady-state energy bal-
ance on each stage combined with an activity coefficient model
to account for nonideal liquid phase behavior. Steady-state mass
and energy balances were used to model mixing of the feed
streams with internal vapor and liquid streams. Each liquid dis-
tributor was modeled as a separation stage with a very small
separation efficiency (5%) to account for the effect of its large
liquid holdup on column dynamics.

The complete upper column model consisted of 180 ODEs
and 137 AEs with the following unknowns for each stage :
oxygen and argon mole fractions , liquid and
vapor molar flow rates , and temperature . The
matlab code ode15s was used to solve the differential-al-
gebraic equation (DAE) model. The DAE model was index 1
due to the use of steady-state energy balances. If dynamic
energy balances were used, the DAE model would be index 2
and column simulation would be considerably more difficult.
Nitrogen compositions were computed from oxygen and argon
compositions by noting that the three mass fractions sum to
unity on any stage. To avoid the additional complexity of
rigorous lower column modeling, simple linear models were
developed to account for the effects of the lower column on
the upper column. An Aspen Dynamics simulation of the
lower column [22] was used to generate dynamic data for
step changes in the air inlet flow rate to the plant assuming a
constant condenser (warm side) temperature in the integrated
condenser/reboiler (Fig. 1). This assumption was valid because
the upper column pressure and product composition did not
vary enough to impact the boiling side temperature. The sim-
ulation data was used to identify step response models with
the air inlet flow rate as the input variable and each variable
that affected the upper column as an output variable. These
linear models were used to propagate the effects of air flow rate
changes on the lower column to the upper column.

B. Compartmental Model

We have developed compartmental models of high purity
distillation columns in cyrogenic air separation plants [20],
[22]. While other nonlinear reduced-order modeling tech-
niques have been developed for distillation columns [15],
[16], [23], the main advantages of compartmental modeling
are that the physicochemical features of the detailed column
model are retained and that temporal discretization yields a
sparse NMPC problem amenable to real-time solution. Com-
partmental models are derived directly from stage-by-stage
balance models by dividing the column into a small number of
sections termed compartments [21], [24]. A dynamic model of
each compartment is developed by combining stage-by-stage
balances with overall balances over the entire compartment.
If the number of stages in the compartment is sufficiently
large and each stage has a comparable liquid holdup, then the
overall dynamics of the compartment are much slower than
the dynamics of any individual stage within the compartment.
This time-scale separation allows the compartment dynamics
to be approximated with the ODEs for a representative stage
within the compartment whose holdup is equal to the total

TABLE I
EQUATIONS COMPRISING THE FULL-ORDER AND COMPARTMENTAL MODELS

compartment holdup [21]. Due to their relatively fast dynamics,
the balance equations for other stages within the compartment
are reduced to AEs through singular perturbation arguments
[25].

We conducted a detailed compartmental modeling study for
the upper column of a cryogenic air separation plant [20]. To
examine the effect of compartmentalization on reduced-order
model complexity and accuracy, three schemes were investi-
gated: 15 compartments—a separate compartment was defined
for the reboiler, each distributor, and the equilibrium stages lo-
cated between adjacent distributors; nine compartments—dis-
tributors were lumped together with equilibrium stages such that
only a single compartment was located between any two feed
and/or product streams; and five compartments—the reboiler
was treated as a single compartment, while the other compart-
ments contained a single feed and withdrawal stream located at
the first stage of the compartment. We found that the nine-com-
partment model provided the best compromise between model
complexity and prediction accuracy relative to the full-order
model. The interested reader should consult our previous publi-
cations [20], [22] for additional details on these results and the
compartmental modeling procedure.

As compared to the full-order model, the compartmental
models are comprised of relatively few ODEs representing
the overall compartment dynamics and a large number of AEs
derived from the dynamic stage balances (Table I). NMPC
simultaneous solution methods require that both the differential
and algebraic variables be included as decision variables and
that temporally discretized versions of the equations be posed
as equality constraints [9]. The AEs can be represented such
that the equations at each temporal node point depend only
on variables at the same node point. We discretize the ODEs
using collocation on finite elements [10], producing equations
at each node point that depend on all the variables within the
same finite element. Therefore, the conversion of differential
equations to algebraic equations through compartmentalization
produces sparser Jacobian and Hessian matrices and offers the
potential for more efficient solution of the NMPC problem.
The most favorable compartmentalization scheme for NMPC
is determined by the tradeoff between prediction accuracy and
computational efficiency, as discussed in the next section.

III. NONLINEAR MODEL PREDICTIVE CONTROLLER

A. Controller Formulation

The full-order column model and the reduced-order compart-
mental models are DAE systems of the form

(1)
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TABLE II
INPUT AND OUTPUT VARIABLES FOR MODEL PREDICTIVE CONTROL

where are the differential variables, are the algebraic
variables, are the manipulated input variables, and are
constant model parameters. NMPC involves repeated online so-
lution of the following nonlinear optimization problem to gen-
erate the control moves

(2)

where is the objective function used to measure controller
performance. The solution is constrained by the DAE model,
inequality constraints on the input and output variables, and the
initial state. In this paper, we assumed that the state vector is
measurable to determine the upper limits of achievable NMPC
performance. We intend to present output feedback results in
which the NMPC controller is combined with a nonlinear re-
ceding horizon state estimator [26], [27] in a future publication.
The NMPC formulation does not contain specific features such
as endpoint constraints and terminal penalties that have been
proposed to guarantee nominal closed-loop stability [7], [8]. We
found through extensive simulation studies that the NMPC con-
troller was stabilizing if the prediction horizon was chosen to be
sufficiently large. Because endpoint constraints typically reduce
the feasible domain and can dramatically increase computation
time, we determined that their inclusion was both unnecessary
and undesirable.

Numerical solution of the optimization problem (2) is dif-
ficult due to its continuous-time formulation and the presence
of differential equation constraints. Consequently, we utilized
a simultaneous solution strategy based on temporal discretiza-
tion of the DAE model using Radau collocation on finite ele-
ments [9]. As compared to collocation across the entire predic-
tion horizon, the use of finite elements allowed better approx-
imation of steep concentration profiles and produced a much
sparser NMPC problem amenable to real-time solution. Each
finite element was chosen to have the same length as the sam-
pling interval (2 min) to facilitate controller implementation. A
single internal collocation point within each finite elements of
produced an accurate solution when compared to the original
model (1) simulated with the DAE solver DASSPK [28] (not
shown). Because the introduction of an additional collocation
point increased simulation time an order of magnitude while

only slightly improving solution accuracy, we used a single col-
location point in our closed-loop simulations.

The objective function for the discretized problem was
chosen as

(3)

where and denote the th input and output values,
respectively, at time-step ; and represent the cor-
responding target values; , , and are time-independent
weighting coefficients that were chosen by trial and error
to achieve good controller performance; and are the
number of inputs and outputs, respectively; is the control
horizon over which the inputs are allowed to change; and

is the prediction horizon over which the optimization is
performed. The upper column represents a nonsquare control
problem with and (Table II). The controlled
variables were chosen as the gaseous product purity
(stage 59) and the waste composition (stage 10), which
was more responsive to the inputs than the gaseous product
purity (stage 1) and could be controlled at an appropriately
chosen setpoint to provide regulation of the product purity.
Due to their high purities, both outputs were subjected to
partially linearizing logarithmic transformations (Table II)
used by Praxair in their existing LMPC application. Although
both outputs only must be controlled within prescribed limits
(discussed below), we found that including explicit setpoints

in the objective function significantly improved NMPC
performance by reducing the input degrees of freedom and
producing more reasonable control moves.

The upper column has three independently adjustable air
feed flow rates (Fig. 1). Accordingly, the first three inputs
were chosen as the total air feed flowrate (entering the lower
column), the liquid air feed flowrate (stage 18), and the turbine
air feed flowrate (stage 35). As discussed earlier, the effects of
the total air flowrate were propagated to the upper column using
empirical linear models identified from an Aspen simulation
model of the lower column. Stored liquid nitrogen can be intro-
duced into the top of the upper column (not shown in Fig. 1) to
generate large and rapid increases in the nitrogen product and
waste compositions. Therefore, the fourth input was chosen as
the flowrate of this liquid nitrogen stream. The fifth input was
chosen as the gaseous production rate, which was adjusted
by the controller to meet the specified demand . Both the
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liquid air feed flowrate and the liquid nitrogen flowrate
are relatively expensive inputs due to refrigeration costs

associated with their production. Consequently, the controller
was tuned with relatively large weights and such that
these inputs were driven close to their target values whenever
possible.

The objective function (3) was minimized subject to several
types of equality and inequality constraints. The DAEs com-
prising the column model were temporally discretized using
Radau collocation on finite elements to yield a large set of non-
linear algebraic equations constraints. The two outputs were
constrained to remain within lower and/or upper limits chosen
to satisfy product purity requirements

(4)

Two types of constraints were imposed on the inputs: absolute
constraints to ensure that the inputs remained within reasonable
bounds and rate-of-change constraints to avoid highly aggres-
sive control moves

(5)

(6)

A standard output disturbance model was used to eliminate
steady-state offset resulting from plant-model mismatch. A
nonlinear program (NLP) was formulated by treating both the
manipulated input and state variables at each collocation point
as optimization variables [10]. NLP infeasibilities due to the
hard output constraints were handled by sequentially removing
the constraints at the beginning of the prediction horizon until
the smallest number of intervals at which the constraints must
be removed to achieve feasibility was determined. However,
the hard bounds used in our simulations were not sufficiently
restrictive to generate controller infeasibilities. Very wide in-
equality constraints were placed on the state variables to ensure
that the NLP solver remained in the appropriate solution space.
These constraints had no effect on controller feasibility.

B. Real-Time Solution Strategy

The full-order model implemented in MATLAB served as
the virtual plant for closed-loop simulations. The NMPC con-
troller was implemented in AMPL, an advanced programming
language for optimization model development and solution
[29]. AMPL allowed the optimization model to be rapidly
developed, enabled investigation of different NLP solvers, and
provided analytical calculation of the Jacobian and Hessian ma-
trices needed by the solvers. The MATLAB and AMPL codes
exchanged information through Excel data files. We assumed
that the state vector was measurable and that the measurements
were not corrupted by noise to determine the upper limits of
achievable NMPC performance.

The NMPC sampling time min was chosen to be
commensurate with sampling times commonly used for linear
MPC control of cryogenic air separation columns. A prediction
horizon of 240 min was chosen according to the
model steady-state response time, which was approximately
4 h. The control horizon of 20 min was chosen to be
as small as possible to reduce computation time while achieving

acceptable closed-loop performance. Other than the require-
ment that the input weights and be chosen to be relatively
large to penalize large moves in the liquid air feed flowrate
and the liquid nitrogen flowrate , the controller weights

were chosen by a trial-and-error tuning procedure to
obtain satisfactory performance of NMPC controllers based on
the full-order and compartmental models. We found that a wide
range of tuning parameters yielded closed-loop stability, so the
tuning effort was focused on obtaining good performance for
production rate changes. The tuning parameter values for each
controller are not reported here for the sake of brevity.

The full-order column model contains 317 state variables
representing the liquid phase composition, temperature, liquid
holdup, and vapor flowrate on each stage. However, the model
also contains many intermediate thermodynamic variables used
to calculate activity coefficients, gas phase compositions, and
enthalpies. The intermediate thermodynamic equations were
posed as algebraic constraints in the NLP problem used for
NMPC implementation. Because there are approximately six
times the number of intermediate variables as state variables,
the NLP had approximately 500 000 optimization variables and
equality constraints that had to be solved at every time-step
within the 2-min controller sampling interval. Our preliminary
simulation results indicated that IPOPT [30] was better suited
for this very large and highly sparse NLP problem than the
popular solver CONOPT. However IPOPT sometimes required
as much as 40 min of CPU time following a step change in
the gaseous production rate demand, a factor of 20 times
larger than that necessary for real-time implementation. While
any computational delay has the potential to degrade controller
performance, consistent convergence of the controller calcu-
lations within the sampling time is necessary for real-time
implementation. If the controller did not return a fully con-
verged solution within the 2-min sampling interval, then the
partially converged solution available at that time was used.
We found that closed-loop performance could be adversely
and unpredictably affected by the use of partially converged
solutions, with instability resulting if such solutions are used
too frequently. Therefore, we made every effort to ensure
that the controller consistently converged within the sampling
interval. While faster converged solutions could be achieved
with more powerful computers than our Pentium IV desktop
machine and/or parallelization of the controller calculations, we
instead sought to develop real-time implementation strategies
that would reduce NMPC execution times on any computer
platform.

We found that a combination of different implementation
strategies were required to develop a NMPC controller capable
of consistently returning converged control moves within the
two sampling interval. Fig. 2 shows the impact of the seven
strategies used on the NMPC execution time immediately
following a particularly difficult step change in the gaseous

production demand . The strategies were numbered
according to their relative impact on the execution time, where
strategy 1 produced the largest individual reduction. Fig. 2 was
developed by implementing each strategy sequentially such
that the CPU time reduction reported for each case represents
the percentage of the original execution time achieved with
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all the previous strategies also implemented (e.g., the time
reduction reported for strategy 3 was obtained by simultaneous
implementation of strategies 1–3). Each strategy and its impact
on computation time are summarized below.

1) The largest reduction in computation time was achieved by
utilizing finite elements of nonequal lengths, with each ele-
ment continuing to have a single internal collocation point.
Because the control horizon was much shorter than the pre-
diction horizon, the length of the elements near the begin-
ning of the prediction horizon remained at 2 min and the
other element lengths were progressively increased to take
advantage of the slowly changing dynamics near at the end
of the prediction horizon. The total number of finite ele-
ments was reduced to 20, only one-sixth of the 120 ele-
ments used in the original NMPC controller. This strategy
reduced the worst-case execution time by 60% compared
with the original controller.

2) The replacement of the full-order model with a com-
partmental model produced a significant reduction in the
NMPC execution time, with a greater benefit achieved as
the number of compartments was reduced. We believe that
this trend was directly attributable to the conversion of
differential equations to algebraic equations. Collocation
was used to approximate the time derivatives in the ODEs
as algebraic expressions involving the three collocation
points (one internal point and one point on each finite
element boundary) within the appropriate finite element.
By contrast, collocation of an AE produced a discretized
algebraic equation that depended only on the single collo-
cation point at which the collocation was performed. As a
result, AEs lead to more zero entries in the Jacobian matrix
than the ODEs. By substantially increasing the number of
algebraic equations while retaining the same total number
of equations prior to collocation, model compartmental-
ization produced a sparser NMPC problem. Although the
five-compartment model provided the greatest reduction
in computation time, the resulting control performance
was unacceptably poor for some production demand
changes. Both the nine- and 15-compartment models pro-
duced good closed-loop performance which approached
that obtained with the more computationally demanding
full-order model. All the subsequent simulation results
were generated with the nine-compartment model because
it provided the best compromise between controller per-
formance and computational effort. When combined with
finite elements of nonequal length, the nine-compartment
model produced a substantially smaller NLP problem
(12 780 decision variables and 12 730 equality constraints)
and reduced the worst-case execution time by 75%
compared with the original controller.

3) The NLP solver could be tuned for this specific applica-
tion to further reduce the NMPC execution time. Despite
being initialized with a nearly converged solution from the
previous controller iteration, IPOPT generated iterative so-
lutions that rapidly moved away from the initial guess be-
fore eventually returning to the converged solution after
15–20 unnecessary iterations. We solicited assistance from
one of the IPOPT developers to adjust the solver options

Fig. 2. Percentage reduction in the worst-case NMPC execution time achieved
by sequential implementation of seven NMPC real-time implementation
strategies following a change in the gaseous oxygen production rate demand.
The strategies are numbered according to their relative impact on the execution
time, where strategy 1 produced the largest individual reduction. The results
were generated by implementing each strategy sequentially such that the CPU
time reduction reported for each case represents the percentage of the original
execution time achieved with all the previous strategies also implemented
(e.g., the time reduction reported for strategy 3 was obtained by simultaneous
implementation of strategies 1–3). The NMPC execution times for the orig-
inal formulation without real-time implementation strategies and the final
formulation with strategies I–VII were 40 and 2 min, respectively. Explanation
of strategies: I—finite elements of nonequal lengths; II—nine-compartment
model; III—IPOPT solver tuning; IV—analytical calculation of Jacobian and
Hessian matrices; V—manual NMPC problem scaling; VI—NLP warm start;
and VII—ramped setpoint changes.

for more rapid convergence than that obtained with the de-
fault solver options. Careful selection of the barrier param-
eter in the interior point algorithm proved to be particularly
important for rapid convergence [30]. The combination of
strategies 1–3 reduced the worst-case execution time by

85% compared with the original controller.
4) The use of AMPL to analytically compute the Jacobian and

Hessian matrices reduced numerical errors and improved
convergence speed compared to numerical finite differ-
ence approximations. In addition to reducing the worst-
case execution time by 90% compared with the original
controller, automatic calculation of derivative information
does not require any additional effort by the user.

5) Although AMPL provides automated problem scaling to
improve numerical stability and robustness, a small reduc-
tion in the worst-case execution time was achieved by man-
ually scaling the NMPC variables and constraints prior to
solution by AMPL.

6) A small reduction in worst-case CPU time was achieved
by warm starting the NLP solver using the solution ob-
tained at the previous time-step. This strategy only has a
small impact immediately following a production demand
change because the previous solution does not constitute
a good initial guess of the current solution. By contrast,
warm starting is essential for achieving rapid NMPC ex-
ecution times during normal operation when the solution
changes much more slowly at adjacent time-steps.

7) In a final attempt to reduce the worst-case NMPC solu-
tion time, production rate changes were implemented as
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Fig. 3. LMPC for ���15% changes in the gaseous oxygen production rate demand. Input and output variables have been scaled such that their nominal values
are unity.

Fig. 4. LMPC for ���30% changes in the gaseous oxygen production rate demand.

ramp inputs rather than step inputs. This strategy only had
a small effect on the NMPC execution time and was not
required for convergence of the NLP problem. The combi-
nation of strategies 1–7 reduced the worst-case execution
time by 95% compared with the original formulation,
yielding a NMPC controller that consistently converged
within the 2-min controller sampling time.

IV. CLOSED-LOOP SIMULATION RESULTS

To provide a reasonable basis for evaluating NMPC perfor-
mance, linear model predictive control (LMPC) was used to de-
sign a linear constrained multivariable controller for the upper
column. Using the manipulated inputs and controlled outputs
listed in Table II and a sampling period of 1 min, a step re-
sponse model was developed from simulation data generated by
the full-order model through the application of standard system
identification procedures used in the air separation industry. The
effects of the total air flowrate were propagated to the upper

column using the empirical linear models of the lower column
described earlier. The LMPC objective function was chosen as
in the nonlinear case (3) with the prediction and control hori-
zons equal to 4 h and 30 min , respec-
tively. Explicit setpoints were used for the controlled outputs
as in the NMPC controller. The step response model was posed
as a set of linear equality constraints, and the objective func-
tion was minimized subject to the same inequality constraints
used in the NMPC controller. A standard output disturbance
model was used to eliminate steady-state offset. The resulting
quadratic program (QP) was solved in Matlab using the solver
quadprog.

The LMPC controller was evaluated for two series of ramped
setpoint changes in the gaseous oxygen production rate demand

since the control objective is to satisfy the product compo-
sition specifications while changing the plant production rate.
Setpoint changes in the product compositions are not mean-
ingful as these specifications are not changed during normal
plant operation. The first set of production rate demand changes
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Fig. 5. NMPC for ���15% changes in the gaseous oxygen production rate demand. Input and output variables have been scaled such that their nominal values
are unity.

consisted of a setpoint increase of 15% followed by a setpoint
decrease of 15% such that the demand was returned to its nom-
inal value. The second set of demand changes consisted of a set-
point decrease of 30% followed by a setpoint increase of 30%.
As with the NMPC controller, the LMPC objective function
weights were chosen by a trial-and-error tuning pro-
cedure to obtain satisfactory closed-loop performance. We expe-
rienced considerable difficulty obtaining feasible QP solutions
and stable closed-loop performance due to large plant-model
mismatch. Only a limited range of tuning parameters yielded ac-
ceptable performance, and this range was determined only after
considerable effort. As compared to the NMPC tuning parame-
ters, relatively large output weights on the two product purities
and small input weights on the liquid air feed and the liquid ni-
trogen flowrates were required for acceptable performance. The
resulting parameters are not reported here for the sake of brevity.

Fig. 3 shows the LMPC response for 15% changes in the
gaseous oxygen production rate demand, with the input and
output variables scaled such that their nominal steady-state
values were unity to protect proprietary information. LMPC
provided excellent setpoint tracking performance for these
comparatively small changes. The use of relatively large output
weights on the two product purities is clearly evident as the
controller does not drive the column to the purity constraints,
resulting in an unnecessarily high degree of separation. Fig. 4
shows the LMPC response for larger 30% changes in the
production rate demand. Through painstaking controller tuning,
we were able to obtain good setpoint tracking at the expense of
large changes in the relatively expensive liquid air feed and the
liquid nitrogen flowrates.

The NMPC controller was designed using the nine-compart-
ment model as described in Section III-A and implemented
using the real-time strategies discussed in Section III-B. NMPC
was able to provide satisfactory tracking of small demand
changes (Fig. 7). Despite transient prediction errors in the
nine-compartment model used for controller design, NMPC
was able to approximately satisfy the upper limit on the nitrogen
waste purity and the lower limit on the oxygen product purity

Fig. 6. NMPC execution times at each sampling point for ���15% changes
in the gaseous oxygen production rate demand.

with only very small constraint violations. By contrast, LMPC
was not able to drive the process to the purity constraints due to
larger plant-model mismatch (Fig. 3). NMPC generated reason-
able control actions and returned the relatively expensive liquid
air feed and liquid nitrogen flowrates close to their nominal
values following the second demand change. Even for these
small demand changes, LMPC required larger moves in these
expensive inputs to achieve acceptable performance (Fig. 3).

When the nine-compartment model was used for controller
design, NMPC was able to consistently produce a converged
control solution within the 2-min sampling interval (Fig. 8).
The only exception was immediately following the second de-
mand change, at which time the controller required approxi-
mately 125 s for convergence. More generally, relatively large
execution times were obtained for several sampling intervals
after a demand change because the warm start strategy was less
effective under such highly transient conditions. As compared
to NMPC controllers designed with the 15-compartment model
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Fig. 7. NMPC for ���30% changes in the gaseous oxygen production rate demand.

and the full-order model (FOM), the nine-compartment model
provided significant reductions in NMPC execution times with
little degradation in control performance (not shown).

The value of NMPC was more clearly evident for larger de-
mand changes (Fig. 7). NMPC was able to effectively track the
demand changes with reasonable control actions while driving
the column to the purity constraints as necessary. While the pu-
rity constraints were only approximately satisfied due to plant-
model mismatch, the only noticeable constraint violation oc-
curring in the oxygen product purity following the second de-
mand change. Although the control moves were less smooth
than those generated for smaller demand changes (Fig. 5), con-
troller behavior remained acceptable. The first demand change
required the liquid air feed and liquid nitrogen flowrates to re-
main at elevated levels to satisfy the upper limit on the nitrogen
waste purity. LMPC performance for the same demand changes
(Fig. 3 was characterized by inability to drive the process to the
purity constraints and much larger changes in the liquid air feed
and liquid nitrogen flowrates, both of which translate to less ef-
fective column performance and higher operating costs.

For the larger demand changes, the nine-compartment model
often produced similar NMPC execution times as the 15-com-
partment model. The primary advantage of the nine-compart-
ment model was reduced execution times following the second
demand change (Fig. 8), which allowed the NMPC controller to
converge within the 2-min sampling interval. By contrast, the
15-compartment model required over 200 s immediately fol-
lowing this demand change. The full-order model (FOM) con-
sistently required execution times exceeding the controller sam-
pling interval, most notably over 400 s immediately following
the second demand change. The reduced execution times ob-
tained with the nine-compartment model were achieved with
little degradation in control performance compared to the other
two models (not shown). We found that NMPC simulations for

15% production rate increases consistently produced larger
computation times than for 30% production rate decreases,
regardless of the control model used. We hypothesize that the
feasible region became smaller and the optimal solution moved
closer to the boundary for the 15% production rate increase.

Fig. 8. NMPC execution times at each sampling point for ���30% changes
in the gaseous oxygen production rate demand.

This result is consistent with industrial experience that produc-
tion rate changes approaching the maximum rate are more chal-
lenging than comparatively large production rate decreases.

V. SUMMARY AND CONCLUSION

A nonlinear model predictive control (NMPC) strategy has
been developed for a prototypical distillation column in a
cryogenic air separation plant to allow effective operation over
a wide range of production rates. The controller design was
based on a reduced-order nonlinear model derived from de-
tailed mass and energy balances through compartmentalization
and singular perturbation analysis. Temporal discretization of
the compartmental model equations produced sparse Jacobian
and Hessian matrices, which allowed more efficient solution
of the NMPC optimization problem than was possible with the
full-order balance model. To achieve consistent convergence
of the NMPC problem within the 2-min controller sampling
interval, several real-time implementation strategies including
the use of nonequal finite elements over the prediction horizon
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were required. Initializing the NLP solver with the converged
solution at the previous time-step was found to significantly
reduce NMPC execution times except immediately following a
change in the production rate demand. The NMPC controller
was shown to provide superior performance to a standard
LMPC controller for large demand changes that exasperate
column nonlinearities.

This study represents a first step towards the development
of implementable NMPC technology for high purity distilla-
tion columns and other chemical process systems described by
high-dimensional differential equation models. To assess the
upper limits of achievable NMPC performance, the stage tem-
peratures and compositions were assumed to be directly measur-
able. In practice, these state variables must be estimated from a
sparse collection of noisy stage temperatures and product com-
positions. The present study focused on the upper column of
a double column air separation plant. A more comprehensive
approach will require integrated control of multiple columns
and auxiliary processes including multistream heat exchangers
and refrigeration equipment. We believe that the reduced-order
modeling and real-time implementation strategies developed in
this study should provide a valuable starting point for solving
these considerably more challenging NMPC problems.
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